

 pyfomod is a high-level fomod library written in python. No prior knowledge of xml
or fomod itself is required.

To start off, we’ll import pyfomod as usual:

>>> import pyfomod

Parsing and Writing

Fomod installers are packaged under a fomod subfolder and include a
moduleconfig.xml file and optionally a info.xml file.

	
parse(source, [warnings,]lineno=False)

	This function is used to parse either a package or loose files:

>>> os.listdir("package")
['fomod', 'readme.txt', 'content']
>>> os.listdir("package/fomod")
['info.xml', 'moduleconfig.xml']
>>> root = pyfomod.parse("package")

>>> payload = ("package/fomod/info.xml", "package/fomod/moduleconfig.xml")
>>> root = pyfomod.parse(payload)

As seen above, source can be either a
path-like object [https://docs.python.org/3/glossary.html#term-path-like-object]
with the path to a package root or a tuple of (path/to/info.xml,
path/to/moduleconfig.xml). If info.xml does not exist, None should be
passed as its path.

warnings is used to collect warnings related to parsing. See Validation
for more information on this.

lineno is a boolean on whether to load the line numbers of the original package
into each element of the tree. This is by default False due to the increased
performance burden this option places on the parser.

The returned root is the root of the fomod tree, see Root.

pyfomod can safely ignore most errors present in the physical files. Please note,
however, that pyfomod does not support comments and they are not parsed at all.

	
write(root, path)

	When you are finished reading and/or modifying your tree, write it:

>>> pyfomod.write(root, "package")

root should be the Root of the fomod tree you’re writing. path
takes the same arguments types as source in parse().

Root

	
class Root

	Represents the root of the entire tree. An instance of this class is used to
represent the entire tree in parse()/write() functions.

Users looking to create a new tree should intantiate this class.

All the following properties are read/write.

	
name

	A string with the package’s name.

	
image

	A string with the path to the package’s image.

	
author

	A string with the package’s author.

	
version

	A string with the package’s version.

	
description

	A string with the package’s description.

	
website

	A string with the package’s website.

	
conditions

	A Conditions instance where it is checked whether the installer can
start.

	
files

	A Files instance that contains files/folders that will always be
installed.

	
pages

	A Pages instance that holds a list of installer pages.

	
file_patterns

	A FilePatterns instance that contains a list of patterns that
install files based on conditions.

	
installer([path[, game_version[, file_type]]])

	A shortcut to creating an installer for this tree. For information on the
arguments, see Installer.

Conditions

	
class Conditions

	This class contains a list of codnitions. The fulfillment of these conditions leads
to some action described in the containing class.

There are four possible conditions:

	flag condition - checks whether a flag has a specific value. See Flags;

	file condition - checks whether a file is missing or otherwise;

	version condition - checks whether the game is at least the specified version;

	nested conditions - a Conditions objectm allowing for nested conditions.

Instances of this class are dict-like objects, but hashable. Conditions held by the
instance are defined by the key and value used.

To add a version condition, the key must be None and the value a string with the
version:

>>> conditions[None] = "1.0.0"

To add a flag condition, the key is a string with the flag name and value is a string
with flag value:

>>> conditions["flag_name"] = "flag_value"

To add a file condition, the key is a string with the file path and the value is an
enum FileType - this enum has ACTIVE, INACTIVE and MISSING:

>>> conditions["file_path"] = FileType.MISSING

Finally, to add a nested condition, the key is the object and the value is None:

>>> nested = Conditions()
>>> conditions[nested] = None

	
type

	This property accepts the enum ConditionType. This enum has either AND and
OR. If AND, then all the conditions must be true to fulfill this instance,
if OR only one condition needs to be true.

Files

	
class Files

	The Files class is a container of files and folders to install. It produces
dict-like objects that map file/folder sources to destination folder paths relative
to the target folder (this target folder may vary per game/manager).

To add a file is simple:

>>> files["file_path"] = "dest"

to add a folder, however, you must add a trailing slash to the key:

>>> files["folder_path/"] = "dest"

Pages

	
class Pages

	This class produces list-like objects that hold Page instances.

	
order

	This controls the order in which the Page objects appear.
This property is an enum, Order, that has the values ASCENDING,
DESCENDING and EXPLICIT.
This orders the pages in this object according to their name. To note
that only EXPLICIT preserves the order in this list.

Page

	
class Page

	This class produces list-like objects of Group instances.

These objects are the pages the user will eventually see when installing the mod.

	
name

	A string with the page’s name/title.

	
order

	See Pages.order.

Group

	
class Group

	Another list-like class, of Option objects. Each of this class’
instances represent a named section of a Page.

	
name

	A string with the group’s name/title.

	
type

	This property controls which options the user may select in this section.
It is controlled via enum, GroupType, and each value is quite
self-explanatory: ALL, ANY, ATLEASTONE, ATMOSTONE, EXACTLYONE.

	
order

	See Pages.order.

Option

	
class Option

	This class represents a single option the user can select.

	
name

	A string with the option’s short text.

	
description

	A string with the option’s long description.

	
image

	A string with a relative path to an image.

	
files

	A Files object with the files/folders to install if this option
is selected.

	
flags

	A Flags object with the flags to set if this option is selected.

	
type

	This property controls the option type. It’s usually an OptionType enum
(and is recommended) which supports these values: OPTIONAL, REQUIRED,
RECOMMENDED, NOTUSABLE or COULDBEUSABLE.

This property could also be a Type object, which allows for more
complex type selection based on conditions.

Flags

	
class Flags

	This class produces dict-like objects that map flag names to values:

>>> flags = pyfomod.Flags()
>>> flags['name'] = 'value'
>>> dict(flags)
{'name': 'value'}

Type

	
class Type

	This class produces dict-like objects that map Conditions to
OptionType (see Option.type) values. This class is used to find an
appropriate type for an option - each pair’s conditions are evaluated until one is
met, which is the type used. If no conditions are evaluated to true,
default is used as the option type.

	
default

	The default OptionType (see Option.type) used in case no other
suitable types are found.

FilePatterns

	
class FilePatterns

	This class produces dict-like objects that map Conditions to
Files. This class is used after Pages when installing
and installs the corresponding files for any conditions that were met.

Validation

pyfomod allows the user to validate the fomod tree - it checks for common
mistakes and incorrect values that, while valid, may lead to unexpected behaviour
during user installation.

>>> with open("example/fomod/moduleconfig.xml", "r") as fp:
... print(fp.read())
...
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">
<moduleName></moduleName>
<requiredInstallFiles>
 <file/>
</requiredInstallFiles>
</config>

You can check for warnings during parsing by passing a list to parse():

>>> warnings = []
>>> pyfomod.parse("example", warnings)
<pyfomod.fomod.Root at 0x1f98dde2a88>
>>> for warning in warnings:
... print(f"Title: {warning.title}")
... print(f"Message: {warning.msg}")
... print(f"Critical: {warning.critical}\n")
...
Title: Missing Source Attribute
Message: The 'source' attribute on the 'file' tag is required. This tag will be skipped.
Critical: True

You can also check for warnings during runtime by calling the validate() method
on any fomod object. Note that the possible errors produced in these two situations are
different, so if you want to find every possible warning be sure to use both:

>>> root = pyfomod.parse("example")
>>> for warning in root.validate():
... print(f"Title: {warning.title}")
... print(f"Message: {warning.msg}")
... print(f"Critical: {warning.critical}\n")
...
Title: Missing Installer Name
Message: This fomod does not have a name.
Critical: False

Title: Empty Fomod Tree
Message: This fomod is empty, nothing will be installed.
Critical: False

	
validate(**callbacks)

	This method validates the object and all its children, recursively. It returns a
list of ValidationWarning with the errors it found.

The callbacks argument is a dict that maps strings to function objects. The keys
of this dict should be pyfomod class names and the function objects should take a
single argument - the instance the function is being run on - and return a list of
ValidationWarning objects.

This argument is useful for adding more warnings to check for or even for running
an arbitrary function recursively on the tree:

>>> # this callback will create a warning for all 'moduleName' tags
>>> def example_callback(instance):
... title = "Example Title"
... msg = "This is an example validation message!"
... return [pyfomod.ValidationWarning(title, msg, instance)]
...
>>> root = pyfomod.parse("example")
>>> for warning in root.validate(Name=[example_callback]):
... print(f"Title: {warning.title}")
... print(f"Message: {warning.msg}")
... print(f"Critical: {warning.critical}\n")
...
Title: Example Title
Message: This is an example validation message!
Critical: False

Title: Missing Installer Name
Message: This fomod does not have a name.
Critical: False

Title: Empty Fomod Tree
Message: This fomod is empty, nothing will be installed.
Critical: False

	
class ValidationWarning

	The base class of all pyfomod warnings.
Each instance of this class refers to an error present in the fomod tree.

	
title

	A string with a suitable title.

	
msg

	A string describing the error.

	
elem

	The fomod object this error refers to.

	
critical

	A boolean on whether this error refers to something that may interfere with
the installation process or is merely aesthetic.

Each warning returned by pyfomod is a specific subclass to allow
for better filtering.

	
class warnings.InvalidEnumWarning

	Critical warning for when the fomod file has an attribute that evaluates
to an enum, like operator attribute in the dependencies tag, and the
value of this attribute does not match any of the possibilities.

	
class warnings.DefaultAttributeWarning

	Warning for when an attribute is required but a sensible default can be
used.

	
class warnings.RequiredAttributeWarning

	Warning for when an attribute is required but a default cannot be found
for it (such as file paths). This warning occurs during parsing and so
this tag will not be parsed.

	
class warnings.CommentsPresentWarning

	Warning for when comments exists in the fomod files. This exists because
those comments will be deleted if the parsed tree is written.

	
class warnings.InvalidSyntaxWarning

	Warning for generic fomod syntax errors that are not better covered by other
warnings.

	
class warnings.MissingInfoWarning

	Warning for when there is no info.xml file.

	
class warnings.EmptyTreeWarning

	Warning for when a tree is empty - meaning nothing will be installed.

	
class warnings.ImpossibleFlagWarning

	Warning for when there is a flag dependency for a flag that is never created.

	
class warnings.InstallerNameWarning

	Warning for fomod trees without a name.

	
class warnings.EmptyConditionsWarning

	Warning for empty conditions - these will not be written to prevent errors.

	
class warnings.VersionDependencyWarning

	Warning for version dependencies that do not specify a version.
These will not be written to prevent errors.

	
class warnings.FileDependencyWarning

	Warning for file dependencies that do not specify a file to depend on.
These will not be written to prevent errors.

	
class warnings.UselessFlagsWarning

	Warning for flag dependencies used in moduleDependencies - these can never
be created and so will always fail.

	
class warnings.EmptySourceWarning

	Warning for files or folders that have no source path - this may lead to
problems when installing.

	
class warnings.MissingDestinationWarning

	Warning for files or folders that do not explicit specify the destination path.
When omitted, the destination is assumed to be the same as the source path.

	
class warnings.OrderWarning

	The order attribute in the installSteps, optionalFileGroups and plugins
tags defines the order in which their children appear in the installer. Any
value but Explicit will reorder the children to something different than the
user specified, which is generally not intended. An omitted order attribute
defaults to Ascending.

	
class warnings.EmptyPageWarning

	Warning for when there are pages without groups.

	
class warnings.PageNameWarning

	Pages without name.

	
class warnings.EmptyGroupWarning

	Warning for when there are groups without options.

	
class warnings.GroupNameWarning

	Groups without name.

	
class warnings.AtLeastOneWarning

	A group that has the type SelectAtLeastOne but none of the options
are selectable.

	
class warnings.ExactlyOneMissingWarning

	A group that has the type SelectExactlyOne but none of the options
are selectable.

	
class warnings.ExactlyOneRequiredWarning

	A group that has the type SelectExactlyOne but at least two of the
options are required.

	
class warnings.AtMostOneWarning

	A group that has the type SelectAtMostOne but at least two of the
options are required.

	
class warnings.OptionNameWarning

	Options without name.

	
class warnings.OptionDescriptionWarning

	Options without description.

	
class warnings.EmptyOptionWarning

	Options that don’t install files or set flags and therefore are useless.

	
class warnings.EmptyTypeWarning

	A dependencyType tag that has no children and therefore cannot set a type.

Fomod Installer

New in version 1.0.0.

You can start a non-gui installer from pyfomod. This will not actually install any
files or modify your filesystem in any way. It follows the same format and conventions
as the rest of pyfomod with one notable exception - the priority xml attribute
that is listed as ignored in Ignored Tags and Attributes is used in determining which files to
install.

You can continue to freely modify the fomod tree you passed to the installer with the
exception of removing objects. These changes will be reflected live. In order to
ensure maximum compatibility, you should use the objects the installer returns from its
Installer.next() and Installer.previous() methods instead of
Page, Group or Option - these are read-only
equivalent to the corresponding classes in pyfomod.

To start, create an instance of Installer.

	
class Installer(root[, path[, game_version[, file_type]]])

	Each instance of this class represents an ongoing installation. You can instance
as many of these objects as you want, but keep in mind that modifications to a tree
will be reflected on all installers that share them.

root is a required argument that represents the root of the fomod tree. You can
pass a Root object which will be used directly by the installer. Any other
than this will be passed along to parse() to produce a Root object.

If path is given, it will act as the root path for the fomod tree. Source lookups
will be done using this path, although pyfomod will never modify any files. These
lookups will allow files() to provide the user with a complete dictionary
of file sources and destinations, sorted acording to priority (meaning folders will
be walked recursively for files and empty folders). Otherwise only logical path
computations will be made.

If path is not given but a string is passed as root then this will be assumed to
be a root path for the fomod tree.

game_version should be a string with the current version of the game you’re running
this installer for.

file_type should be a function object that takes in a file name and returns a
FileType concerning the file’s presence in the target folder.

During instancing of this class, if the conditions in Root.conditions are
not met, a FailedCondition exception might be raised. To get the first visible
page, run next() with no arguments.

	
next([selected_options])

	Use this method to get the next page of the installer. Pass a list of selected
options as selected_options.

This will return an InstallerPage instance.

This returns None when the installer is finished.

	
previous()

	Use this method to return to a previous page. Returns a tuple of
(InstallerPage, [previously_selected_options]).

This returns None when the installer is at the start.

	
files()

	Returns a dictionary that maps file sources (strings) to file destinations
(strings). If path is provided to the installer in a manner described above
then actual files (or folders if they are empty) are used in the deictionary,
otherwise only logical operations are made with the folders in the fomod tree.

This should be called once the installer is finished but can be called at any
time.

	
flags()

	Returns a dictionary that maps flag values (strings) to current flag values
(strings). Although this does not impact the installation the user may debug
installers by calling this during the installation.

Low-Level Access

Although pyfomod is a high-level library all data is preserved and is accessible
through a private interface. This access is not recommended, may break pyfomod’s
normal use if mishandled and may change at any point with no deprecation or grace
period.

All classes, regardless of whether they’re mentioned above or referred here as “hidden”,
can be validated individually or written to a string via the to_string method.

All classes used in pyfomod that have a corresponding xml element hold data in similar
ways:

	All initial attributes when parsing are stored in self._attrib - these may be
overwritten when serializing the object;

	All unused children are stored in self._children - this is a dictionary of
“tag” -> ({attribute dictionary}, “text”)

	The line number of the original element is stored in self.lineno if the initial
parse() function was passed the keyword argument lineno=True. Otherwise,
self.lineno is None

The info.xml file’s root is stored apart from moduleconfig.xml’s root, at
root._info, where root is the object returned by parse(). Since there is
no consensus on what the info.xml file should contain or even the format/schema,
pyfomod assumes the user knows what it’s loading and will respect the tag’s case.
The root._info object belongs to the Info class. This class has two methods that
handle extracting and modifying information on this file: get_text and set_text.
These assume the information is stored in the text of children of the <fomod> root
element and search for a case-insensitive tag. The user is free to extract or modify
information using the _attrib and _children attributes in the object.

Ignored Tags and Attributes

Some of the tags and attributes present in the fomod schema are ignored by the API
both because they’re either not very useful or have fallen out of use or in order
to streamline user experience.

These are not removed or lost however, they’re both accessible as described above.

The following tags are ignored:

	fommDependency

The following attributes are ignored:

	position, colour - [moduleName]

	showImage, showFade, height - [moduleImage]

	alwaysInstall, installIfUsable, priority - [file, folder]

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | T
 | V
 | W

A

 	
 	author (Root attribute)

C

 	
 	Conditions (built-in class)

 	
 	conditions (Root attribute)

 	critical (ValidationWarning attribute)

D

 	
 	default (Type attribute)

 	
 	description (Option attribute)

 	(Root attribute)

E

 	
 	elem (ValidationWarning attribute)

F

 	
 	file_patterns (Root attribute)

 	FilePatterns (built-in class)

 	Files (built-in class)

 	files (Option attribute)

 	(Root attribute)

 	
 	files() (Installer method)

 	Flags (built-in class)

 	flags (Option attribute)

 	flags() (Installer method)

G

 	
 	Group (built-in class)

I

 	
 	image (Option attribute)

 	(Root attribute)

 	
 	Installer (built-in class)

 	installer() (Root method)

M

 	
 	msg (ValidationWarning attribute)

N

 	
 	name (Group attribute)

 	(Option attribute)

 	(Page attribute)

 	(Root attribute)

 	
 	next() (Installer method)

O

 	
 	Option (built-in class)

 	order (Group attribute)

 	(Page attribute)

 	(Pages attribute)

P

 	
 	Page (built-in class)

 	Pages (built-in class)

 	
 	pages (Root attribute)

 	parse() (built-in function)

 	previous() (Installer method)

R

 	
 	Root (built-in class)

T

 	
 	title (ValidationWarning attribute)

 	Type (built-in class)

 	
 	type (Conditions attribute)

 	(Group attribute)

 	(Option attribute)

V

 	
 	validate() (built-in function)

 	
 	ValidationWarning (built-in class)

 	version (Root attribute)

W

 	
 	warnings.AtLeastOneWarning (built-in class)

 	warnings.AtMostOneWarning (built-in class)

 	warnings.CommentsPresentWarning (built-in class)

 	warnings.DefaultAttributeWarning (built-in class)

 	warnings.EmptyConditionsWarning (built-in class)

 	warnings.EmptyGroupWarning (built-in class)

 	warnings.EmptyOptionWarning (built-in class)

 	warnings.EmptyPageWarning (built-in class)

 	warnings.EmptySourceWarning (built-in class)

 	warnings.EmptyTreeWarning (built-in class)

 	warnings.EmptyTypeWarning (built-in class)

 	warnings.ExactlyOneMissingWarning (built-in class)

 	warnings.ExactlyOneRequiredWarning (built-in class)

 	warnings.FileDependencyWarning (built-in class)

 	warnings.GroupNameWarning (built-in class)

 	
 	warnings.ImpossibleFlagWarning (built-in class)

 	warnings.InstallerNameWarning (built-in class)

 	warnings.InvalidEnumWarning (built-in class)

 	warnings.InvalidSyntaxWarning (built-in class)

 	warnings.MissingDestinationWarning (built-in class)

 	warnings.MissingInfoWarning (built-in class)

 	warnings.OptionDescriptionWarning (built-in class)

 	warnings.OptionNameWarning (built-in class)

 	warnings.OrderWarning (built-in class)

 	warnings.PageNameWarning (built-in class)

 	warnings.RequiredAttributeWarning (built-in class)

 	warnings.UselessFlagsWarning (built-in class)

 	warnings.VersionDependencyWarning (built-in class)

 	website (Root attribute)

 	write() (built-in function)

 nav.xhtml

 Table of Contents

 		
 Parsing and Writing

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

