
pygbm Documentation
Release 0.1.0.dev0

Olivier Grisel, Nicolas Hug

Dec 19, 2018

Estimator API

1 Gradient Boosting Estimators 3

2 Losses 9

3 Binning 13

4 Grower 15

5 Splitting 19

6 Indices and tables 21

Python Module Index 23

i

ii

pygbm Documentation, Release 0.1.0.dev0

Warning: Pygbm’s API and default values are likely to be changed in future version, without any deprecation
cycle.

Warning: Pygbm’s API and default values are likely to be changed in future version, without any deprecation
cycle.

Estimator API 1

pygbm Documentation, Release 0.1.0.dev0

2 Estimator API

CHAPTER 1

Gradient Boosting Estimators

Gradient Boosting decision trees for classification and regression.

class pygbm.gradient_boosting.GradientBoostingClassifier(loss=’auto’, learn-
ing_rate=0.1,
max_iter=100,
max_leaf_nodes=31,
max_depth=None,
min_samples_leaf=20,
l2_regularization=0.0,
max_bins=256, scor-
ing=None, vali-
dation_split=0.1,
n_iter_no_change=5,
tol=1e-07, verbose=0,
random_state=None)

Scikit-learn compatible Gradient Boosting Tree for classification.

Parameters

• loss ({'auto', 'binary_crossentropy', 'categorical_crossentropy'},
optional(default='auto')) – The loss function to use in the boosting process.
‘binary_crossentropy’ (also known as logistic loss) is used for binary classification and gen-
eralizes to ‘categorical_crossentropy’ for multiclass classification. ‘auto’ will automatically
choose either loss depending on the nature of the problem.

• learning_rate (float, optional(default=1)) – The learning rate, also
known as shrinkage. This is used as a multiplicative factor for the leaves values. Use 1
for no shrinkage.

• max_iter (int, optional(default=100)) – The maximum number of iterations
of the boosting process, i.e. the maximum number of trees for binary classification. For
multiclass classification, n_classes trees per iteration are built.

• max_leaf_nodes (int or None, optional(default=None)) – The maxi-
mum number of leaves for each tree. If None, there is no maximum limit.

3

pygbm Documentation, Release 0.1.0.dev0

• max_depth (int or None, optional(default=None)) – The maximum depth
of each tree. The depth of a tree is the number of nodes to go from the root to the deepest
leaf.

• min_samples_leaf (int, optional(default=20)) – The minimum number of
samples per leaf.

• l2_regularization (float, optional(default=0)) – The L2 regularization
parameter. Use 0 for no regularization.

• max_bins (int, optional(default=256)) – The maximum number of bins to
use. Before training, each feature of the input array X is binned into at most max_bins
bins, which allows for a much faster training stage. Features with a small number of unique
values may use less than max_bins bins. Must be no larger than 256.

• scoring (str or callable or None, optional (default=None)) –
Scoring parameter to use for early stopping (see sklearn.metrics for available options). If
None, early stopping is check w.r.t the loss value.

• validation_split (int or float or None, optional(default=0.1))
– Proportion (or absolute size) of training data to set aside as validation data for early stop-
ping. If None, early stopping is done on the training data.

• n_iter_no_change (int or None, optional (default=5)) – Used to de-
termine when to “early stop”. The fitting process is stopped when none of the last
n_iter_no_change scores are better than the ‘‘n_iter_no_change - 1‘‘th-to-last one,
up to some tolerance. If None or 0, no early-stopping is done.

• tol (float or None optional (default=1e-7)) – The absolute tolerance to
use when comparing scores. The higher the tolerance, the more likely we are to early stop:
higher tolerance means that it will be harder for subsequent iterations to be considered an
improvement upon the reference score.

• verbose (int, optional(default=0)) – The verbosity level. If not zero, print
some information about the fitting process.

• random_state (int, np.random.RandomStateInstance or None,
optional(default=None)) – Pseudo-random number generator to control the
subsampling in the binning process, and the train/validation data split if early stopping is
enabled. See scikit-learn glossary.

Examples

>>> from sklearn.datasets import load_iris
>>> from pygbm import GradientBoostingClassifier
>>> X, y = load_iris(return_X_y=True)
>>> clf = GradientBoostingClassifier().fit(X, y)
>>> clf.score(X, y)
0.97...

fit(X, y)
Fit the gradient boosting model.

Parameters

• X (array-like, shape=(n_samples, n_features)) – The input samples. If
X.dtype == np.uint8, the data is assumed to be pre-binned and the prediction
methods (predict, predict_proba) will only accept pre-binned data as well.

4 Chapter 1. Gradient Boosting Estimators

https://scikit-learn.org/stable/glossary.html#term-random-state

pygbm Documentation, Release 0.1.0.dev0

• y (array-like, shape=(n_samples,)) – Target values.

Returns self

Return type object

get_params(deep=True)
Get parameters for this estimator.

Parameters deep (boolean, optional) – If True, will return the parameters for this esti-
mator and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type mapping of string to any

predict(X)
Predict classes for X.

Parameters X (array-like, shape=(n_samples, n_features)) – The input sam-
ples. If X.dtype == np.uint8, the data is assumed to be pre-binned and the estimator
must have been fitted with pre-binned data.

Returns y – The predicted classes.

Return type array, shape (n_samples,)

predict_proba(X)
Predict class probabilities for X.

Parameters X (array-like, shape=(n_samples, n_features)) – The input sam-
ples. If X.dtype == np.uint8, the data is assumed to be pre-binned and the estimator
must have been fitted with pre-binned data.

Returns p – The class probabilities of the input samples.

Return type array, shape (n_samples, n_classes)

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

• X (array-like, shape = (n_samples, n_features)) – Test samples.

• y (array-like, shape = (n_samples) or (n_samples, n_outputs))
– True labels for X.

• sample_weight (array-like, shape = [n_samples], optional) –
Sample weights.

Returns score – Mean accuracy of self.predict(X) wrt. y.

Return type float

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns

5

pygbm Documentation, Release 0.1.0.dev0

Return type self

class pygbm.gradient_boosting.GradientBoostingRegressor(loss=’least_squares’,
learning_rate=0.1,
max_iter=100,
max_leaf_nodes=31,
max_depth=None,
min_samples_leaf=20,
l2_regularization=0.0,
max_bins=256, scor-
ing=None, vali-
dation_split=0.1,
n_iter_no_change=5,
tol=1e-07, verbose=0,
random_state=None)

Scikit-learn compatible Gradient Boosting Tree for regression.

Parameters

• loss ({'least_squares'}, optional(default='least_squares')) –
The loss function to use in the boosting process.

• learning_rate (float, optional(default=0.1)) – The learning rate, also
known as shrinkage. This is used as a multiplicative factor for the leaves values. Use 1
for no shrinkage.

• max_iter (int, optional(default=100)) – The maximum number of iterations
of the boosting process, i.e. the maximum number of trees.

• max_leaf_nodes (int or None, optional(default=None)) – The maxi-
mum number of leaves for each tree. If None, there is no maximum limit.

• max_depth (int or None, optional(default=None)) – The maximum depth
of each tree. The depth of a tree is the number of nodes to go from the root to the deepest
leaf.

• min_samples_leaf (int, optional(default=20)) – The minimum number of
samples per leaf.

• l2_regularization (float, optional(default=0)) – The L2 regularization
parameter. Use 0 for no regularization.

• max_bins (int, optional(default=256)) – The maximum number of bins to
use. Before training, each feature of the input array X is binned into at most max_bins
bins, which allows for a much faster training stage. Features with a small number of unique
values may use less than max_bins bins. Must be no larger than 256.

• scoring (str or callable or None, optional (default=None)) –
Scoring parameter to use for early stopping (see sklearn.metrics for available options). If
None, early stopping is check w.r.t the loss value.

• validation_split (int or float or None, optional(default=0.1))
– Proportion (or absolute size) of training data to set aside as validation data for early stop-
ping. If None, early stopping is done on the training data.

• n_iter_no_change (int or None, optional (default=5)) – Used to de-
termine when to “early stop”. The fitting process is stopped when none of the last
n_iter_no_change scores are better than the ‘‘n_iter_no_change - 1‘‘th-to-last one,
up to some tolerance. If None or 0, no early-stopping is done.

6 Chapter 1. Gradient Boosting Estimators

pygbm Documentation, Release 0.1.0.dev0

• tol (float or None optional (default=1e-7)) – The absolute tolerance to
use when comparing scores. The higher the tolerance, the more likely we are to early stop:
higher tolerance means that it will be harder for subsequent iterations to be considered an
improvement upon the reference score.

• verbose (int, optional (default=0)) – The verbosity level. If not zero, print
some information about the fitting process.

• random_state (int, np.random.RandomStateInstance or None,
optional (default=None)) – Pseudo-random number generator to control the
subsampling in the binning process, and the train/validation data split if early stopping is
enabled. See scikit-learn glossary.

Examples

>>> from sklearn.datasets import load_boston
>>> from pygbm import GradientBoostingRegressor
>>> X, y = load_boston(return_X_y=True)
>>> est = GradientBoostingRegressor().fit(X, y)
>>> est.score(X, y)
0.92...

fit(X, y)
Fit the gradient boosting model.

Parameters

• X (array-like, shape=(n_samples, n_features)) – The input samples. If
X.dtype == np.uint8, the data is assumed to be pre-binned and the prediction
methods (predict, predict_proba) will only accept pre-binned data as well.

• y (array-like, shape=(n_samples,)) – Target values.

Returns self

Return type object

get_params(deep=True)
Get parameters for this estimator.

Parameters deep (boolean, optional) – If True, will return the parameters for this esti-
mator and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type mapping of string to any

predict(X)
Predict values for X.

Parameters X (array-like, shape=(n_samples, n_features)) – The input sam-
ples. If X.dtype == np.uint8, the data is assumed to be pre-binned and the estimator
must have been fitted with pre-binned data.

Returns y – The predicted values.

Return type array, shape (n_samples,)

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

7

https://scikit-learn.org/stable/glossary.html#term-random-state

pygbm Documentation, Release 0.1.0.dev0

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

• X (array-like, shape = (n_samples, n_features)) – Test samples. For
some estimators this may be a precomputed kernel matrix instead, shape = (n_samples,
n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for
the estimator.

• y (array-like, shape = (n_samples) or (n_samples, n_outputs))
– True values for X.

• sample_weight (array-like, shape = [n_samples], optional) –
Sample weights.

Returns score – R^2 of self.predict(X) wrt. y.

Return type float

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns

Return type self

Warning: Pygbm’s API and default values are likely to be changed in future version, without any deprecation
cycle.

8 Chapter 1. Gradient Boosting Estimators

CHAPTER 2

Losses

This module contains the loss classes.

Specific losses are used for regression, binary classification or multiclass classification.

class pygbm.loss.BinaryCrossEntropy
Binary cross-entropy loss, for binary classification.

For a given sample x_i, the binary cross-entropy loss is defined as the negative log-likelihood of the model
which can be expressed as:

loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i

See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman.

get_baseline_prediction(y_train, prediction_dim)
Return initial predictions (before the first iteration).

Parameters

• y_train (array-like, shape=(n_samples,)) – The target training values.

• prediction_dim (int) – The dimension of one prediction: 1 for binary classification
and regression, n_classes for multiclass classification.

Returns baseline_prediction – The baseline prediction.

Return type float or array of shape (1, prediction_dim)

init_gradients_and_hessians(n_samples, prediction_dim)
Return initial gradients and hessians.

Unless hessians are constant, arrays are initialized with undefined values.

Parameters

• n_samples (int) – The number of samples passed to fit()

9

pygbm Documentation, Release 0.1.0.dev0

• prediction_dim (int) – The dimension of a raw prediction, i.e. the number of trees
built at each iteration. Equals 1 for regression and binary classification, or K where K is
the number of classes for multiclass classification.

Returns

• gradients (array-like, shape=(n_samples * prediction_dim))

• hessians (array-like, shape=(n_samples * prediction_dim).) – If hessians are constant
(e.g. for LeastSquares loss, shape is (1,) and the array is initialized to 1.

inverse_link_function = <ufunc 'expit'>

update_gradients_and_hessians(gradients, hessians, y_true, raw_predictions)
Update gradients and hessians arrays, inplace.

The gradients (resp. hessians) are the first (resp. second) order derivatives of the loss for each sample with
respect to the predictions of model, evaluated at iteration i - 1.

Parameters

• gradients (array-like, shape=(n_samples * prediction_dim)) –
The gradients (treated as OUT array).

• hessians (array-like, shape=(n_samples * prediction_dim) or
(1,)) – The hessians (treated as OUT array).

• y_true (array-like, shape=(n_samples,)) – The true target values or each
training sample.

• raw_predictions (array-like, shape=(n_samples,
prediction_dim)) – The raw_predictions (i.e. values from the trees) of the
tree ensemble at iteration i - 1.

class pygbm.loss.CategoricalCrossEntropy
Categorical cross-entropy loss, for multiclass classification.

For a given sample x_i, the categorical cross-entropy loss is defined as the negative log-likelihood of the model
and generalizes the binary cross-entropy to more than 2 classes.

get_baseline_prediction(y_train, prediction_dim)
Return initial predictions (before the first iteration).

Parameters

• y_train (array-like, shape=(n_samples,)) – The target training values.

• prediction_dim (int) – The dimension of one prediction: 1 for binary classification
and regression, n_classes for multiclass classification.

Returns baseline_prediction – The baseline prediction.

Return type float or array of shape (1, prediction_dim)

init_gradients_and_hessians(n_samples, prediction_dim)
Return initial gradients and hessians.

Unless hessians are constant, arrays are initialized with undefined values.

Parameters

• n_samples (int) – The number of samples passed to fit()

• prediction_dim (int) – The dimension of a raw prediction, i.e. the number of trees
built at each iteration. Equals 1 for regression and binary classification, or K where K is
the number of classes for multiclass classification.

10 Chapter 2. Losses

pygbm Documentation, Release 0.1.0.dev0

Returns

• gradients (array-like, shape=(n_samples * prediction_dim))

• hessians (array-like, shape=(n_samples * prediction_dim).) – If hessians are constant
(e.g. for LeastSquares loss, shape is (1,) and the array is initialized to 1.

update_gradients_and_hessians(gradients, hessians, y_true, raw_predictions)
Update gradients and hessians arrays, inplace.

The gradients (resp. hessians) are the first (resp. second) order derivatives of the loss for each sample with
respect to the predictions of model, evaluated at iteration i - 1.

Parameters

• gradients (array-like, shape=(n_samples * prediction_dim)) –
The gradients (treated as OUT array).

• hessians (array-like, shape=(n_samples * prediction_dim) or
(1,)) – The hessians (treated as OUT array).

• y_true (array-like, shape=(n_samples,)) – The true target values or each
training sample.

• raw_predictions (array-like, shape=(n_samples,
prediction_dim)) – The raw_predictions (i.e. values from the trees) of the
tree ensemble at iteration i - 1.

class pygbm.loss.LeastSquares
Least squares loss, for regression.

For a given sample x_i, least squares loss is defined as:

loss(x_i) = (y_true_i - raw_pred_i)**2

get_baseline_prediction(y_train, prediction_dim)
Return initial predictions (before the first iteration).

Parameters

• y_train (array-like, shape=(n_samples,)) – The target training values.

• prediction_dim (int) – The dimension of one prediction: 1 for binary classification
and regression, n_classes for multiclass classification.

Returns baseline_prediction – The baseline prediction.

Return type float or array of shape (1, prediction_dim)

init_gradients_and_hessians(n_samples, prediction_dim)
Return initial gradients and hessians.

Unless hessians are constant, arrays are initialized with undefined values.

Parameters

• n_samples (int) – The number of samples passed to fit()

• prediction_dim (int) – The dimension of a raw prediction, i.e. the number of trees
built at each iteration. Equals 1 for regression and binary classification, or K where K is
the number of classes for multiclass classification.

Returns

• gradients (array-like, shape=(n_samples * prediction_dim))

11

pygbm Documentation, Release 0.1.0.dev0

• hessians (array-like, shape=(n_samples * prediction_dim).) – If hessians are constant
(e.g. for LeastSquares loss, shape is (1,) and the array is initialized to 1.

update_gradients_and_hessians(gradients, hessians, y_true, raw_predictions)
Update gradients and hessians arrays, inplace.

The gradients (resp. hessians) are the first (resp. second) order derivatives of the loss for each sample with
respect to the predictions of model, evaluated at iteration i - 1.

Parameters

• gradients (array-like, shape=(n_samples * prediction_dim)) –
The gradients (treated as OUT array).

• hessians (array-like, shape=(n_samples * prediction_dim) or
(1,)) – The hessians (treated as OUT array).

• y_true (array-like, shape=(n_samples,)) – The true target values or each
training sample.

• raw_predictions (array-like, shape=(n_samples,
prediction_dim)) – The raw_predictions (i.e. values from the trees) of the
tree ensemble at iteration i - 1.

12 Chapter 2. Losses

CHAPTER 3

Binning

This module contains the BinMapper class.

BinMapper is used for mapping a real-valued dataset into integer-valued bins with equally-spaced thresholds.

class pygbm.binning.BinMapper(max_bins=256, subsample=100000, random_state=None)
Transformer that maps a dataset into integer-valued bins.

The bins are created in a feature-wise fashion, with equally-spaced quantiles.

Large datasets are subsampled, but the feature-wise quantiles should remain stable.

If the number of unique values for a given feature is less than max_bins, then the unique values of this feature
are used instead of the quantiles.

Parameters

• max_bins (int, optional (default=256)) – The maximum number of bins to
use. If for a given feature the number of unique values is less than max_bins, then those
unique values will be used to compute the bin thresholds, instead of the quantiles.

• subsample (int or None, optional (default=1e5)) – If n_samples >
subsample, then sub_samples samples will be randomly choosen to compute the
quantiles. If None, the whole data is used.

• random_state (int or numpy.random.RandomState or None,
optional (default=None)) – Pseudo-random number generator to control the
random sub-sampling. See scikit-learn glossary.

fit(X, y=None)
Fit data X by computing the binning thresholds.

Parameters X (array-like) – The data to bin

Returns self

Return type object

transform(X)
Bin data X.

13

https://scikit-learn.org/stable/glossary.html#term-random-state

pygbm Documentation, Release 0.1.0.dev0

Parameters X (array-like) – The data to bin

Returns X_binned – The binned data

Return type array-like

14 Chapter 3. Binning

CHAPTER 4

Grower

This module contains the TreeGrower class.

TreeGrowee builds a regression tree fitting a Newton-Raphson step, based on the gradients and hessians of the training
data.

class pygbm.grower.TreeGrower(X_binned, gradients, hessians, max_leaf_nodes=None,
max_depth=None, min_samples_leaf=20, min_gain_to_split=0.0,
max_bins=256, n_bins_per_feature=None,
l2_regularization=0.0, min_hessian_to_split=0.001, shrink-
age=1.0)

Tree grower class used to build a tree.

The tree is fitted to predict the values of a Newton-Raphson step. The splits are considered in a best-first fashion,
and the quality of a split is defined in splitting._split_gain.

Parameters

• X_binned (array-like of int, shape=(n_samples, n_features)) –
The binned input samples. Must be Fortran-aligned.

• gradients (array-like, shape=(n_samples,)) – The gradients of each train-
ing sample. Those are the gradients of the loss w.r.t the predictions, evaluated at iteration i
- 1.

• hessians (array-like, shape=(n_samples,)) – The hessians of each training
sample. Those are the hessians of the loss w.r.t the predictions, evaluated at iteration i -
1.

• max_leaf_nodes (int or None, optional(default=None)) – The maxi-
mum number of leaves for each tree. If None, there is no maximum limit.

• max_depth (int or None, optional(default=None)) – The maximum depth
of each tree. The depth of a tree is the number of nodes to go from the root to the deepest
leaf.

• min_samples_leaf (int, optional(default=20)) – The minimum number of
samples per leaf.

15

pygbm Documentation, Release 0.1.0.dev0

• min_gain_to_split (float, optional(default=0.)) – The minimum gain
needed to split a node. Splits with lower gain will be ignored.

• max_bins (int, optional(default=256)) – The maximum number of bins.
Used to define the shape of the histograms.

• n_bins_per_feature (array-like of int or int,
optional(default=None)) – The actual number of bins needed for each fea-
ture, which is lower or equal to max_bins. If it’s an int, all features are considered to have
the same number of bins. If None, all features are considered to have max_bins bins.

• l2_regularization (float, optional(default=0)) – The L2 regularization
parameter.

• min_hessian_to_split (float, optional(default=1e-3)) – The mini-
mum sum of hessians needed in each node. Splits that result in at least one child having
a sum of hessians less than min_hessian_to_split are discarded.

• shrinkage (float, optional(default=1)) – The shrinkage parameter to apply
to the leaves values, also known as learning rate.

can_split_further()
Return True if there are still nodes to split.

grow()
Grow the tree, from root to leaves.

make_predictor(numerical_thresholds=None)
Make a TreePredictor object out of the current tree.

Parameters numerical_thresholds (array-like of floats, optional
(default=None)) – The actual thresholds values of each bin, expected to be in sorted
increasing order. None if the training data was pre-binned.

Returns

Return type A TreePredictor object.

split_next()
Split the node with highest potential gain.

Returns

• left (TreeNode) – The resulting left child.

• right (TreeNode) – The resulting right child.

class pygbm.grower.TreeNode(depth, sample_indices, sum_gradients, sum_hessians, parent=None)
Tree Node class used in TreeGrower.

This isn’t used for prediction purposes, only for training (see TreePredictor).

Parameters

• depth (int) – The depth of the node, i.e. its distance from the root

• samples_indices (array of int) – The indices of the samples at the node

• sum_gradients (float) – The sum of the gradients of the samples at the node

• sum_hessians (float) – The sum of the hessians of the samples at the node

• parent (TreeNode or None, optional(default=None)) – The parent of the
node. None for root.

16 Chapter 4. Grower

pygbm Documentation, Release 0.1.0.dev0

depth
int – The depth of the node, i.e. its distance from the root

samples_indices
array of int – The indices of the samples at the node

sum_gradients
float – The sum of the gradients of the samples at the node

sum_hessians
float – The sum of the hessians of the samples at the node

parent
TreeNode or None, optional(default=None) – The parent of the node. None for root.

split_info
SplitInfo or None – The result of the split evaluation

left_child
TreeNode or None – The left child of the node. None for leaves.

right_child
TreeNode or None – The right child of the node. None for leaves.

value
float or None – The value of the leaf, as computed in finalize_leaf(). None for non-leaf nodes

find_split_time
float – The total time spent computing the histogram and finding the best split at the node.

construction_speed
float – The Number of samples at the node divided find_split_time.

apply_split_time
float – The total time spent actually splitting the node, e.g. splitting samples_indices into left and right
child.

hist_subtraction
bool – Wheter the subtraction method was used for computing the histograms.

17

pygbm Documentation, Release 0.1.0.dev0

18 Chapter 4. Grower

CHAPTER 5

Splitting

This module contains njitted routines and data structures to:

• Find the best possible split of a node. For a given node, a split is characterized by a feature and a bin.

• Apply a split to a node, i.e. split the indices of the samples at the node into the newly created left and right
childs.

pygbm.splitting.find_node_split
For each feature, find the best bin to split on at a given node.

Returns the best split info among all features, and the histograms of all the features. The histograms are com-
puted by scanning the whole data.

Parameters

• context (SplittingContext) – The splitting context

• sample_indices (array of int) – The indices of the samples at the node to split.

Returns

• best_split_info (SplitInfo) – The info about the best possible split among all features.

• histograms (array of HISTOGRAM_DTYPE, shape=(n_features, max_bins)) – The his-
tograms of each feature. A histogram is an array of HISTOGRAM_DTYPE of size
max_bins (only n_bins_per_features[feature] entries are relevant).

pygbm.splitting.find_node_split_subtraction
For each feature, find the best bin to split on at a given node.

Returns the best split info among all features, and the histograms of all the features.

This does the same job as find_node_split() but uses the histograms of the parent and sibling of
the node to split. This allows to use the identity: histogram(parent) = histogram(node) -
histogram(sibling), which is significantly faster than computing the histograms from data.

Returns the best SplitInfo among all features, along with all the feature histograms that can be latter used to
compute the sibling or children histograms by substraction.

Parameters

19

pygbm Documentation, Release 0.1.0.dev0

• context (SplittingContext) – The splitting context

• sample_indices (array of int) – The indices of the samples at the node to split.

• parent_histograms (array of HISTOGRAM_DTYPE of
shape(n_features, max_bins)) – The histograms of the parent

• sibling_histograms (array of HISTOGRAM_DTYPE of
shape(n_features, max_bins)) – The histograms of the sibling

Returns

• best_split_info (SplitInfo) – The info about the best possible split among all features.

• histograms (array of HISTOGRAM_DTYPE, shape=(n_features, max_bins)) – The his-
tograms of each feature. A histogram is an array of HISTOGRAM_DTYPE of size
max_bins (only n_bins_per_features[feature] entries are relevant).

pygbm.splitting.split_indices
Split samples into left and right arrays.

Parameters

• context (SplittingContext) – The splitting context

• split_ingo (SplitInfo) – The SplitInfo of the node to split

• sample_indices (array of int) – The indices of the samples at the node to split.
This is a view on context.partition, and it is modified inplace by placing the indices of the
left child at the beginning, and the indices of the right child at the end.

Returns

• left_indices (array of int) – The indices of the samples in the left child. This is a view on
context.partition.

• right_indices (array of int) – The indices of the samples in the right child. This is a view
on context.partition.

20 Chapter 5. Splitting

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

21

pygbm Documentation, Release 0.1.0.dev0

22 Chapter 6. Indices and tables

Python Module Index

p
pygbm.binning, 13
pygbm.gradient_boosting, 3
pygbm.grower, 15
pygbm.loss, 9
pygbm.splitting, 19

23

pygbm Documentation, Release 0.1.0.dev0

24 Python Module Index

Index

A
apply_split_time (pygbm.grower.TreeNode attribute), 17

B
BinaryCrossEntropy (class in pygbm.loss), 9
BinMapper (class in pygbm.binning), 13

C
can_split_further() (pygbm.grower.TreeGrower method),

16
CategoricalCrossEntropy (class in pygbm.loss), 10
construction_speed (pygbm.grower.TreeNode attribute),

17

D
depth (pygbm.grower.TreeNode attribute), 16

F
find_node_split (in module pygbm.splitting), 19
find_node_split_subtraction (in module pygbm.splitting),

19
find_split_time (pygbm.grower.TreeNode attribute), 17
fit() (pygbm.binning.BinMapper method), 13
fit() (pygbm.gradient_boosting.GradientBoostingClassifier

method), 4
fit() (pygbm.gradient_boosting.GradientBoostingRegressor

method), 7

G
get_baseline_prediction()

(pygbm.loss.BinaryCrossEntropy method),
9

get_baseline_prediction()
(pygbm.loss.CategoricalCrossEntropy
method), 10

get_baseline_prediction() (pygbm.loss.LeastSquares
method), 11

get_params() (pygbm.gradient_boosting.GradientBoostingClassifier
method), 5

get_params() (pygbm.gradient_boosting.GradientBoostingRegressor
method), 7

GradientBoostingClassifier (class in
pygbm.gradient_boosting), 3

GradientBoostingRegressor (class in
pygbm.gradient_boosting), 6

grow() (pygbm.grower.TreeGrower method), 16

H
hist_subtraction (pygbm.grower.TreeNode attribute), 17

I
init_gradients_and_hessians()

(pygbm.loss.BinaryCrossEntropy method),
9

init_gradients_and_hessians()
(pygbm.loss.CategoricalCrossEntropy
method), 10

init_gradients_and_hessians() (pygbm.loss.LeastSquares
method), 11

inverse_link_function (pygbm.loss.BinaryCrossEntropy
attribute), 10

L
LeastSquares (class in pygbm.loss), 11
left_child (pygbm.grower.TreeNode attribute), 17

M
make_predictor() (pygbm.grower.TreeGrower method),

16

P
parent (pygbm.grower.TreeNode attribute), 17
predict() (pygbm.gradient_boosting.GradientBoostingClassifier

method), 5
predict() (pygbm.gradient_boosting.GradientBoostingRegressor

method), 7
predict_proba() (pygbm.gradient_boosting.GradientBoostingClassifier

method), 5

25

pygbm Documentation, Release 0.1.0.dev0

pygbm.binning (module), 13
pygbm.gradient_boosting (module), 3
pygbm.grower (module), 15
pygbm.loss (module), 9
pygbm.splitting (module), 19

R
right_child (pygbm.grower.TreeNode attribute), 17

S
samples_indices (pygbm.grower.TreeNode attribute), 17
score() (pygbm.gradient_boosting.GradientBoostingClassifier

method), 5
score() (pygbm.gradient_boosting.GradientBoostingRegressor

method), 7
set_params() (pygbm.gradient_boosting.GradientBoostingClassifier

method), 5
set_params() (pygbm.gradient_boosting.GradientBoostingRegressor

method), 8
split_indices (in module pygbm.splitting), 20
split_info (pygbm.grower.TreeNode attribute), 17
split_next() (pygbm.grower.TreeGrower method), 16
sum_gradients (pygbm.grower.TreeNode attribute), 17
sum_hessians (pygbm.grower.TreeNode attribute), 17

T
transform() (pygbm.binning.BinMapper method), 13
TreeGrower (class in pygbm.grower), 15
TreeNode (class in pygbm.grower), 16

U
update_gradients_and_hessians()

(pygbm.loss.BinaryCrossEntropy method),
10

update_gradients_and_hessians()
(pygbm.loss.CategoricalCrossEntropy
method), 11

update_gradients_and_hessians()
(pygbm.loss.LeastSquares method), 12

V
value (pygbm.grower.TreeNode attribute), 17

26 Index

	Gradient Boosting Estimators
	Losses
	Binning
	Grower
	Splitting
	Indices and tables
	Python Module Index

