

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Change Log

The format is based on Keep a Changelog [http://keepachangelog.com/]
and this project adheres to Semantic Versioning [http://semver.org/].


[Unreleased]


Added


	Pipfile added for use with pipenv







Changed


	Minimum requirement changed to Python 3.6









0.2.0 - 2018-20-03


Added


	Moved the suggested BibTeX snippet into the CITATION
file [https://gitlab.com/FraME-projects/PyFraME/blob/master/CITATION]


	Added sodium and chloride charge and isotropic polarizability to
solvent embedding potential


	Added calcium, magnesium, potassium, zinc and bromine charge and
isotropic polarizability to solvent embedding potential


	New option to choose exclusion type for standard potentials,
currently it can be either ‘fragment’, which excludes all
interactions within a fragment, or ‘mfcc’, which is the MFCC type
exclusions.


	Added AMBER ff94 and ff03 standard potentials


	Improve element recognition


	Surplus charge of a region treated using MFCC is now redistributed
among all sites in the affected region, ensuring that the sum of
partial charges is equal to the formal charge of the region


	Added averaged lipid embedding parameters from S. Witzke et al.
J. Comput. Chem. 38 (2017) 601-611.







Fixed


	Fixed wrong asserts which would have caused errors if octopoles or
higher were requested


	All polarizabilities up to octopole-octopole are now present


	Errors when using CAM-B3LYP in serial Dalton calculations (which now
always use .DIRECT)


	Error when LD_LIBRARY_PATH environment variable was not set


	Fixed erroneous exclusion lists when different parts of a molecule,
e.g. protein, are placed in different regions


	Radius of Li, Na, Mg, K, and Ca (used in bond detection) adjusted to
the effective ionic radius by R. D. Shannon, Acta. Cryst. A32 (1976), 751


	Naming bug when adding hydrogen-link atoms where the donor-atom name
would erroneously have link appended to it







Changed


	Running the test suite now requires pytest (unittests can be run by typing pytest --pyargs pyframe)


	The default bond detection threshold factor has been set to 1.15 instead of 1.2


	Improved error message when there is a mismatch between the number of sites in
an output file compared to the number of sites in the fragment read in from input


	Default is now to first try to find a free communication port









0.1.1 - 2018-02-08


Changed


	There is now a check for empty output files from fragment
calculations to prevent deletion of subdirectories of failed
fragment calculations


	Now hydrogen caps between core region and other regions are always
used


	Efficiency-related changes:


	compute angles, distances, distance matrices using Numba jit
decorator (introduces Numba dependency and removes SciPy dependency)


	removed some unnecessary property decorators






	Refactored the atoms module (faster and safer)







Fixed


	Bug in MOLCAS LoProp (‘Fragment’ object has no attribute ‘xyz’)


	Using Dalton LoProp with multipole orders lower than two no longer
fails


	Bug in charge redistribution where negative surplus charge would not
be redistributed









0.1.0 - 2017-02-20


Added


	Initial version












          

      

      

    

  

    
      
          
            
  
PyFraME: Python framework for Fragment-based Multiscale Embedding calculations

Copyright (C) 2017-2018  Jógvan Magnus Haugaard Olsen

PyFraME is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

PyFraME is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with PyFraME.  If not, see https://www.gnu.org/licenses/.

[image: PIPELINE] [https://gitlab.com/FraME-projects/PyFraME/commits/master]
[image: COVERAGE] [https://gitlab.com/FraME-projects/PyFraME/commits/master]
[image: License: GPL v3+] [https://www.gnu.org/licenses/gpl-3.0]
[image: Python] [https://www.python.org/downloads/]
[image: PyPI] [https://badge.fury.io/py/PyFraME]
[image: DOI] [https://doi.org/10.5281/zenodo.775113]


Description

PyFraME is a Python package that provides a framework for fragment-based
multiscale embedding calculations.
The aim is to automatize the workflow of such calculations in a flexible
manner.

The typical workflow is as follows:


	a part of the total molecular system is chosen as the core region which is
typically treated a high level of theory


	the remainder is split into a number of regions each of which can be
treated at different levels of theory


	each region (except the core) is divided into fragments that consist of
either small molecules or parts of larger molecules that have been
fragmented into smaller computationally manageable fragments


	a calculation is run on each fragment to obtain fragment parameters
(if necessary)


	all fragment parameters of all regions are assembled and constitute the
embedding potential


	a final calculation is run on the core region using the embedding potential
to model the effect from the remainder of the molecular system




The PyFraME package can be used to automatize steps 1-5.




How to cite

To cite PyFraME please use a format similar to the following

J. M. H. Olsen, PyFraME: Python framework for Fragment-based Multiscale
Embedding (version 0.2.0), 2018, https://doi.org/10.5281/zenodo.1443314

where the version and DOI should correspond to the actual version that was
used.
Note that the DOI 10.5281/zenodo.775113 [https://doi.org/10.5281/zenodo.775113]
represents all versions, and will always resolve to the latest one.
A possible BibTeX entry can be found in the
CITATION [https://gitlab.com/FraME-projects/PyFraME/blob/master/CITATION]
file.
Alternatively, BibTeX and other formats can be generated by
Zenodo [https://doi.org/10.5281/zenodo.775113].




Requirements

To use PyFraME you need:


	Python 3 [http://www.python.org/downloads/]


	NumPy [http://www.numpy.org/]


	Numba [https://numba.pydata.org/]




For certain functionality you will need one or more of the following:


	Dalton [http://www.daltonprogram.org/]


	LoProp for Dalton [https://github.com/vahtras/loprop]


	Molcas 8 [http://www.molcas.org/]




To run the test suite you need:


	pytest [http://pytest.org]







Installation

The PyFraME package can be installed from
PyPI [https://pypi.org/project/PyFraME/] directly using
pip [https://pip.pypa.io/en/stable/]

pip install [--user] PyFraME





This will also install required dependencies (see above) unless they are
already satisfied.
The optional --user argument will install PyFraME in a location that is only
accessible by the user.
It is needed unless you have root privileges and want to install PyFraME in a
location accessible by all users, or you are working in a virtual environment.
If you are using Pipenv [https://pipenv.readthedocs.io/en/latest/] to manage
virtual environments, then the following command will install PyFraME and its
dependencies:

pipenv install PyFraME





The entire source including history can be found at
GitLab [https://gitlab.com/FraME-projects/PyFraME].
All releases are also deposited at
Zenodo [https://doi.org/10.5281/zenodo.775113].




Testing

To execute the full test suite (unit tests and integration tests) run

pytest





from the PyFraME root directory, or, if you installed from PyPI, the
unit tests can be executed by typing

pytest --pyargs pyframe








Issues

Please report issues here [https://gitlab.com/FraME-projects/PyFraME/issues].







          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/up.png





_static/up-pressed.png





