
pyfomod Documentation
Release 1.2.1

Daniel Nunes

Nov 02, 2019

Contents

1 Root 3

2 Conditions 5

3 Files 7

4 Pages 9

5 Page 11

6 Group 13

7 Option 15

8 Flags 17

9 Type 19

10 FilePatterns 21

11 Validation 23

12 Fomod Installer 27

13 Low-Level Access 29
13.1 Ignored Tags and Attributes . 29

Index 31

i

ii

pyfomod Documentation, Release 1.2.1

pyfomod is a high-level fomod library written in python. No prior knowledge of xml or fomod itself is required.

To start off, we’ll import pyfomod as usual:

>>> import pyfomod

Fomod installers are packaged under a fomod subfolder and include a moduleconfig.xml file and optionally a info.xml
file.

parse(source[, warnings], lineno=False)
This function is used to parse either a package or loose files:

>>> os.listdir("package")
['fomod', 'readme.txt', 'content']
>>> os.listdir("package/fomod")
['info.xml', 'moduleconfig.xml']
>>> root = pyfomod.parse("package")

>>> payload = ("package/fomod/info.xml", "package/fomod/moduleconfig.xml")
>>> root = pyfomod.parse(payload)

As seen above, source can be either a path-like object with the path to a package root or a tuple of
(path/to/info.xml, path/to/moduleconfig.xml). If info.xml does not exist, None should be passed as its path.

warnings is used to collect warnings related to parsing. See Validation for more information on this.

lineno is a boolean on whether to load the line numbers of the original package into each element of the tree.
This is by default False due to the increased performance burden this option places on the parser.

The returned root is the root of the fomod tree, see Root.

pyfomod can safely ignore most errors present in the physical files. Please note, however, that pyfomod does not
support comments and they are not parsed at all.

write(root, path)
When you are finished reading and/or modifying your tree, write it:

>>> pyfomod.write(root, "package")

root should be the Root of the fomod tree you’re writing. path takes the same arguments types as source in
parse().

Contents 1

https://docs.python.org/3/glossary.html#term-path-like-object

pyfomod Documentation, Release 1.2.1

2 Contents

CHAPTER 1

Root

class Root
Represents the root of the entire tree. An instance of this class is used to represent the entire tree in
parse()/write() functions.

Users looking to create a new tree should intantiate this class.

All the following properties are read/write.

name
A string with the package’s name.

image
A string with the path to the package’s image.

author
A string with the package’s author.

version
A string with the package’s version.

description
A string with the package’s description.

website
A string with the package’s website.

conditions
A Conditions instance where it is checked whether the installer can start.

files
A Files instance that contains files/folders that will always be installed.

pages
A Pages instance that holds a list of installer pages.

file_patterns
A FilePatterns instance that contains a list of patterns that install files based on conditions.

3

pyfomod Documentation, Release 1.2.1

installer([path[, game_version[, file_type]]])
A shortcut to creating an installer for this tree. For information on the arguments, see Installer.

4 Chapter 1. Root

CHAPTER 2

Conditions

class Conditions
This class contains a list of codnitions. The fulfillment of these conditions leads to some action described in the
containing class.

There are four possible conditions:

• flag condition - checks whether a flag has a specific value. See Flags;

• file condition - checks whether a file is missing or otherwise;

• version condition - checks whether the game is at least the specified version;

• nested conditions - a Conditions objectm allowing for nested conditions.

Instances of this class are dict-like objects, but hashable. Conditions held by the instance are defined by the key
and value used.

To add a version condition, the key must be None and the value a string with the version:

>>> conditions[None] = "1.0.0"

To add a flag condition, the key is a string with the flag name and value is a string with flag value:

>>> conditions["flag_name"] = "flag_value"

To add a file condition, the key is a string with the file path and the value is an enum FileType - this enum has
ACTIVE, INACTIVE and MISSING:

>>> conditions["file_path"] = FileType.MISSING

Finally, to add a nested condition, the key is the object and the value is None:

>>> nested = Conditions()
>>> conditions[nested] = None

5

pyfomod Documentation, Release 1.2.1

type
This property accepts the enum ConditionType. This enum has either AND and OR. If AND, then all the
conditions must be true to fulfill this instance, if OR only one condition needs to be true.

6 Chapter 2. Conditions

CHAPTER 3

Files

class Files
The Files class is a container of files and folders to install. It produces dict-like objects that map file/folder
sources to destination folder paths relative to the target folder (this target folder may vary per game/manager).

To add a file is simple:

>>> files["file_path"] = "dest"

to add a folder, however, you must add a trailing slash to the key:

>>> files["folder_path/"] = "dest"

7

pyfomod Documentation, Release 1.2.1

8 Chapter 3. Files

CHAPTER 4

Pages

class Pages
This class produces list-like objects that hold Page instances.

order
This controls the order in which the Page objects appear. This property is an enum, Order, that has the
values ASCENDING, DESCENDING and EXPLICIT. This orders the pages in this object according to
their name. To note that only EXPLICIT preserves the order in this list.

9

pyfomod Documentation, Release 1.2.1

10 Chapter 4. Pages

CHAPTER 5

Page

class Page
This class produces list-like objects of Group instances.

These objects are the pages the user will eventually see when installing the mod.

name
A string with the page’s name/title.

order
See Pages.order.

11

pyfomod Documentation, Release 1.2.1

12 Chapter 5. Page

CHAPTER 6

Group

class Group
Another list-like class, of Option objects. Each of this class’ instances represent a named section of a Page.

name
A string with the group’s name/title.

type
This property controls which options the user may select in this section. It is controlled via enum, Group-
Type, and each value is quite self-explanatory: ALL, ANY, ATLEASTONE, ATMOSTONE, EXACTLYONE.

order
See Pages.order.

13

pyfomod Documentation, Release 1.2.1

14 Chapter 6. Group

CHAPTER 7

Option

class Option
This class represents a single option the user can select.

name
A string with the option’s short text.

description
A string with the option’s long description.

image
A string with a relative path to an image.

files
A Files object with the files/folders to install if this option is selected.

flags
A Flags object with the flags to set if this option is selected.

type
This property controls the option type. It’s usually an OptionType enum (and is recommended) which sup-
ports these values: OPTIONAL, REQUIRED, RECOMMENDED, NOTUSABLE or COULDBEUSABLE.

This property could also be a Type object, which allows for more complex type selection based on condi-
tions.

15

pyfomod Documentation, Release 1.2.1

16 Chapter 7. Option

CHAPTER 8

Flags

class Flags
This class produces dict-like objects that map flag names to values:

>>> flags = pyfomod.Flags()
>>> flags['name'] = 'value'
>>> dict(flags)
{'name': 'value'}

17

pyfomod Documentation, Release 1.2.1

18 Chapter 8. Flags

CHAPTER 9

Type

class Type
This class produces dict-like objects that map Conditions to OptionType (see Option.type) values. This
class is used to find an appropriate type for an option - each pair’s conditions are evaluated until one is met,
which is the type used. If no conditions are evaluated to true, default is used as the option type.

default
The default OptionType (see Option.type) used in case no other suitable types are found.

19

pyfomod Documentation, Release 1.2.1

20 Chapter 9. Type

CHAPTER 10

FilePatterns

class FilePatterns
This class produces dict-like objects that map Conditions to Files. This class is used after Pages when
installing and installs the corresponding files for any conditions that were met.

21

pyfomod Documentation, Release 1.2.1

22 Chapter 10. FilePatterns

CHAPTER 11

Validation

pyfomod allows the user to validate the fomod tree - it checks for common mistakes and incorrect values that, while
valid, may lead to unexpected behaviour during user installation.

>>> with open("example/fomod/moduleconfig.xml", "r") as fp:
... print(fp.read())
...
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
→˓xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">
<moduleName></moduleName>
<requiredInstallFiles>

<file/>
</requiredInstallFiles>
</config>

You can check for warnings during parsing by passing a list to parse():

>>> warnings = []
>>> pyfomod.parse("example", warnings)
<pyfomod.fomod.Root at 0x1f98dde2a88>
>>> for warning in warnings:
... print(f"Title: {warning.title}")
... print(f"Message: {warning.msg}")
... print(f"Critical: {warning.critical}\n")
...
Title: Missing Source Attribute
Message: The 'source' attribute on the 'file' tag is required. This tag will be
→˓skipped.
Critical: True

You can also check for warnings during runtime by calling the validate() method on any fomod object. Note that
the possible errors produced in these two situations are different, so if you want to find every possible warning be sure
to use both:

23

pyfomod Documentation, Release 1.2.1

>>> root = pyfomod.parse("example")
>>> for warning in root.validate():
... print(f"Title: {warning.title}")
... print(f"Message: {warning.msg}")
... print(f"Critical: {warning.critical}\n")
...
Title: Missing Installer Name
Message: This fomod does not have a name.
Critical: False

Title: Empty Fomod Tree
Message: This fomod is empty, nothing will be installed.
Critical: False

validate(**callbacks)
This method validates the object and all its children, recursively. It returns a list of ValidationWarning
with the errors it found.

The callbacks argument is a dict that maps strings to function objects. The keys of this dict should be pyfomod
class names and the function objects should take a single argument - the instance the function is being run on -
and return a list of ValidationWarning objects.

This argument is useful for adding more warnings to check for or even for running an arbitrary function recur-
sively on the tree:

>>> # this callback will create a warning for all 'moduleName' tags
>>> def example_callback(instance):
... title = "Example Title"
... msg = "This is an example validation message!"
... return [pyfomod.ValidationWarning(title, msg, instance)]
...
>>> root = pyfomod.parse("example")
>>> for warning in root.validate(Name=[example_callback]):
... print(f"Title: {warning.title}")
... print(f"Message: {warning.msg}")
... print(f"Critical: {warning.critical}\n")
...
Title: Example Title
Message: This is an example validation message!
Critical: False

Title: Missing Installer Name
Message: This fomod does not have a name.
Critical: False

Title: Empty Fomod Tree
Message: This fomod is empty, nothing will be installed.
Critical: False

class ValidationWarning
The base class of all pyfomod warnings. Each instance of this class refers to an error present in the fomod tree.

title
A string with a suitable title.

msg
A string describing the error.

elem

24 Chapter 11. Validation

pyfomod Documentation, Release 1.2.1

The fomod object this error refers to.

critical
A boolean on whether this error refers to something that may interfere with the installation process or is
merely aesthetic.

Each warning returned by pyfomod is a specific subclass to allow for better filtering.

class warnings.InvalidEnumWarning
Critical warning for when the fomod file has an attribute that evaluates to an enum, like operator attribute in the
dependencies tag, and the value of this attribute does not match any of the possibilities.

class warnings.DefaultAttributeWarning
Warning for when an attribute is required but a sensible default can be used.

class warnings.RequiredAttributeWarning
Warning for when an attribute is required but a default cannot be found for it (such as file paths). This warning
occurs during parsing and so this tag will not be parsed.

class warnings.CommentsPresentWarning
Warning for when comments exists in the fomod files. This exists because those comments will be deleted if the
parsed tree is written.

class warnings.InvalidSyntaxWarning
Warning for generic fomod syntax errors that are not better covered by other warnings.

class warnings.MissingInfoWarning
Warning for when there is no info.xml file.

class warnings.EmptyTreeWarning
Warning for when a tree is empty - meaning nothing will be installed.

class warnings.ImpossibleFlagWarning
Warning for when there is a flag dependency for a flag that is never created.

class warnings.InstallerNameWarning
Warning for fomod trees without a name.

class warnings.EmptyConditionsWarning
Warning for empty conditions - these will not be written to prevent errors.

class warnings.VersionDependencyWarning
Warning for version dependencies that do not specify a version. These will not be written to prevent errors.

class warnings.FileDependencyWarning
Warning for file dependencies that do not specify a file to depend on. These will not be written to prevent errors.

class warnings.UselessFlagsWarning
Warning for flag dependencies used in moduleDependencies - these can never be created and so will always fail.

class warnings.EmptySourceWarning
Warning for files or folders that have no source path - this may lead to problems when installing.

class warnings.MissingDestinationWarning
Warning for files or folders that do not explicit specify the destination path. When omitted, the destination is
assumed to be the same as the source path.

class warnings.OrderWarning
The order attribute in the installSteps, optionalFileGroups and plugins tags defines the order in which their
children appear in the installer. Any value but Explicit will reorder the children to something different than the
user specified, which is generally not intended. An omitted order attribute defaults to Ascending.

25

pyfomod Documentation, Release 1.2.1

class warnings.EmptyPageWarning
Warning for when there are pages without groups.

class warnings.PageNameWarning
Pages without name.

class warnings.EmptyGroupWarning
Warning for when there are groups without options.

class warnings.GroupNameWarning
Groups without name.

class warnings.AtLeastOneWarning
A group that has the type SelectAtLeastOne but none of the options are selectable.

class warnings.ExactlyOneMissingWarning
A group that has the type SelectExactlyOne but none of the options are selectable.

class warnings.ExactlyOneRequiredWarning
A group that has the type SelectExactlyOne but at least two of the options are required.

class warnings.AtMostOneWarning
A group that has the type SelectAtMostOne but at least two of the options are required.

class warnings.OptionNameWarning
Options without name.

class warnings.OptionDescriptionWarning
Options without description.

class warnings.EmptyOptionWarning
Options that don’t install files or set flags and therefore are useless.

class warnings.EmptyTypeWarning
A dependencyType tag that has no children and therefore cannot set a type.

26 Chapter 11. Validation

CHAPTER 12

Fomod Installer

New in version 1.0.0.

You can start a non-gui installer from pyfomod. This will not actually install any files or modify your filesystem in any
way. It follows the same format and conventions as the rest of pyfomod with one notable exception - the priority xml
attribute that is listed as ignored in Ignored Tags and Attributes is used in determining which files to install.

You can continue to freely modify the fomod tree you passed to the installer with the exception of removing objects.
These changes will be reflected live. In order to ensure maximum compatibility, you should use the objects the
installer returns from its Installer.next() and Installer.previous()methods instead of Page, Group
or Option - these are read-only equivalent to the corresponding classes in pyfomod.

To start, create an instance of Installer.

class Installer(root[, path[, game_version[, file_type]]])
Each instance of this class represents an ongoing installation. You can instance as many of these objects as you
want, but keep in mind that modifications to a tree will be reflected on all installers that share them.

root is a required argument that represents the root of the fomod tree. You can pass a Root object which will be
used directly by the installer. Any other than this will be passed along to parse() to produce a Root object.

If path is given, it will act as the root path for the fomod tree. Source lookups will be done using this path,
although pyfomod will never modify any files. These lookups will allow files() to provide the user with a
complete dictionary of file sources and destinations, sorted acording to priority (meaning folders will be walked
recursively for files and empty folders). Otherwise only logical path computations will be made.

If path is not given but a string is passed as root then this will be assumed to be a root path for the fomod tree.

game_version should be a string with the current version of the game you’re running this installer for.

file_type should be a function object that takes in a file name and returns a FileType concerning the file’s
presence in the target folder.

During instancing of this class, if the conditions in Root.conditions are not met, a FailedCondition
exception might be raised. To get the first visible page, run next() with no arguments.

next([selected_options])
Use this method to get the next page of the installer. Pass a list of selected options as selected_options.

27

pyfomod Documentation, Release 1.2.1

This will return an InstallerPage instance.

This returns None when the installer is finished.

previous()
Use this method to return to a previous page. Returns a tuple of (InstallerPage,
[previously_selected_options]).

This returns None when the installer is at the start.

files()
Returns a dictionary that maps file sources (strings) to file destinations (strings). If path is provided to
the installer in a manner described above then actual files (or folders if they are empty) are used in the
deictionary, otherwise only logical operations are made with the folders in the fomod tree.

This should be called once the installer is finished but can be called at any time.

flags()
Returns a dictionary that maps flag values (strings) to current flag values (strings). Although this does not
impact the installation the user may debug installers by calling this during the installation.

28 Chapter 12. Fomod Installer

CHAPTER 13

Low-Level Access

Although pyfomod is a high-level library all data is preserved and is accessible through a private interface. This access
is not recommended, may break pyfomod’s normal use if mishandled and may change at any point with no deprecation
or grace period.

All classes, regardless of whether they’re mentioned above or referred here as “hidden”, can be validated individually
or written to a string via the to_string method.

All classes used in pyfomod that have a corresponding xml element hold data in similar ways:

• All initial attributes when parsing are stored in self._attrib - these may be overwritten when serializing the
object;

• All unused children are stored in self._children - this is a dictionary of “tag” -> ({attribute dictionary}, “text”)

• The line number of the original element is stored in self.lineno if the initial parse() function was passed the
keyword argument lineno=True. Otherwise, self.lineno is None

The info.xml file’s root is stored apart from moduleconfig.xml’s root, at root._info, where root is the object returned
by parse(). Since there is no consensus on what the info.xml file should contain or even the format/schema,
pyfomod assumes the user knows what it’s loading and will respect the tag’s case. The root._info object belongs to
the Info class. This class has two methods that handle extracting and modifying information on this file: get_text and
set_text. These assume the information is stored in the text of children of the <fomod> root element and search for a
case-insensitive tag. The user is free to extract or modify information using the _attrib and _children attributes in the
object.

13.1 Ignored Tags and Attributes

Some of the tags and attributes present in the fomod schema are ignored by the API both because they’re either not
very useful or have fallen out of use or in order to streamline user experience.

These are not removed or lost however, they’re both accessible as described above.

The following tags are ignored:

• fommDependency

29

pyfomod Documentation, Release 1.2.1

The following attributes are ignored:

• position, colour - [moduleName]

• showImage, showFade, height - [moduleImage]

• alwaysInstall, installIfUsable, priority - [file, folder]

30 Chapter 13. Low-Level Access

Index

A
author (Root attribute), 3

C
Conditions (built-in class), 5
conditions (Root attribute), 3
critical (ValidationWarning attribute), 25

D
default (Type attribute), 19
description (Option attribute), 15
description (Root attribute), 3

E
elem (ValidationWarning attribute), 24

F
file_patterns (Root attribute), 3
FilePatterns (built-in class), 21
Files (built-in class), 7
files (Option attribute), 15
files (Root attribute), 3
files() (Installer method), 28
Flags (built-in class), 17
flags (Option attribute), 15
flags() (Installer method), 28

G
Group (built-in class), 13

I
image (Option attribute), 15
image (Root attribute), 3
Installer (built-in class), 27
installer() (Root method), 3

M
msg (ValidationWarning attribute), 24

N
name (Group attribute), 13
name (Option attribute), 15
name (Page attribute), 11
name (Root attribute), 3
next() (Installer method), 27

O
Option (built-in class), 15
order (Group attribute), 13
order (Page attribute), 11
order (Pages attribute), 9

P
Page (built-in class), 11
Pages (built-in class), 9
pages (Root attribute), 3
parse() (built-in function), 1
previous() (Installer method), 28

R
Root (built-in class), 3

T
title (ValidationWarning attribute), 24
Type (built-in class), 19
type (Conditions attribute), 5
type (Group attribute), 13
type (Option attribute), 15

V
validate() (built-in function), 24
ValidationWarning (built-in class), 24
version (Root attribute), 3

W
warnings.AtLeastOneWarning (built-in class),

26
warnings.AtMostOneWarning (built-in class), 26

31

pyfomod Documentation, Release 1.2.1

warnings.CommentsPresentWarning (built-in
class), 25

warnings.DefaultAttributeWarning (built-in
class), 25

warnings.EmptyConditionsWarning (built-in
class), 25

warnings.EmptyGroupWarning (built-in class),
26

warnings.EmptyOptionWarning (built-in class),
26

warnings.EmptyPageWarning (built-in class), 25
warnings.EmptySourceWarning (built-in class),

25
warnings.EmptyTreeWarning (built-in class), 25
warnings.EmptyTypeWarning (built-in class), 26
warnings.ExactlyOneMissingWarning (built-

in class), 26
warnings.ExactlyOneRequiredWarning

(built-in class), 26
warnings.FileDependencyWarning (built-in

class), 25
warnings.GroupNameWarning (built-in class), 26
warnings.ImpossibleFlagWarning (built-in

class), 25
warnings.InstallerNameWarning (built-in

class), 25
warnings.InvalidEnumWarning (built-in class),

25
warnings.InvalidSyntaxWarning (built-in

class), 25
warnings.MissingDestinationWarning

(built-in class), 25
warnings.MissingInfoWarning (built-in class),

25
warnings.OptionDescriptionWarning (built-

in class), 26
warnings.OptionNameWarning (built-in class),

26
warnings.OrderWarning (built-in class), 25
warnings.PageNameWarning (built-in class), 26
warnings.RequiredAttributeWarning (built-

in class), 25
warnings.UselessFlagsWarning (built-in

class), 25
warnings.VersionDependencyWarning (built-

in class), 25
website (Root attribute), 3
write() (built-in function), 1

32 Index

	Root
	Conditions
	Files
	Pages
	Page
	Group
	Option
	Flags
	Type
	FilePatterns
	Validation
	Fomod Installer
	Low-Level Access
	Ignored Tags and Attributes

	Index

