

pygbif 0.6.3 documentation

[image: pypi] [https://pypi.python.org/pypi/pygbif] [image: docs] [http://pygbif.rtfd.org/] [image: ghactions] [https://github.com/gbif/pygbif/actions?query=workflow%3APython] [image: coverage] [https://codecov.io/gh/gbif/pygbif]

Python client for the GBIF API [http://www.gbif.org/developer/summary]

Source on GitHub at gbif/pygbif [https://github.com/gbif/pygbif]

Getting help

Having trouble? Or want to know how to get started?

	Try the FAQ – it’s got answers to some common questions.

	Looking for specific information? Try the Index

	Report bugs with pygbif in our issue tracker [https://github.com/gbif/pygbif/issues].

Installation

	Installation guide
	How to install pygbif.

Docs

	Frequently Asked Questions
	Frequently asked questions.

	Usecases
	Usecases for pygbif.

Modules

	pygbif modules
	Introduction to pygbif modules.

	occurrence module
	The occurrence module: core GBIF occurrence data, including count, search, and download APIs.

	registry module
	The registry module: including datasets, installations, networks, nodes, and organizations.

	species module
	The species module: including name search, lookup, suggest, usage, and backbone search.

	maps module
	The maps module: including map.

	utils module
	The utils module: including wkt_rewind.

All the rest

	Changelog
	See what has changed in recent pygbif versions.

	Contributors
	pygbif contributors.

	Contributing
	Learn how to contribute to the pygbif project.

	Contributor Code of Conduct
	Expected behavior in this community. By participating in this project you agree to abide by its terms.

	LICENSE
	The pygbif license.

Indices and tables

	Index

	Module Index

	Search Page

Installation guide

Installing pygbif

Stable from pypi

pip install pygbif

Development version

[sudo] pip install git+git://github.com/gbif/pygbif.git#egg=pygbif

Frequently Asked Questions

What other GBIF clients are out there?

	R: rgbif [https://github.com/ropensci/rgbif]

	Ruby: gbifrb [https://github.com/sckott/gbifrb]

Usecases

Use case 1: Get occurrence data for a set of taxonomic names

Load library

from pygbif import species as species
from pygbif import occurrences as occ

First, get GBIF backbone taxonomic keys

splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa',
 'Ursus americanus', 'Pinus conorta', 'Poa annuus']
keys = [species.name_backbone(x)['usageKey'] for x in splist]

Then, get a count of occurrence records for each taxon, and pull out
number of records found for each taxon

out = [occ.search(taxonKey = x, limit=0)['count'] for x in keys]

Make a dict of species names and number of records, sorting in
descending order

x = dict(zip(splist, out))
sorted(x.items(), key=lambda z:z[1], reverse=True)

pygbif modules

pygbif is split up into modules for each of the major groups of API methods.

	Registry - Datasets, Nodes, Installations, Networks, Organizations

	Species - Taxonomic names

	Occurrences - Occurrence data, including the download API

	Maps - Make maps

You can import the entire library, or each module individually as needed.

In addition, the caching method allows you to manage whether HTTP requests
are cached or not.

caching module

caching module API:

	pygbif.caching

Example usage:

import pygbif
pygbif.caching(True)

caching API

	
pygbif.caching(cache=False, name=None, backend='sqlite', expire_after=86400, allowable_codes=(200,), allowable_methods=('GET',))

	pygbif caching management

	Parameters:

	
	cache – [bool] if True all http requests are cached. if False (default),
no http requests are cached.

	name – [str] the cache name. when backend=sqlite, this is the path for the
sqlite file, ignored if sqlite not used. if not set, the file is put in your
temporary directory, and therefore is cleaned up/deleted after closing your
python session

	backend – [str] the backend, one of:

	sqlite sqlite database (default)

	memory not persistent, stores all data in Python dict in memory

	mongodb (experimental) MongoDB database (pymongo < 3.0 required and configured)

	redis stores all data on a redis data store (redis required and configured)

	expire_after – [str] timedelta or number of seconds after cache will be expired
or None (default) to ignore expiration. default: 86400 seconds (24 hrs)

	allowable_codes – [tuple] limit caching only for response with this codes
(default: 200)

	allowable_methods – [tuple] cache only requests of this methods
(default: ‘GET’)

	Returns:

	sets options to be used by pygbif, returns the options you selected
in a hash

Note: setting cache=False will turn off caching, but the backend data still
persists. thus, you can turn caching back on without losing your cache.
this also means if you want to delete your cache you have to do it yourself.

Note: on loading pygbif, we clean up expired responses

Usage:

import pygbif

caching is off by default
from pygbif import occurrences
%time z=occurrences.search(taxonKey = 3329049)
%time w=occurrences.search(taxonKey = 3329049)

turn caching on
pygbif.caching(True)

%time z=occurrences.search(taxonKey = 3329049)
%time w=occurrences.search(taxonKey = 3329049)

set a different backend
pygbif.caching(cache=True, backend="redis")
%time z=occurrences.search(taxonKey = 3329049)
%time w=occurrences.search(taxonKey = 3329049)

set a different backend
pygbif.caching(cache=True, backend="mongodb")
%time z=occurrences.search(taxonKey = 3329049)
%time w=occurrences.search(taxonKey = 3329049)

set path to a sqlite file
pygbif.caching(name = "some/path/my_file")

occurrence module

occurrence module API:

	search

	get

	get_verbatim

	get_fragment

	count

	count_basisofrecord

	count_year

	count_datasets

	count_countries

	count_schema

	count_publishingcountries

	download

	download_meta

	download_list

	download_get

Example usage:

from pygbif import occurrences as occ
occ.search(taxonKey = 3329049)
occ.get(key = 1986559641)
occ.count(isGeoreferenced = True)
occ.download('basisOfRecord = PRESERVED_SPECIMEN')
occ.download('taxonKey = 3119195')
occ.download('decimalLatitude > 50')
occ.download_list(user = "sckott", limit = 5)
occ.download_meta(key = "0000099-140929101555934")
occ.download_get("0000066-140928181241064")

occurrences API

	
occurrences.search(repatriated=None, kingdomKey=None, phylumKey=None, classKey=None, orderKey=None, familyKey=None, genusKey=None, subgenusKey=None, scientificName=None, country=None, publishingCountry=None, hasCoordinate=None, typeStatus=None, recordNumber=None, lastInterpreted=None, continent=None, geometry=None, recordedBy=None, recordedByID=None, identifiedByID=None, basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None, year=None, month=None, decimalLatitude=None, decimalLongitude=None, elevation=None, depth=None, institutionCode=None, collectionCode=None, hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype=None, limit=300, offset=0, establishmentMeans=None, facet=None, facetMincount=None, facetMultiselect=None, **kwargs)

	Search GBIF occurrences

	Parameters:

	
	taxonKey – [int] A GBIF occurrence identifier

	q – [str] Simple search parameter. The value for this parameter can be a simple word or a phrase.

	spellCheck – [bool] If True ask GBIF to check your spelling of the value passed to the search parameter.
IMPORTANT: This only checks the input to the search parameter, and no others. Default: False

	repatriated – [str] Searches for records whose publishing country is different to the country where the record was recorded in

	kingdomKey – [int] Kingdom classification key

	phylumKey – [int] Phylum classification key

	classKey – [int] Class classification key

	orderKey – [int] Order classification key

	familyKey – [int] Family classification key

	genusKey – [int] Genus classification key

	subgenusKey – [int] Subgenus classification key

	scientificName – [str] A scientific name from the GBIF backbone. All included and synonym taxa are included in the search.

	datasetKey – [str] The occurrence dataset key (a uuid)

	catalogNumber – [str] An identifier of any form assigned by the source within a physical collection or digital dataset for the record which may not unique, but should be fairly unique in combination with the institution and collection code.

	recordedBy – [str] The person who recorded the occurrence.

	recordedByID – [str] Identifier (e.g. ORCID) for the person who recorded the occurrence

	identifiedByID – [str] Identifier (e.g. ORCID) for the person who provided the taxonomic identification of the occurrence.

	collectionCode – [str] An identifier of any form assigned by the source to identify the physical collection or digital dataset uniquely within the text of an institution.

	institutionCode – [str] An identifier of any form assigned by the source to identify the institution the record belongs to. Not guaranteed to be que.

	country – [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

	basisOfRecord – [str] Basis of record, as defined in our BasisOfRecord enum here http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are:

	FOSSIL_SPECIMEN An occurrence record describing a fossilized specimen.

	HUMAN_OBSERVATION An occurrence record describing an observation made by one or more people.

	LIVING_SPECIMEN An occurrence record describing a living specimen.

	MACHINE_OBSERVATION An occurrence record describing an observation made by a machine.

	MATERIAL_CITATION An occurrence record based on a reference to a scholarly publication.

	OBSERVATION An occurrence record describing an observation.

	OCCURRENCE An existence of an organism at a particular place and time. No more specific basis.

	PRESERVED_SPECIMEN An occurrence record describing a preserved specimen.

	eventDate – [date] Occurrence date in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or
MM-dd. Supports range queries, smaller,larger (e.g., 1990,1991, whereas 1991,1990
wouldn’t work)

	year – [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries,
smaller,larger (e.g., 1990,1991, whereas 1991,1990 wouldn’t work)

	month – [int] The month of the year, starting with 1 for January. Supports range queries,
smaller,larger (e.g., 1,2, whereas 2,1 wouldn’t work)

	decimalLatitude – [float] Latitude in decimals between -90 and 90 based on WGS 84.
Supports range queries, smaller,larger (e.g., 25,30, whereas 30,25 wouldn’t work)

	decimalLongitude – [float] Longitude in decimals between -180 and 180 based on WGS 84.
Supports range queries (e.g., -0.4,-0.2, whereas -0.2,-0.4 wouldn’t work).

	publishingCountry – [str] The 2-letter country code (as per ISO-3166-1) of the
country in which the occurrence was recorded.

	elevation – [int/str] Elevation in meters above sea level. Supports range queries, smaller,larger
(e.g., 5,30, whereas 30,5 wouldn’t work)

	depth – [int/str] Depth in meters relative to elevation. For example 10 meters below a
lake surface with given elevation. Supports range queries, smaller,larger (e.g., 5,30,
whereas 30,5 wouldn’t work)

	geometry – [str] Searches for occurrences inside a polygon described in Well Known
Text (WKT) format. A WKT shape written as either POINT, LINESTRING, LINEARRING
POLYGON, or MULTIPOLYGON. Example of a polygon: ((30.1 10.1, 20, 20 40, 40 40, 30.1 10.1)) would be queried as http://bit.ly/1BzNwDq.
Polygons must have counter-clockwise ordering of points.

	hasGeospatialIssue – [bool] Includes/excludes occurrence records which contain spatial
issues (as determined in our record interpretation), i.e. hasGeospatialIssue=TRUE
returns only those records with spatial issues while hasGeospatialIssue=FALSE includes
only records without spatial issues. The absence of this parameter returns any
record with or without spatial issues.

	issue – [str] One or more of many possible issues with each occurrence record. See
Details. Issues passed to this parameter filter results by the issue.

	hasCoordinate – [bool] Return only occurence records with lat/long data (True) or
all records (False, default).

	typeStatus – [str] Type status of the specimen. One of many options. See ?typestatus

	recordNumber – [int] Number recorded by collector of the data, different from GBIF record
number. See http://rs.tdwg.org/dwc/terms/#recordNumber} for more info

	lastInterpreted – [date] Date the record was last modified in GBIF, in ISO 8601 format:
yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g.,
1990,1991, whereas 1991,1990 wouldn’t work)

	continent – [str] Continent. One of africa, antarctica, asia, europe, north_america
(North America includes the Caribbean and reachies down and includes Panama), oceania,
or south_america

	fields – [str] Default (all) returns all fields. minimal returns just taxon name,
key, latitude, and longitude. Or specify each field you want returned by name, e.g.
fields = ['name','latitude','elevation'].

	mediatype – [str] Media type. Default is NULL, so no filtering on mediatype. Options:
NULL, MovingImage, Sound, and StillImage

	limit – [int] Number of results to return. Default: 300

	offset – [int] Record to start at. Default: 0

	facet – [str] a character vector of length 1 or greater

	establishmentMeans – [str] EstablishmentMeans, possible values include: INTRODUCED,
INVASIVE, MANAGED, NATIVE, NATURALISED, UNCERTAIN

	facetMincount – [int] minimum number of records to be included in the faceting results

	facetMultiselect – [bool] Set to True to still return counts for values that are not currently
filtered. See examples. Default: False

	Returns:

	A dictionary

Usage:

from pygbif import occurrences
occurrences.search(taxonKey = 3329049)

Return 2 results, this is the default by the way
occurrences.search(taxonKey=3329049, limit=2)

Instead of getting a taxon key first, you can search for a name directly
However, note that using this approach (with `scientificName="..."`)
you are getting synonyms too. The results for using `scientifcName` and
`taxonKey` parameters are the same in this case, but I wouldn't be surprised if for some
names they return different results
occurrences.search(scientificName = 'Ursus americanus')
from pygbif import species
key = species.name_backbone(name = 'Ursus americanus', rank='species')['usageKey']
occurrences.search(taxonKey = key)

Search by dataset key
occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', limit=20)

Search by catalog number
occurrences.search(catalogNumber="49366", limit=20)
occurrences.search(catalogNumber=["49366","Bird.27847588"], limit=20)

Use paging parameters (limit and offset) to page. Note the different results
for the two queries below.
occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=10, limit=5)
occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=20, limit=5)

Many dataset keys
occurrences.search(datasetKey=["50c9509d-22c7-4a22-a47d-8c48425ef4a7", "7b5d6a48-f762-11e1-a439-00145eb45e9a"], limit=20)

Search by collector name
res = occurrences.search(recordedBy="smith", limit=20)
[x['recordedBy'] for x in res['results']]

Many collector names
occurrences.search(recordedBy=["smith","BJ Stacey"], limit=20)

recordedByID
occurrences.search(recordedByID="https://orcid.org/0000-0003-1691-239X", limit = 3)

identifiedByID
occurrences.search(identifiedByID="https://orcid.org/0000-0003-1691-239X", limit = 3)

Search for many species
splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa']
keys = [species.name_suggest(x)[0]['key'] for x in splist]
out = [occurrences.search(taxonKey = x, limit=1) for x in keys]
[x['results'][0]['speciesKey'] for x in out]

Search - q parameter
occurrences.search(q = "kingfisher", limit=20)
spell check - only works with the `search` parameter
spelled correctly - same result as above call
occurrences.search(q = "kingfisher", limit=20, spellCheck = True)
spelled incorrectly - stops with suggested spelling
occurrences.search(q = "kajsdkla", limit=20, spellCheck = True)
spelled incorrectly - stops with many suggested spellings
and number of results for each
occurrences.search(q = "helir", limit=20, spellCheck = True)

Search on latitidue and longitude
occurrences.search(decimalLatitude=50, decimalLongitude=10, limit=2)

Search on a bounding box
in well known text format
occurrences.search(geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20)
from pygbif import species
key = species.name_suggest(q='Aesculus hippocastanum')[0]['key']
occurrences.search(taxonKey=key, geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20)
multipolygon
wkt = 'MULTIPOLYGON(((-123 38, -123 43, -116 43, -116 38, -123 38)),((-97 41, -97 45, -93 45, -93 41, -97 41)))'
occurrences.search(geometry = wkt, limit = 20)

Search on country
occurrences.search(country='US', limit=20)
occurrences.search(country='FR', limit=20)
occurrences.search(country='DE', limit=20)

Get only occurrences with lat/long data
occurrences.search(taxonKey=key, hasCoordinate=True, limit=20)

Get only occurrences that were recorded as living specimens
occurrences.search(taxonKey=key, basisOfRecord="LIVING_SPECIMEN", hasCoordinate=True, limit=20)

Get occurrences for a particular eventDate
occurrences.search(taxonKey=key, eventDate="2013", limit=20)
occurrences.search(taxonKey=key, year="2013", limit=20)
occurrences.search(taxonKey=key, month="6", limit=20)

Get occurrences based on depth
key = species.name_backbone(name='Salmo salar', kingdom='animals')['usageKey']
occurrences.search(taxonKey=key, depth="5", limit=20)

Get occurrences based on elevation
key = species.name_backbone(name='Puma concolor', kingdom='animals')['usageKey']
occurrences.search(taxonKey=key, elevation=50, hasCoordinate=True, limit=20)

Get occurrences based on institutionCode
occurrences.search(institutionCode="TLMF", limit=20)

Get occurrences based on collectionCode
occurrences.search(collectionCode="Floristic Databases MV - Higher Plants", limit=20)

Get only those occurrences with spatial issues
occurrences.search(taxonKey=key, hasGeospatialIssue=True, limit=20)

Search using a query string
occurrences.search(q="kingfisher", limit=20)

Range queries
See Detail for parameters that support range queries
this is a range depth, with lower/upper limits in character string
occurrences.search(depth='50,100')

Range search with year
occurrences.search(year='1999,2000', limit=20)

Range search with latitude
occurrences.search(decimalLatitude='29.59,29.6')

Search by specimen type status
Look for possible values of the typeStatus parameter looking at the typestatus dataset
occurrences.search(typeStatus = 'allotype')

Search by specimen record number
This is the record number of the person/group that submitted the data, not GBIF's numbers
You can see that many different groups have record number 1, so not super helpful
occurrences.search(recordNumber = 1)

Search by last time interpreted: Date the record was last modified in GBIF
The lastInterpreted parameter accepts ISO 8601 format dates, including
yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Range queries are accepted for lastInterpreted
occurrences.search(lastInterpreted = '2014-04-01')

Search by continent
One of africa, antarctica, asia, europe, north_america, oceania, or south_america
occurrences.search(continent = 'south_america')
occurrences.search(continent = 'africa')
occurrences.search(continent = 'oceania')
occurrences.search(continent = 'antarctica')

Search for occurrences with images
occurrences.search(mediatype = 'StillImage')
occurrences.search(mediatype = 'MovingImage')
x = occurrences.search(mediatype = 'Sound')
[z['media'] for z in x['results']]

Query based on issues
occurrences.search(taxonKey=1, issue='DEPTH_UNLIKELY')
occurrences.search(taxonKey=1, issue=['DEPTH_UNLIKELY','COORDINATE_ROUNDED'])
Show all records in the Arizona State Lichen Collection that cant be matched to the GBIF
backbone properly:
occurrences.search(datasetKey='84c0e1a0-f762-11e1-a439-00145eb45e9a', issue=['TAXON_MATCH_NONE','TAXON_MATCH_HIGHERRANK'])

If you pass in an invalid polygon you get hopefully informative errors
the WKT string is fine, but GBIF says bad polygon
wkt = 'POLYGON((-178.59375 64.83258989321493,-165.9375 59.24622380205539,
-147.3046875 59.065977905449806,-130.78125 51.04484764446178,-125.859375 36.70806354647625,
-112.1484375 23.367471303759686,-105.1171875 16.093320185359257,-86.8359375 9.23767076398516,
-82.96875 2.9485268155066175,-82.6171875 -14.812060061226388,-74.8828125 -18.849111862023985,
-77.34375 -47.661687803329166,-84.375 -49.975955187343295,174.7265625 -50.649460483096114,
179.296875 -42.19189902447192,-176.8359375 -35.634976650677295,176.8359375 -31.835565983656227,
163.4765625 -6.528187613695323,152.578125 1.894796132058301,135.703125 4.702353722559447,
127.96875 15.077427674847987,127.96875 23.689804541429606,139.921875 32.06861069132688,
149.4140625 42.65416193033991,159.2578125 48.3160811030533,168.3984375 57.019804336633165,
178.2421875 59.95776046458139,-179.6484375 61.16708631440347,-178.59375 64.83258989321493))'
occurrences.search(geometry = wkt)

Faceting
return no occurrence records with limit=0
x = occurrences.search(facet = "country", limit = 0)
x['facets']

also return occurrence records
x = occurrences.search(facet = "establishmentMeans", limit = 10)
x['facets']
x['results']

multiple facet variables
x = occurrences.search(facet = ["country", "basisOfRecord"], limit = 10)
x['results']
x['facets']
x['facets']['country']
x['facets']['basisOfRecord']
x['facets']['basisOfRecord']['count']

set a minimum facet count
x = occurrences.search(facet = "country", facetMincount = 30000000L, limit = 0)
x['facets']

paging per each faceted variable
do so by passing in variables like "country" + "_facetLimit" = "country_facetLimit"
or "country" + "_facetOffset" = "country_facetOffset"
x = occurrences.search(
 facet = ["country", "basisOfRecord", "hasCoordinate"],
 country_facetLimit = 3,
 basisOfRecord_facetLimit = 6,
 limit = 0
)
x['facets']

requests package options
There's an acceptable set of requests options (['timeout', 'cookies', 'auth',
'allow_redirects', 'proxies', 'verify', 'stream', 'cert']) you can pass
in via **kwargs, e.g., set a timeout
x = occurrences.search(timeout = 1)

	
occurrences.get(**kwargs)

	Gets details for a single, interpreted occurrence

	Parameters:

	key – [int] A GBIF occurrence key

	Returns:

	A dictionary, of results

Usage:

from pygbif import occurrences
occurrences.get(key = 1258202889)
occurrences.get(key = 1227768771)
occurrences.get(key = 1227769518)

	
occurrences.get_verbatim(**kwargs)

	Gets a verbatim occurrence record without any interpretation

	Parameters:

	key – [int] A GBIF occurrence key

	Returns:

	A dictionary, of results

Usage:

from pygbif import occurrences
occurrences.get_verbatim(key = 1258202889)
occurrences.get_verbatim(key = 1227768771)
occurrences.get_verbatim(key = 1227769518)

	
occurrences.get_fragment(**kwargs)

	Get a single occurrence fragment in its raw form (xml or json)

	Parameters:

	key – [int] A GBIF occurrence key

	Returns:

	A dictionary, of results

Usage:

from pygbif import occurrences
occurrences.get_fragment(key = 1052909293)
occurrences.get_fragment(key = 1227768771)
occurrences.get_fragment(key = 1227769518)

	
occurrences.count(basisOfRecord=None, country=None, isGeoreferenced=None, datasetKey=None, publishingCountry=None, typeStatus=None, issue=None, year=None, **kwargs)

	Returns occurrence counts for a predefined set of dimensions

For all parameters below, only one value allowed per function call.
See search() for passing more than one value
per parameter.

	Parameters:

	
	taxonKey – [int] A GBIF occurrence identifier

	basisOfRecord – [str] A GBIF occurrence identifier

	country – [str] A GBIF occurrence identifier

	isGeoreferenced – [bool] A GBIF occurrence identifier

	datasetKey – [str] A GBIF occurrence identifier

	publishingCountry – [str] A GBIF occurrence identifier

	typeStatus – [str] A GBIF occurrence identifier

	issue – [str] A GBIF occurrence identifier

	year – [int] A GBIF occurrence identifier

	Returns:

	dict

Usage:

from pygbif import occurrences
occurrences.count(taxonKey = 3329049)
occurrences.count(country = 'CA')
occurrences.count(isGeoreferenced = True)
occurrences.count(basisOfRecord = 'OBSERVATION')

	
occurrences.count_basisofrecord()

	Lists occurrence counts by basis of record.

	Returns:

	dict

Usage:

from pygbif import occurrences
occurrences.count_basisofrecord()

	
occurrences.count_year(**kwargs)

	Lists occurrence counts by year

	Parameters:

	year – [int] year range, e.g., 1990,2000. Does not support ranges like asterisk,2010

	Returns:

	dict

Usage:

from pygbif import occurrences
occurrences.count_year(year = '1990,2000')

	
occurrences.count_datasets(country=None, **kwargs)

	Lists occurrence counts for datasets that cover a given taxon or country

	Parameters:

	
	taxonKey – [int] Taxon key

	country – [str] A country, two letter code

	Returns:

	dict

Usage:

from pygbif import occurrences
occurrences.count_datasets(country = "DE")

	
occurrences.count_countries(**kwargs)

	Lists occurrence counts for all countries covered by the data published by the given country

	Parameters:

	publishingCountry – [str] A two letter country code

	Returns:

	dict

Usage:

from pygbif import occurrences
occurrences.count_countries(publishingCountry = "DE")

	
occurrences.count_schema()

	List the supported metrics by the service

	Returns:

	dict

Usage:

from pygbif import occurrences
occurrences.count_schema()

	
occurrences.count_publishingcountries(**kwargs)

	Lists occurrence counts for all countries that publish data about the given country

	Parameters:

	country – [str] A country, two letter code

	Returns:

	dict

Usage:

from pygbif import occurrences
occurrences.count_publishingcountries(country = "DE")

	
occurrences.download(format='SIMPLE_CSV', user=None, pwd=None, email=None, pred_type='and')

	Spin up a download request for GBIF occurrence data.

	Parameters:

	
	queries (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list] or dictionary) – One or more of query arguments to kick of a download job.
See Details.

	format – (character) One of the GBIF accepted download formats https://techdocs.gbif.org/en/openapi/v1/occurrence#/Occurrence%20download%20formats

	pred_type – (character) One of equals (=), and (&),
or` (|), lessThan (<), lessThanOrEquals (<=),
greaterThan (>), greaterThanOrEquals (>=),
in, within, not (!), like

	user – (character) User name within GBIF’s website.
Required. Set in your env vars with the option GBIF_USER

	pwd – (character) User password within GBIF’s website. Required.
Set in your env vars with the option GBIF_PWD

	email – (character) Email address to receive download notice done
email. Required. Set in your env vars with the option GBIF_EMAIL

Argument passed have to be passed as characters (e.g., country = US),
with a space between key (country), operator (=), and value (US).
See the type parameter for possible options for the operator.
This character string is parsed internally.

Acceptable arguments to ... (args) are:

	taxonKey = TAXON_KEY

	scientificName = SCIENTIFIC_NAME

	country = COUNTRY

	publishingCountry = PUBLISHING_COUNTRY

	hasCoordinate = HAS_COORDINATE

	hasGeospatialIssue = HAS_GEOSPATIAL_ISSUE

	typeStatus = TYPE_STATUS

	recordNumber = RECORD_NUMBER

	lastInterpreted = LAST_INTERPRETED

	continent = CONTINENT

	geometry = GEOMETRY

	basisOfRecord = BASIS_OF_RECORD

	datasetKey = DATASET_KEY

	eventDate = EVENT_DATE

	catalogNumber = CATALOG_NUMBER

	year = YEAR

	month = MONTH

	decimalLatitude = DECIMAL_LATITUDE

	decimalLongitude = DECIMAL_LONGITUDE

	elevation = ELEVATION

	depth = DEPTH

	institutionCode = INSTITUTION_CODE

	collectionCode = COLLECTION_CODE

	issue = ISSUE

	mediatype = MEDIA_TYPE

	recordedBy = RECORDED_BY

	repatriated = REPATRIATED

	classKey = CLASS_KEY

	coordinateUncertaintyInMeters = COORDINATE_UNCERTAINTY_IN_METERS

	crawlId = CRAWL_ID

	datasetId = DATASET_ID

	datasetName = DATASET_NAME

	distanceFromCentroidInMeters = DISTANCE_FROM_CENTROID_IN_METERS

	establishmentMeans = ESTABLISHMENT_MEANS

	eventId = EVENT_ID

	familyKey = FAMILY_KEY

	format = FORMAT

	fromDate = FROM_DATE

	genusKey = GENUS_KEY

	geoDistance = GEO_DISTANCE

	identifiedBy = IDENTIFIED_BY

	identifiedByID = IDENTIFIED_BY_ID

	kingdomKey = KINGDON_KEY

	license = LICENSE

	locality = LOCALITY

	modified = MODIFIED

	networkKey = NETWORK_KEY

	occurrenceId = OCCURRENCE_ID

	occurrenceStatus = OCCURRENCE_STATUS

	orderKey = ORDER_KEY

	organismId = ORGANISM_ID

	organismQuantity = ORGANISM_QUANTITY

	organismQuantityType = ORGANISM_QUANTITY_TYPE

	otherCatalogNumbers = OTHER_CATALOG_NUMBERS

	phylumKey = PHYLUM_KEY

	preparations = PREPARATIONS

	programme = PROGRAMME

	projectId = PROJECT_ID

	protocol = PROTOCOL

	publishingCountry = PUBLISHING_COUNTRY

	publishingOrg = PUBLISHING_ORG

	publishingOrgKey = PUBLISHING_ORG_KEY

	recordedByID = RECORDED_BY_ID

	recordNumber = RECORD_NUMBER

	relativeOrganismQuantity = RELATIVE_ORGANISM_QUANTITY

	sampleSizeUnit = SAMPLE_SIZE_UNIT

	sampleSizeValue = SAMPLE_SIZE_VALUE

	samplingProtocol = SAMPLING_PROTOCOL

	speciesKey = SPECIES_KEY

	stateProvince = STATE_PROVINCE

	subgenusKey = SUBGENUS_KEY

	taxonId = TAXON_ID

	toDate = TO_DATE

	userCountry = USER_COUNTRY

	verbatimScientificName = VERBATIM_SCIENTIFIC_NAME

	waterBody = WATER_BODY

See the API docs http://www.gbif.org/developer/occurrence#download and the predicates docs
http://www.gbif.org/developer/occurrence#predicates for more info.

GBIF has a limit of 100,000 predicates and 10,000 points (in within
predicates) for download queries – so if your download request is
particularly complex, you may need to split it into multiple
requests by one factor or another.

	Returns:

	A dictionary, of results

Usage:

from pygbif import occurrences as occ

occ.download('basisOfRecord = PRESERVED_SPECIMEN')
occ.download('taxonKey = 3119195')
occ.download('decimalLatitude > 50')
occ.download('elevation >= 9000')
occ.download('decimalLatitude >= 65')
occ.download('country = US')
occ.download('institutionCode = TLMF')
occ.download('catalogNumber = Bird.27847588')

res = occ.download(['taxonKey = 7264332', 'hasCoordinate = TRUE'])

pass output to download_meta for more information
occ.download_meta(occ.download('decimalLatitude > 75'))

multiple queries
gg = occ.download(['decimalLatitude >= 65',
 'decimalLatitude <= -65'], pred_type ='or')
gg = occ.download(['depth = 80', 'taxonKey = 2343454'],
 pred_type ='or')

repratriated data for Costa Rica
occ.download(['country = CR', 'repatriated = true'])

turn off logging
import logging
logger = logging.getLogger()
logger.disabled = True
z = occ.download('elevation >= 95000')
logger.disabled = False
w = occ.download('elevation >= 10000')

nested and complex queries with multiple predicates
For more complex queries, it may be advantagous to format the query in JSON format. It must follow the predicate format described in the API documentation (https://www.gbif.org/developer/occurrence#download):
query = { "type": "and",
 "predicates": [
 { "type": "in",
 "key": "TAXON_KEY",
 "values": ["2387246","2399391","2364604"]},
 { "type": "isNotNull",
 "parameter": "YEAR"},
 { "type": "not",
 "predicate": { "type": "in",
 "key": "ISSUE",
 "values": ["RECORDED_DATE_INVALID",
 "TAXON_MATCH_FUZZY",
 "TAXON_MATCH_HIGHERRANK"] }}]}
occ.download(query)

The same query can also be applied in the occ.download function (including download format specified):
occ.download(['taxonKey in ["2387246", "2399391","2364604"]', 'year !Null', "issue !in ['RECORDED_DATE_INVALID', 'TAXON_MATCH_FUZZY', 'TAXON_MATCH_HIGHERRANK']"], "DWCA")

	
occurrences.download_meta(**kwargs)

	Retrieves the occurrence download metadata by its unique key. Further
named arguments passed on to requests.get can be included as additional
arguments

	Parameters:

	key – [str] A key generated from a request, like that from download

Usage:

from pygbif import occurrences as occ
occ.download_meta(key = "0003970-140910143529206")
occ.download_meta(key = "0000099-140929101555934")

	
occurrences.download_list(pwd=None, limit=20, offset=0)

	Lists the downloads created by a user.

	Parameters:

	
	user – [str] A user name, look at env var GBIF_USER first

	pwd – [str] Your password, look at env var GBIF_PWD first

	limit – [int] Number of records to return. Default: 20

	offset – [int] Record number to start at. Default: 0

Usage:

from pygbif import occurrences as occ
occ.download_list(user = "sckott")
occ.download_list(user = "sckott", limit = 5)
occ.download_list(user = "sckott", offset = 21)

	
occurrences.download_get(path='.', **kwargs)

	Get a download from GBIF.

	Parameters:

	
	key – [str] A key generated from a request, like that from download

	path – [str] Path to write zip file to. Default: ".", with a .zip appended to the end.

	kwargs – Further named arguments passed on to requests.get

Downloads the zip file to a directory you specify on your machine.
The speed of this function is of course proportional to the size of the
file to download, and affected by your internet connection speed.

This function only downloads the file. To open and read it, see
https://github.com/BelgianBiodiversityPlatform/python-dwca-reader

Usage:

from pygbif import occurrences as occ
x=occ.download_get("0000066-140928181241064")
occ.download_get("0003983-140910143529206")

turn off logging
import logging
logger = logging.getLogger()
logger.disabled = True
x = occ.download_get("0000066-140928181241064")

turn back on
logger.disabled = False
x = occ.download_get("0000066-140928181241064")

registry module

registry module API:

	organizations

	nodes

	networks

	installations

	datasets

	dataset_metrics

	dataset_suggest

	dataset_search

Example usage:

from pygbif import registry
registry.dataset_metrics(uuid='3f8a1297-3259-4700-91fc-acc4170b27ce')

registry API

	
registry.datasets(type=None, uuid=None, query=None, id=None, limit=100, offset=None, **kwargs)

	Search for datasets and dataset metadata.

	Parameters:

	
	data – [str] The type of data to get. Default: all

	type – [str] Type of dataset, options include OCCURRENCE, etc.

	uuid – [str] UUID of the data node provider. This must be specified if data
is anything other than all.

	query – [str] Query term(s). Only used when data = 'all'

	id – [int] A metadata document id.

References http://www.gbif.org/developer/registry#datasets

Usage:

from pygbif import registry
registry.datasets(limit=5)
registry.datasets(type="OCCURRENCE")
registry.datasets(uuid="a6998220-7e3a-485d-9cd6-73076bd85657")
registry.datasets(data='contact', uuid="a6998220-7e3a-485d-9cd6-73076bd85657")
registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657")
registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657", id=598)
registry.datasets(data=['deleted','duplicate'])
registry.datasets(data=['deleted','duplicate'], limit=1)

	
registry.dataset_metrics()

	Get details on a GBIF dataset.

	Parameters:

	uuid – [str] One or more dataset UUIDs. See examples.

References: http://www.gbif.org/developer/registry#datasetMetrics

Usage:

from pygbif import registry
registry.dataset_metrics(uuid='3f8a1297-3259-4700-91fc-acc4170b27ce')
registry.dataset_metrics(uuid='66dd0960-2d7d-46ee-a491-87b9adcfe7b1')
registry.dataset_metrics(uuid=['3f8a1297-3259-4700-91fc-acc4170b27ce', '66dd0960-2d7d-46ee-a491-87b9adcfe7b1'])

	
registry.dataset_suggest(type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, publishingCountry=None, decade=None, limit=100, offset=None, **kwargs)

	Search that returns up to 20 matching datasets. Results are ordered by relevance.

	Parameters:

	
	q – [str] Query term(s) for full text search. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. q=*puma*

	type – [str] Type of dataset, options include OCCURRENCE, etc.

	keyword – [str] Keyword to search by. Datasets can be tagged by keywords, which you can search on. The search is done on the merged collection of tags, the dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING ANYMORE AS OF 2016-09-02.

	owningOrg – [str] Owning organization. A uuid string. See organizations()

	publishingOrg – [str] Publishing organization. A uuid string. See organizations()

	hostingOrg – [str] Hosting organization. A uuid string. See organizations()

	publishingCountry – [str] Publishing country.

	decade – [str] Decade, e.g., 1980. Filters datasets by their temporal coverage broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000, etc, and will return datasets wholly contained in the decade as well as those that cover the entire decade or more. Facet by decade to get the break down, e.g. /search?facet=DECADE&facet_only=true (see example below)

	limit – [int] Number of results to return. Default: 300

	offset – [int] Record to start at. Default: 0

	Returns:

	A dictionary

References: http://www.gbif.org/developer/registry#datasetSearch

Usage:

from pygbif import registry
registry.dataset_suggest(q="Amazon", type="OCCURRENCE")

Suggest datasets tagged with keyword "france".
registry.dataset_suggest(keyword="france")

Suggest datasets owned by the organization with key
"07f617d0-c688-11d8-bf62-b8a03c50a862" (UK NBN).
registry.dataset_suggest(owningOrg="07f617d0-c688-11d8-bf62-b8a03c50a862")

Fulltext search for all datasets having the word "amsterdam" somewhere in
its metadata (title, description, etc).
registry.dataset_suggest(q="amsterdam")

Limited search
registry.dataset_suggest(type="OCCURRENCE", limit=2)
registry.dataset_suggest(type="OCCURRENCE", limit=2, offset=10)

Return just descriptions
registry.dataset_suggest(type="OCCURRENCE", limit = 5, description=True)

Search by decade
registry.dataset_suggest(decade=1980, limit = 30)

	
registry.dataset_search(type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, decade=None, publishingCountry=None, facet=None, facetMincount=None, facetMultiselect=None, hl=False, limit=100, offset=None, **kwargs)

	Full text search across all datasets. Results are ordered by relevance.

	Parameters:

	
	q – [str] Query term(s) for full text search. The value for this parameter
can be a simple word or a phrase. Wildcards can be added to the simple word
parameters only, e.g. q=*puma*

	type – [str] Type of dataset, options include OCCURRENCE, etc.

	keyword – [str] Keyword to search by. Datasets can be tagged by keywords, which
you can search on. The search is done on the merged collection of tags, the
dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING
ANYMORE AS OF 2016-09-02.

	owningOrg – [str] Owning organization. A uuid string. See organizations()

	publishingOrg – [str] Publishing organization. A uuid string. See organizations()

	hostingOrg – [str] Hosting organization. A uuid string. See organizations()

	publishingCountry – [str] Publishing country.

	decade – [str] Decade, e.g., 1980. Filters datasets by their temporal coverage
broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000,
etc, and will return datasets wholly contained in the decade as well as those
that cover the entire decade or more. Facet by decade to get the break down,
e.g. /search?facet=DECADE&facet_only=true (see example below)

	facet – [str] A list of facet names used to retrieve the 100 most frequent values
for a field. Allowed facets are: type, keyword, publishingOrg, hostingOrg, decade,
and publishingCountry. Additionally subtype and country are legal values but not
yet implemented, so data will not yet be returned for them.

	facetMincount – [str] Used in combination with the facet parameter. Set
facetMincount={#} to exclude facets with a count less than {#}, e.g.
http://api.gbif.org/v1/dataset/search?facet=type&limit=0&facetMincount=10000
only shows the type value ‘OCCURRENCE’ because ‘CHECKLIST’ and ‘METADATA’ have
counts less than 10000.

	facetMultiselect – [bool] Used in combination with the facet parameter. Set
facetMultiselect=True to still return counts for values that are not currently
filtered, e.g.
http://api.gbif.org/v1/dataset/search?facet=type&limit=0&type=CHECKLIST&facetMultiselect=true
still shows type values ‘OCCURRENCE’ and ‘METADATA’ even though type is being
filtered by type=CHECKLIST

	hl – [bool] Set hl=True to highlight terms matching the query when in fulltext
search fields. The highlight will be an emphasis tag of class ‘gbifH1’ e.g.
http://api.gbif.org/v1/dataset/search?q=plant&hl=true
Fulltext search fields include: title, keyword, country, publishing country,
publishing organization title, hosting organization title, and description. One
additional full text field is searched which includes information from metadata
documents, but the text of this field is not returned in the response.

	limit – [int] Number of results to return. Default: 300

	offset – [int] Record to start at. Default: 0

	Note:

	Note that you can pass in additional faceting parameters on a per field basis.
For example, if you want to limit the numbef of facets returned from a field foo to
3 results, pass in foo_facetLimit = 3. GBIF does not allow all per field parameters,
but does allow some. See also examples.

	Returns:

	A dictionary

References: http://www.gbif.org/developer/registry#datasetSearch

Usage:

from pygbif import registry
Gets all datasets of type "OCCURRENCE".
registry.dataset_search(type="OCCURRENCE", limit = 10)

Fulltext search for all datasets having the word "amsterdam" somewhere in
its metadata (title, description, etc).
registry.dataset_search(q="amsterdam", limit = 10)

Limited search
registry.dataset_search(type="OCCURRENCE", limit=2)
registry.dataset_search(type="OCCURRENCE", limit=2, offset=10)

Search by decade
registry.dataset_search(decade=1980, limit = 10)

Faceting
just facets
registry.dataset_search(facet="decade", facetMincount=10, limit=0)

data and facets
registry.dataset_search(facet="decade", facetMincount=10, limit=2)

many facet variables
registry.dataset_search(facet=["decade", "type"], facetMincount=10, limit=0)

facet vars
per variable paging
x = registry.dataset_search(
 facet = ["decade", "type"],
 decade_facetLimit = 3,
 type_facetLimit = 3,
 limit = 0
)

highlight
x = registry.dataset_search(q="plant", hl=True, limit = 10)
[z['description'] for z in x['results']]

	
registry.installations(uuid=None, q=None, identifier=None, identifierType=None, limit=100, offset=None, **kwargs)

	Installations metadata.

	Parameters:

	
	data – [str] The type of data to get. Default is all data. If not all, then one
or more of contact, endpoint, dataset, comment, deleted, nonPublishing.

	uuid – [str] UUID of the data node provider. This must be specified if data
is anything other than all.

	q – [str] Query nodes. Only used when data='all'. Ignored otherwise.

	identifier – [fixnum] The value for this parameter can be a simple string or integer,
e.g. identifier=120

	identifierType – [str] Used in combination with the identifier parameter to filter
identifiers by identifier type: DOI, FTP, GBIF_NODE, GBIF_PARTICIPANT,
GBIF_PORTAL, HANDLER, LSID, UNKNOWN, URI, URL, UUID

	limit – [int] Number of results to return. Default: 100

	offset – [int] Record to start at. Default: 0

	Returns:

	A dictionary

References: http://www.gbif.org/developer/registry#installations

Usage:

from pygbif import registry
registry.installations(limit=5)
registry.installations(q="france")
registry.installations(uuid="b77901f9-d9b0-47fa-94e0-dd96450aa2b4")
registry.installations(data='contact', uuid="b77901f9-d9b0-47fa-94e0-dd96450aa2b4")
registry.installations(data='contact', uuid="2e029a0c-87af-42e6-87d7-f38a50b78201")
registry.installations(data='endpoint', uuid="b77901f9-d9b0-47fa-94e0-dd96450aa2b4")
registry.installations(data='dataset', uuid="b77901f9-d9b0-47fa-94e0-dd96450aa2b4")
registry.installations(data='deleted')
registry.installations(data='deleted', limit=2)
registry.installations(data=['deleted','nonPublishing'], limit=2)
registry.installations(identifierType='DOI', limit=2)

	
registry.networks(uuid=None, q=None, identifier=None, identifierType=None, limit=100, offset=None, **kwargs)

	Networks metadata.

Note: there’s only 1 network now, so there’s not a lot you can do with this method.

	Parameters:

	
	data – [str] The type of data to get. Default: all

	uuid – [str] UUID of the data network provider. This must be specified if data
is anything other than all.

	q – [str] Query networks. Only used when data = 'all'. Ignored otherwise.

	identifier – [fixnum] The value for this parameter can be a simple string or integer,
e.g. identifier=120

	identifierType – [str] Used in combination with the identifier parameter to filter
identifiers by identifier type: DOI, FTP, GBIF_NODE, GBIF_PARTICIPANT,
GBIF_PORTAL, HANDLER, LSID, UNKNOWN, URI, URL, UUID

	limit – [int] Number of results to return. Default: 100

	offset – [int] Record to start at. Default: 0

	Returns:

	A dictionary

References: http://www.gbif.org/developer/registry#networks

Usage:

from pygbif import registry
registry.networks(limit=1)
registry.networks(uuid='2b7c7b4f-4d4f-40d3-94de-c28b6fa054a6')

	
registry.nodes(uuid=None, q=None, identifier=None, identifierType=None, limit=100, offset=None, isocode=None, **kwargs)

	Nodes metadata.

	Parameters:

	
	data – [str] The type of data to get. Default: all

	uuid – [str] UUID of the data node provider. This must be specified if data
is anything other than all.

	q – [str] Query nodes. Only used when data = 'all'

	identifier – [fixnum] The value for this parameter can be a simple string or integer,
e.g. identifier=120

	identifierType – [str] Used in combination with the identifier parameter to filter
identifiers by identifier type: DOI, FTP, GBIF_NODE, GBIF_PARTICIPANT,
GBIF_PORTAL, HANDLER, LSID, UNKNOWN, URI, URL, UUID

	limit – [int] Number of results to return. Default: 100

	offset – [int] Record to start at. Default: 0

	isocode – [str] A 2 letter country code. Only used if data = 'country'.

	Returns:

	A dictionary

References http://www.gbif.org/developer/registry#nodes

Usage:

from pygbif import registry
registry.nodes(limit=5)
registry.nodes(identifier=120)
registry.nodes(uuid="1193638d-32d1-43f0-a855-8727c94299d8")
registry.nodes(data='identifier', uuid="03e816b3-8f58-49ae-bc12-4e18b358d6d9")
registry.nodes(data=['identifier','organization','comment'], uuid="03e816b3-8f58-49ae-bc12-4e18b358d6d9")

uuids = ["8cb55387-7802-40e8-86d6-d357a583c596","02c40d2a-1cba-4633-90b7-e36e5e97aba8",
"7a17efec-0a6a-424c-b743-f715852c3c1f","b797ce0f-47e6-4231-b048-6b62ca3b0f55",
"1193638d-32d1-43f0-a855-8727c94299d8","d3499f89-5bc0-4454-8cdb-60bead228a6d",
"cdc9736d-5ff7-4ece-9959-3c744360cdb3","a8b16421-d80b-4ef3-8f22-098b01a89255",
"8df8d012-8e64-4c8a-886e-521a3bdfa623","b35cf8f1-748d-467a-adca-4f9170f20a4e",
"03e816b3-8f58-49ae-bc12-4e18b358d6d9","073d1223-70b1-4433-bb21-dd70afe3053b",
"07dfe2f9-5116-4922-9a8a-3e0912276a72","086f5148-c0a8-469b-84cc-cce5342f9242",
"0909d601-bda2-42df-9e63-a6d51847ebce","0e0181bf-9c78-4676-bdc3-54765e661bb8",
"109aea14-c252-4a85-96e2-f5f4d5d088f4","169eb292-376b-4cc6-8e31-9c2c432de0ad",
"1e789bc9-79fc-4e60-a49e-89dfc45a7188","1f94b3ca-9345-4d65-afe2-4bace93aa0fe"]

[registry.nodes(data='identifier', uuid=x) for x in uuids]

	
registry.organizations(uuid=None, q=None, identifier=None, identifierType=None, limit=100, offset=None, **kwargs)

	Organizations metadata.

	Parameters:

	
	data – [str] The type of data to get. Default is all data. If not all, then one
or more of contact, endpoint, identifier, tag, machineTag,
comment, hostedDataset, ownedDataset, deleted, pending,
nonPublishing.

	uuid – [str] UUID of the data node provider. This must be specified if data
is anything other than all.

	q – [str] Query nodes. Only used when data='all'. Ignored otherwise.

	identifier – [fixnum] The value for this parameter can be a simple string or integer,
e.g. identifier=120

	identifierType – [str] Used in combination with the identifier parameter to filter
identifiers by identifier type: DOI, FTP, GBIF_NODE, GBIF_PARTICIPANT,
GBIF_PORTAL, HANDLER, LSID, UNKNOWN, URI, URL, UUID

	limit – [int] Number of results to return. Default: 100

	offset – [int] Record to start at. Default: 0

	Returns:

	A dictionary

References: http://www.gbif.org/developer/registry#organizations

Usage:

from pygbif import registry
registry.organizations(limit=5)
registry.organizations(q="france")
registry.organizations(identifier=120)
registry.organizations(uuid="e2e717bf-551a-4917-bdc9-4fa0f342c530")
registry.organizations(data='contact', uuid="e2e717bf-551a-4917-bdc9-4fa0f342c530")
registry.organizations(data='deleted')
registry.organizations(data='deleted', limit=2)
registry.organizations(data=['deleted','nonPublishing'], limit=2)
registry.organizations(identifierType='DOI', limit=2)

species module

species module API:

	name_backbone

	name_suggest

	name_usage

	name_lookup

	name_parser

Example usage:

from pygbif import species
species.name_suggest(q='Puma concolor')

species API

	
species.name_backbone(rank=None, kingdom=None, phylum=None, clazz=None, order=None, family=None, genus=None, strict=False, verbose=False, offset=None, limit=100, **kwargs)

	Lookup names in the GBIF backbone taxonomy.

	Parameters:

	
	name – [str] Full scientific name potentially with authorship (required)

	rank – [str] The rank given as our rank enum. (optional)

	kingdom – [str] If provided default matching will also try to match against this
if no direct match is found for the name alone. (optional)

	phylum – [str] If provided default matching will also try to match against this
if no direct match is found for the name alone. (optional)

	class – [str] If provided default matching will also try to match against this
if no direct match is found for the name alone. (optional)

	order – [str] If provided default matching will also try to match against this
if no direct match is found for the name alone. (optional)

	family – [str] If provided default matching will also try to match against this
if no direct match is found for the name alone. (optional)

	genus – [str] If provided default matching will also try to match against this
if no direct match is found for the name alone. (optional)

	strict – [bool] If True it (fuzzy) matches only the given name, but never a
taxon in the upper classification (optional)

	verbose – [bool] If True show alternative matches considered which had been rejected.

	offset – [int] Record to start at. Default: 0

	limit – [int] Number of results to return. Default: 100

If you are looking for behavior similar to the GBIF website when you search
for a name, name_backbone may be what you want. For example, a search for
Lantanophaga pusillidactyla on the GBIF website and with name_backbone
will give back as a first result the correct name
Lantanophaga pusillidactylus.

A list for a single taxon with many slots (with verbose=False - default), or a
list of length two, first element for the suggested taxon match, and a data.frame
with alternative name suggestions resulting from fuzzy matching (with verbose=True).

If you don’t get a match GBIF gives back a list of length 3 with slots synonym,
confidence, and matchType='NONE'.

reference: https://www.gbif.org/developer/species#searching

Usage:

from pygbif import species
species.name_backbone(name='Helianthus annuus', kingdom='plants')
species.name_backbone(name='Helianthus', rank='genus', kingdom='plants')
species.name_backbone(name='Poa', rank='genus', family='Poaceae')

Verbose - gives back alternatives
species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True)

Strictness
species.name_backbone(name='Poa', kingdom='plants', verbose=True, strict=False)
species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True, strict=True)

Non-existent name
species.name_backbone(name='Aso')

Multiple equal matches
species.name_backbone(name='Oenante')

	
species.name_suggest(datasetKey=None, rank=None, limit=100, offset=None, **kwargs)

	A quick and simple autocomplete service that returns up to 20 name usages by
doing prefix matching against the scientific name. Results are ordered by relevance.

	Parameters:

	
	q – [str] Simple search parameter. The value for this parameter can be a
simple word or a phrase. Wildcards can be added to the simple word parameters only,
e.g. q=*puma* (Required)

	datasetKey – [str] Filters by the checklist dataset key (a uuid, see examples)

	rank – [str] A taxonomic rank. One of class, cultivar, cultivar_group, domain, family,
form, genus, informal, infrageneric_name, infraorder, infraspecific_name,
infrasubspecific_name, kingdom, order, phylum, section, series, species, strain, subclass,
subfamily, subform, subgenus, subkingdom, suborder, subphylum, subsection, subseries,
subspecies, subtribe, subvariety, superclass, superfamily, superorder, superphylum,
suprageneric_name, tribe, unranked, or variety.

	limit – [fixnum] Number of records to return. Maximum: 1000. (optional)

	offset – [fixnum] Record number to start at. (optional)

	Returns:

	A dictionary

References: http://www.gbif.org/developer/species#searching

Usage:

from pygbif import species

species.name_suggest(q='Puma concolor')
x = species.name_suggest(q='Puma')
species.name_suggest(q='Puma', rank="genus")
species.name_suggest(q='Puma', rank="subspecies")
species.name_suggest(q='Puma', rank="species")
species.name_suggest(q='Puma', rank="infraspecific_name")
species.name_suggest(q='Puma', limit=2)

	
species.name_lookup(rank=None, higherTaxonKey=None, status=None, isExtinct=None, habitat=None, nameType=None, datasetKey=None, nomenclaturalStatus=None, limit=100, offset=None, facet=False, facetMincount=None, facetMultiselect=None, type=None, hl=False, verbose=False, **kwargs)

	Lookup names in all taxonomies in GBIF.

This service uses fuzzy lookup so that you can put in partial names and
you should get back those things that match. See examples below.

	Parameters:

	
	q – [str] Query term(s) for full text search (optional)

	rank – [str] CLASS, CULTIVAR, CULTIVAR_GROUP, DOMAIN, FAMILY,
FORM, GENUS, INFORMAL, INFRAGENERIC_NAME, INFRAORDER, INFRASPECIFIC_NAME,
INFRASUBSPECIFIC_NAME, KINGDOM, ORDER, PHYLUM, SECTION, SERIES, SPECIES, STRAIN, SUBCLASS,
SUBFAMILY, SUBFORM, SUBGENUS, SUBKINGDOM, SUBORDER, SUBPHYLUM, SUBSECTION, SUBSERIES,
SUBSPECIES, SUBTRIBE, SUBVARIETY, SUPERCLASS, SUPERFAMILY, SUPERORDER, SUPERPHYLUM,
SUPRAGENERIC_NAME, TRIBE, UNRANKED, VARIETY (optional)

	verbose – [bool] If True show alternative matches considered which had been rejected.

	higherTaxonKey – [str] Filters by any of the higher Linnean rank keys. Note this
is within the respective checklist and not searching nub keys across all checklists (optional)

	status – [str] (optional) Filters by the taxonomic status as one of:

	ACCEPTED

	DETERMINATION_SYNONYM Used for unknown child taxa referred to via spec, ssp, …

	DOUBTFUL Treated as accepted, but doubtful whether this is correct.

	HETEROTYPIC_SYNONYM More specific subclass of SYNONYM.

	HOMOTYPIC_SYNONYM More specific subclass of SYNONYM.

	INTERMEDIATE_RANK_SYNONYM Used in nub only.

	MISAPPLIED More specific subclass of SYNONYM.

	PROPARTE_SYNONYM More specific subclass of SYNONYM.

	SYNONYM A general synonym, the exact type is unknown.

	isExtinct – [bool] Filters by extinction status (e.g. isExtinct=True)

	habitat – [str] Filters by habitat. One of: marine, freshwater, or
terrestrial (optional)

	nameType – [str] (optional) Filters by the name type as one of:

	BLACKLISTED surely not a scientific name.

	CANDIDATUS Candidatus is a component of the taxonomic name for a bacterium that cannot be maintained in a Bacteriology Culture Collection.

	CULTIVAR a cultivated plant name.

	DOUBTFUL doubtful whether this is a scientific name at all.

	HYBRID a hybrid formula (not a hybrid name).

	INFORMAL a scientific name with some informal addition like “cf.” or indetermined like Abies spec.

	SCINAME a scientific name which is not well formed.

	VIRUS a virus name.

	WELLFORMED a well formed scientific name according to present nomenclatural rules.

	datasetKey – [str] Filters by the dataset’s key (a uuid) (optional)

	nomenclaturalStatus – [str] Not yet implemented, but will eventually allow for
filtering by a nomenclatural status enum

	limit – [fixnum] Number of records to return. Maximum: 1000. (optional)

	offset – [fixnum] Record number to start at. (optional)

	facet – [str] A list of facet names used to retrieve the 100 most frequent values
for a field. Allowed facets are: datasetKey, higherTaxonKey, rank, status,
isExtinct, habitat, and nameType. Additionally threat and nomenclaturalStatus
are legal values but not yet implemented, so data will not yet be returned for them. (optional)

	facetMincount – [str] Used in combination with the facet parameter. Set
facetMincount={#} to exclude facets with a count less than {#}, e.g.
http://bit.ly/1bMdByP only shows the type value ACCEPTED because the other
statuses have counts less than 7,000,000 (optional)

	facetMultiselect – [bool] Used in combination with the facet parameter. Set
facetMultiselect=True to still return counts for values that are not currently
filtered, e.g. http://bit.ly/19YLXPO still shows all status values even though
status is being filtered by status=ACCEPTED (optional)

	type – [str] Type of name. One of occurrence, checklist, or metadata. (optional)

	hl – [bool] Set hl=True to highlight terms matching the query when in fulltext
search fields. The highlight will be an emphasis tag of class gbifH1 e.g.
q='plant', hl=True. Fulltext search fields include: title, keyword, country,
publishing country, publishing organization title, hosting organization title, and
description. One additional full text field is searched which includes information from
metadata documents, but the text of this field is not returned in the response. (optional)

	Returns:

	A dictionary

	References:

	http://www.gbif.org/developer/species#searching

Usage:

from pygbif import species

Look up names like mammalia
species.name_lookup(q='mammalia')

Paging
species.name_lookup(q='mammalia', limit=1)
species.name_lookup(q='mammalia', limit=1, offset=2)

large requests, use offset parameter
first = species.name_lookup(q='mammalia', limit=1000)
second = species.name_lookup(q='mammalia', limit=1000, offset=1000)

Get all data and parse it, removing descriptions which can be quite long
species.name_lookup('Helianthus annuus', rank="species", verbose=True)

Get all data and parse it, removing descriptions field which can be quite long
out = species.name_lookup('Helianthus annuus', rank="species")
res = out['results']
[z.pop('descriptions', None) for z in res]
res

Fuzzy searching
species.name_lookup(q='Heli', rank="genus")

Limit records to certain number
species.name_lookup('Helianthus annuus', rank="species", limit=2)

Query by habitat
species.name_lookup(habitat = "terrestrial", limit=2)
species.name_lookup(habitat = "marine", limit=2)
species.name_lookup(habitat = "freshwater", limit=2)

Using faceting
species.name_lookup(facet='status', limit=0, facetMincount='70000')
species.name_lookup(facet=['status', 'higherTaxonKey'], limit=0, facetMincount='700000')

species.name_lookup(facet='nameType', limit=0)
species.name_lookup(facet='habitat', limit=0)
species.name_lookup(facet='datasetKey', limit=0)
species.name_lookup(facet='rank', limit=0)
species.name_lookup(facet='isExtinct', limit=0)

text highlighting
species.name_lookup(q='plant', hl=True, limit=30)

Lookup by datasetKey
species.name_lookup(datasetKey='3f8a1297-3259-4700-91fc-acc4170b27ce')

	
species.name_usage(name=None, data='all', language=None, datasetKey=None, uuid=None, sourceId=None, rank=None, shortname=None, limit=100, offset=None, **kwargs)

	Lookup details for specific names in all taxonomies in GBIF.

	Parameters:

	
	key – [fixnum] A GBIF key for a taxon

	name – [str] Filters by a case insensitive, canonical namestring,
e.g. ‘Puma concolor’

	data – [str] The type of data to get. Default: all. Options: all,
verbatim, name, parents, children,
related, synonyms, descriptions, distributions, media,
references, speciesProfiles, vernacularNames, typeSpecimens,
root

	language – [str] Language. Expects a ISO 639-1 language codes using 2 lower
case letters. Languages returned are 3 letter codes. The language parameter
only applies to the /species, /species/{int},
/species/{int}/parents, /species/{int}/children, /species/{int}/related,
/species/{int}/synonyms routes (here routes are determined by the data
parameter).

	datasetKey – [str] Filters by the dataset’s key (a uuid)

	uuid – [str] A uuid for a dataset. Should give exact same results as datasetKey.

	sourceId – [fixnum] Filters by the source identifier.

	rank – [str] Taxonomic rank. Filters by taxonomic rank as one of:
CLASS, CULTIVAR, CULTIVAR_GROUP, DOMAIN, FAMILY, FORM, GENUS, INFORMAL,
INFRAGENERIC_NAME, INFRAORDER, INFRASPECIFIC_NAME, INFRASUBSPECIFIC_NAME,
KINGDOM, ORDER, PHYLUM, SECTION, SERIES, SPECIES, STRAIN, SUBCLASS, SUBFAMILY,
SUBFORM, SUBGENUS, SUBKINGDOM, SUBORDER, SUBPHYLUM, SUBSECTION, SUBSERIES,
SUBSPECIES, SUBTRIBE, SUBVARIETY, SUPERCLASS, SUPERFAMILY, SUPERORDER,
SUPERPHYLUM, SUPRAGENERIC_NAME, TRIBE, UNRANKED, VARIETY

	shortname – [str] A short name..need more info on this?

	limit – [fixnum] Number of records to return. Default: 100. Maximum: 1000. (optional)

	offset – [fixnum] Record number to start at. (optional)

References: See http://www.gbif.org/developer/species#nameUsages for details

Usage:

from pygbif import species

species.name_usage(key=1)

Name usage for a taxonomic name
species.name_usage(name='Puma', rank="GENUS")

All name usages
species.name_usage()

References for a name usage
species.name_usage(key=2435099, data='references')

Species profiles, descriptions
species.name_usage(key=5231190, data='speciesProfiles')
species.name_usage(key=5231190, data='descriptions')
species.name_usage(key=2435099, data='children')

Vernacular names for a name usage
species.name_usage(key=5231190, data='vernacularNames')

Limit number of results returned
species.name_usage(key=5231190, data='vernacularNames', limit=3)

Search for names by dataset with datasetKey parameter
species.name_usage(datasetKey="d7dddbf4-2cf0-4f39-9b2a-bb099caae36c")

	
species.name_parser(**kwargs)

	Parse taxon names using the GBIF name parser

	Parameters:

	name – [str] A character vector of scientific names. (required)

reference: http://www.gbif.org/developer/species#parser

Usage:

from pygbif import species
species.name_parser('x Agropogon littoralis')
species.name_parser(['Arrhenatherum elatius var. elatius',
 'Secale cereale subsp. cereale', 'Secale cereale ssp. cereale',
 'Vanessa atalanta (Linnaeus, 1758)'])

maps module

maps module API:

	map

Example usage:

from pygbif import maps
maps.map(taxonKey = 2435098)

maps API

	
maps.map(z=0, x=0, y=0, format='@1x.png', srs='EPSG:4326', bin=None, hexPerTile=None, style='classic.point', taxonKey=None, country=None, publishingCountry=None, publisher=None, datasetKey=None, year=None, basisOfRecord=None, **kwargs)

	GBIF maps API

	Parameters:

	
	source – [str] Either density for fast, precalculated tiles,
or adhoc for any search

	z – [str] zoom level

	x – [str] longitude

	y – [str] latitude

	format – [str] format of returned data. One of:

	.mvt - vector tile

	@Hx.png - 256px raster tile (for legacy clients)

	@1x.png - 512px raster tile, @2x.png for a 1024px raster tile

	@2x.png - 1024px raster tile

	@3x.png - 2048px raster tile

	@4x.png - 4096px raster tile

	srs – [str] Spatial reference system. One of:

	EPSG:3857 (Web Mercator)

	EPSG:4326 (WGS84 plate caree)

	EPSG:3575 (Arctic LAEA)

	EPSG:3031 (Antarctic stereographic)

	bin – [str] square or hex to aggregate occurrence counts into
squares or hexagons. Points by default.

	hexPerTile – [str] sets the size of the hexagons (the number
horizontally across a tile)

	squareSize – [str] sets the size of the squares. Choose a factor
of 4096 so they tessalate correctly: probably from 8, 16, 32, 64,
128, 256, 512.

	style – [str] for raster tiles, choose from the available styles.
Defaults to classic.point.

	taxonKey – [int] A GBIF occurrence identifier

	datasetKey – [str] The occurrence dataset key (a uuid)

	country – [str] The 2-letter country code (as per ISO-3166-1) of
the country in which the occurrence was recorded. See here
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

	basisOfRecord –
	[str] Basis of record, as defined in the BasisOfRecord enum
	http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html
Acceptable values are

	FOSSIL_SPECIMEN An occurrence record describing a fossilized specimen.

	HUMAN_OBSERVATION An occurrence record describing an observation made by one or more people.

	LIVING_SPECIMEN An occurrence record describing a living specimen.

	MACHINE_OBSERVATION An occurrence record describing an observation made by a machine.

	MATERIAL_CITATION An occurrence record based on a reference to a scholarly publication.

	OBSERVATION An occurrence record describing an observation.

	OCCURRENCE An existence of an organism at a particular place and time. No more specific basis.

	PRESERVED_SPECIMEN An occurrence record describing a preserved specimen.

	year – [int] The 4 digit year. A year of 98 will be interpreted as
AD 98. Supports range queries, smaller,larger (e.g., 1990,1991,
whereas 1991,1990 wouldn’t work)

	publishingCountry – [str] The 2-letter country code (as per
ISO-3166-1) of the country in which the occurrence was recorded.

	Returns:

	An object of class GbifMap

For mvt format, see https://github.com/tilezen/mapbox-vector-tile to
decode, and example below

Usage:

from pygbif import maps
out = maps.map(taxonKey = 2435098)
out.response
out.path
out.img
out.plot()

out = maps.map(taxonKey = 2480498, year = range(2008, 2011+1))
out.response
out.path
out.img
out.plot()

srs
maps.map(taxonKey = 2480498, year = 2010, srs = "EPSG:3857")
bin
maps.map(taxonKey = 212, year = 1998, bin = "hex",
 hexPerTile = 30, style = "classic-noborder.poly")
style
maps.map(taxonKey = 2480498, style = "purpleYellow.point").plot()
basisOfRecord
maps.map(taxonKey = 2480498, year = 2010,
 basisOfRecord = "HUMAN_OBSERVATION", bin = "hex",
 hexPerTile = 500).plot()
maps.map(taxonKey = 2480498, year = 2010,
 basisOfRecord = ["HUMAN_OBSERVATION", "LIVING_SPECIMEN"],
 hexPerTile = 500, bin = "hex").plot()

map vector tiles, gives back raw bytes
from pygbif import maps
x = maps.map(taxonKey = 2480498, year = 2010,
 format = ".mvt")
x.response
x.path
x.img # None
import mapbox_vector_tile
mapbox_vector_tile.decode(x.response.content)

utils module

utils module API:

	wkt_rewind

Example usage:

from pygbif import utils
x = 'POLYGON((144.6 13.2, 144.6 13.6, 144.9 13.6, 144.9 13.2, 144.6 13.2))'
utils.wkt_rewind(x)

utils API

	
utils.wkt_rewind(digits=None)

	reverse WKT winding order

	Parameters:

	
	x – [str] WKT string

	digits – [int] number of digits after decimal to use for the return string.
by default, we use the mean number of digits in your string.

	Returns:

	a string

Usage:

from pygbif import wkt_rewind
x = 'POLYGON((144.6 13.2, 144.6 13.6, 144.9 13.6, 144.9 13.2, 144.6 13.2))'
wkt_rewind(x)
wkt_rewind(x, digits = 0)
wkt_rewind(x, digits = 3)
wkt_rewind(x, digits = 7)

Changelog

0.6.3 (2023-05-25)

	added support for predicates: isNull, isNotNull, in and not #92 [https://github.com/gbif/pygbif/issues/92], #102 [https://github.com/gbif/pygbif/issues/102] and #103 [https://github.com/gbif/pygbif/issues/103]

	added support for nested queries/dictionaries #104 [https://github.com/gbif/pygbif/issues/104]

	deprecated the add_predicate function and added add_pred_dict to accomodate for newly supported predicates to ensure that the arguments that are sent are added in the payload function #108 [https://github.com/gbif/pygbif/issues/108]

	added support for multiple download formats #105 [https://github.com/gbif/pygbif/issues/105]

	updated operators and look-up tables #107 [https://github.com/gbif/pygbif/issues/107]

	included documentation on newly supported predicates and dictionaries #106 [https://github.com/gbif/pygbif/issues/106]

0.6.2 (2023-01-24)

	update to fix requesting GBIF downloads

	minor documentation updates #95 [https://github.com/gbif/pygbif/issues/95] and #99 [https://github.com/gbif/pygbif/issues/99]

0.6.1 (2022-06-23)

	update to fix broken dependencies #93 [https://github.com/gbif/pygbif/issues/93]

	minor documentation updates

0.6.0 (2021-07-08)

	Fix for occurrences.download when giving geometry as a string rather than using add_geometry; predicates were being split on whitespace, which doesn’t work for WKT #81 [https://github.com/gbif/pygbif/issues/81] #84 [https://github.com/gbif/pygbif/issues/84]

	Moved to using the logging module instead of print() for giving information on occurrence download methods #78 [https://github.com/gbif/pygbif/issues/78]

	Clarify that occurrences.count for length 1 inputs only; see occurrences.search for > 1 value #75 [https://github.com/gbif/pygbif/issues/75] #77 [https://github.com/gbif/pygbif/issues/77]

	Improved documentation for species.name_usage method, mostly for the language parameter #68 [https://github.com/gbif/pygbif/issues/68]

	Gains download method download_cancel for cancelling/deleting a download request #59 [https://github.com/gbif/pygbif/issues/59]

0.5.0 (2020-09-29)

	occurrences.search now supports recordedByID and identifiedByID search parameters #62 [https://github.com/gbif/pygbif/issues/62]

	clean up the Contributing file, thanks @niconoe #64 [https://github.com/gbif/pygbif/issues/64]

	clean up internal imports in the library, thanks @niconoe #65 [https://github.com/gbif/pygbif/issues/65]

	fix usage of is and ==, was using them inappropriately sometimes (via https://realpython.com/python-is-identity-vs-equality/), #69 [https://github.com/gbif/pygbif/issues/69]

	remove redundant parameter in a doc string, thanks @faroit #71 [https://github.com/gbif/pygbif/issues/71]

	make a test for internal fxn gbif_GET_write more general to avoid errors if GBIF changes content type response header slightly #72 [https://github.com/gbif/pygbif/issues/72]

0.4.0 (2019-11-20)

	changed base url to https for all requests; was already https for maps and downloads in previous versions

	occurrences, species, and registry modules gain docstrings with brief summary of each method

	pygbif gains ability to cache http requests. caching is off by default. See ?pygbif.caching for all the details #52 [https://github.com/gbif/pygbif/issues/52] #56 [https://github.com/gbif/pygbif/issues/56] via @nleguillarme

	made note in docs that if you are trying to get the same behavior as the GBIF website for name searching, species.name_backbone is likely what you want #55 [https://github.com/gbif/pygbif/issues/55] thanks @qgroom

	for parameters that expect a bool, convert them to lowercase strings internally before doing HTTP requests

0.3.0 (2019-01-25)

	pygbif is Python 3 only now #19 [https://github.com/gbif/pygbif/issues/19]

	Gains maps module with maps.map method for working with the GBIF maps API #41 [https://github.com/gbif/pygbif/issues/41] #49 [https://github.com/gbif/pygbif/issues/49]

	Gains new module utils with one method wkt_rewind #46 [https://github.com/gbif/pygbif/issues/46] thanks @aubreymoore for the inspiration

	Fixed bug in registry.installations: typo in one of the parameters identifierTyp instead of identifierType #48 [https://github.com/gbif/pygbif/issues/48] thanks @data-biodiversity-aq

	Link to GitHub issues from Changelog 🎉

	Fix a occurrence download test #47 [https://github.com/gbif/pygbif/issues/47]

	Much more thorough docs #25 [https://github.com/gbif/pygbif/issues/25]

0.2.0 (2016-10-18)

	Download methods much improved #16 [https://github.com/gbif/pygbif/issues/16] #27 [https://github.com/gbif/pygbif/issues/27] thanks @jlegind @stijnvanhoey @peterdesmet !

	MULTIPOLYGON now supported in geometry parameter #35 [https://github.com/gbif/pygbif/issues/35]

	Fixed docs for occurrences.get, and occurrences.get_verbatim, occurrences.get_fragment and demo that used occurrence keys that no longer exist in GBIF #39 [https://github.com/gbif/pygbif/issues/39]

	Added organizations method to registry module #12 [https://github.com/gbif/pygbif/issues/12]

	Added remainder of datasets methods: registry.dataset_search (including faceting support #37 [https://github.com/gbif/pygbif/issues/37]) and registry.dataset_suggest, for the /dataset/search and /dataset/suggest routes, respectively #40 [https://github.com/gbif/pygbif/issues/40]

	Added remainder of species methods: species.name_lookup (including faceting support #38 [https://github.com/gbif/pygbif/issues/38]) and species.name_usage, for the /species/search and /species routes, respectively #18 [https://github.com/gbif/pygbif/issues/18]

	Added more tests to cover new methods

	Changed species.name_suggest to give back data stucture as received from GBIF. We used to parse out the classification data, but for simplicity and speed, that is left up to the user now.

	start parameter in species.name_suggest, occurrences.download_list, registry.organizations, registry.nodes, registry.networks, and registry.installations, changed to offset to match GBIF API and match usage throughout remainder of pygbif

0.1.5.4 (2016-10-01)

	Added many new occurrence.search parameters, including repatriated, kingdomKey, phylumKey, classKey, orderKey, familyKey, genusKey, subgenusKey, establishmentMeans, facet, facetMincount, facetMultiselect, and support for facet paging via **kwargs #30 [https://github.com/gbif/pygbif/issues/30] #34 [https://github.com/gbif/pygbif/issues/34]

	Fixes to **kwargs in occurrence.search so that facet parameters can be parsed correctly and requests GET request options are collected correctly #36 [https://github.com/gbif/pygbif/issues/36]

	Added spellCheck parameter to occurrence.search that goes along with the q parameter to optionally spell check full text searches #31 [https://github.com/gbif/pygbif/issues/31]

0.1.4 (2016-06-04)

	Added variable types throughout docs

	Changed default limit value to 300 for occurrences.search method

	tox now included, via @xrotwang #20 [https://github.com/gbif/pygbif/issues/20]

	Added more registry methods #11 [https://github.com/gbif/pygbif/issues/11]

	Started occurrence download methods #16 [https://github.com/gbif/pygbif/issues/16]

	Added more names methods #18 [https://github.com/gbif/pygbif/issues/18]

	All requests now send user-agent headers with requests and pygbif versions #13 [https://github.com/gbif/pygbif/issues/13]

	Bug fix for occurrences.download_get #23 [https://github.com/gbif/pygbif/issues/23]

	Fixed bad example for occurrences.get #22 [https://github.com/gbif/pygbif/issues/22]

	Fixed wheel to be universal for 2 and 3 #10 [https://github.com/gbif/pygbif/issues/10]

	Improved documentation a lot, autodoc methods now

0.1.1 (2015-11-03)

	Fixed distribution for pypi

0.1.0 (2015-11-02)

	First release

Contributors

	Scott Chamberlain [https://github.com/sckott]

	Robert Forkel [https://github.com/xrotwang]

	Jan Legind [https://github.com/jlegind]

	Stijn Van Hoey [https://github.com/stijnvanhoey]

	Peter Desmet [https://github.com/peterdesmet]

	Nicolas Noé [https://github.com/niconoe]

Contributing

Bug reports

Please report bug reports on our issue tracker [https://github.com/gbif/pygbif/issues].

Feature requests

Please put feature requests on our issue tracker [https://github.com/gbif/pygbif/issues].

Pull requests

When you submit a PR you’ll see a template that pops up - it’s reproduced
here.

	Provide a general summary of your changes in the Title

	Describe your changes in detail

	If the PR closes an issue make sure include e.g., fix #4 or similar,
or if just relates to an issue make sure to mention it like #4

	If introducing a new feature or changing behavior of existing
methods/functions, include an example if possible to do in brief form

	Did you remember to include tests? Unless you’re changing docs/grammar,
please include new tests for your change

Writing tests

We’re using nose for testing. See the nose docs [http://nose.readthedocs.io/en/latest/] for help on
contributing to or writing tests.

Before running tests for the first time, you’ll need install pygbif
dependencies, but also nose and a couple other packages:

$ pip install -e .
$ pip install nose vcrpy coverage

The Makefile has a task for testing under Python 3:

$ make test

Code formatting

We’re using the Black [https://github.com/psf/black] formatter, so make sure you use that before
submitting code - there’s lots of text editor integrations, a command
line tool, etc.

Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for
everyone, regardless of level of experience, gender, gender identity and expression,
sexual orientation, disability, personal appearance, body size, race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or
imagery, derogatory comments or personal attacks, trolling, public or private harassment,
insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments,
commits, code, wiki edits, issues, and other contributions that are not aligned to this
Code of Conduct. Project maintainers who do not follow the Code of Conduct may be removed
from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by
opening an issue or contacting one or more of the project maintainers.

This Code of Conduct is adapted from the Contributor Covenant
(http:contributor-covenant.org), version 1.0.0, available at
http://contributor-covenant.org/version/1/0/0/

LICENSE

Copyright (C) 2019 Scott Chamberlain

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pygbif	

Index

 C
 | D
 | G
 | I
 | M
 | N
 | O
 | P
 | S
 | W

C

 	
 	caching() (in module pygbif)

 	count() (pygbif.occurrences method)

 	count_basisofrecord() (pygbif.occurrences method)

 	count_countries() (pygbif.occurrences method)

 	
 	count_datasets() (pygbif.occurrences method)

 	count_publishingcountries() (pygbif.occurrences method)

 	count_schema() (pygbif.occurrences method)

 	count_year() (pygbif.occurrences method)

D

 	
 	dataset_metrics() (pygbif.registry method)

 	dataset_search() (pygbif.registry method)

 	dataset_suggest() (pygbif.registry method)

 	datasets() (pygbif.registry method)

 	
 	download() (pygbif.occurrences method)

 	download_get() (pygbif.occurrences method)

 	download_list() (pygbif.occurrences method)

 	download_meta() (pygbif.occurrences method)

G

 	
 	get() (pygbif.occurrences method)

 	
 	get_fragment() (pygbif.occurrences method)

 	get_verbatim() (pygbif.occurrences method)

I

 	
 	installations() (pygbif.registry method)

M

 	
 	map() (pygbif.maps method)

 	
 	
 module

 	pygbif

N

 	
 	name_backbone() (pygbif.species method)

 	name_lookup() (pygbif.species method)

 	name_parser() (pygbif.species method)

 	
 	name_suggest() (pygbif.species method)

 	name_usage() (pygbif.species method)

 	networks() (pygbif.registry method)

 	nodes() (pygbif.registry method)

O

 	
 	organizations() (pygbif.registry method)

P

 	
 	
 pygbif

 	module

S

 	
 	search() (pygbif.occurrences method)

W

 	
 	wkt_rewind() (pygbif.utils method)

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 pygbif 0.6.3 documentation

