
pyflight Documentation
Release 0.1.2

Volcyy

Aug 03, 2017

Contents

1 API Reference 3
1.1 Basic Configuration . 3
1.2 Making Requests . 3
1.3 Working with the Response . 7

2 Indices and tables 11

Python Module Index 13

i

ii

pyflight Documentation, Release 0.1.2

Contents:

Contents 1

pyflight Documentation, Release 0.1.2

2 Contents

CHAPTER 1

API Reference

This page shows the functions and classes exposed by pyflight. A lot of attributes wrap the required parameters for
the QPX API and thus result in documentation similiar to the one found on the official QPX Express API reference,
licensed under the Creative Commons Attribution 3.0 License.

Basic Configuration

pyflight.set_api_key(key: str)
Set the API key to use with the API.

Parameters key (str) – The API key to execute requests with.

Making Requests

class pyflight.Request
Represents a Request that can be sent to the API instead of using a dictionary manually.

Please note that each Request requires at least 1 adult or senior passenger. Optional attributes default to None.

raw_data
dict – The raw JSON / dictionary data which will be sent to the API.

adult_count
int – The amount of passengers that are adults.

children_count
int – The amount of passengers that are children.

infant_in_lap_count
int – The amount of passengers that are infants travelling in the lap of an adult.

infant_in_seat_count
int – The amount of passengers that are infants assigned a seat.

3

https://developers.google.com/qpx-express/v1/trips/search
https://creativecommons.org/licenses/by/3.0/
https://docs.python.org/3/library/stdtypes.html#str

pyflight Documentation, Release 0.1.2

senior_count
int – The amount of passengers that are senior citizens.

max_price
Optional[str] – The maximum price below which results should be returned. The currency is specified in
ISO-4217, and setting this attribute is validated using the regex [A-Z]{3}\d+(\.\d+)?. If it does not
match, a ValueError is raised.

sale_country
Optional[str] – The IATA country code representing the point of sale. Determines the currency.

ticketing_country
Optional[str] – The IATA country code representing the point of ticketing, for example DE.

refundable
Optional[bool] – Whether to return only results with refundable fares or not.

solution_count
int – The amount of solutions to return. Defaults to 1, maximum is 500. Raises a ValueError when
trying to assign a value outside of 1 to 500.

add_slice(slice_: pyflight.requester.Slice)
Adds a slice to this Request.

Parameters slice (Slice) – The Slice to be added to the request.

Returns To ease chaining of this function, self is returned.

Return type self

adult_count
The amount of passengers that are adults.

as_dict()→ dict
Returns the raw data associated with this request, which is sent to the API when calling send_sync or
send_async.

children_count
The amount of passengers that are children.

infant_in_lap_count
The amount of passengers that are infants travelling in the lap of an adult.

infant_in_seat_count
The amount of passengers that are infants assigned a seat.

max_price
The maximum price below which results should be returned, specified in ISO-421 format.

refundable
Whether to return only results with refundable fares or not.

sale_country
The IATA country code representing the point of sale. Determines the currency.

send_async(use_containers: bool = True)→ typing.Union[pyflight.results.Result, dict]
Asynchronously execute a request.

Internally, this calls pyflight.send_async(). You can also call the function directly. For further
information, please view documentation for pyflight.send_async().

send_sync(use_containers: bool = True)→ typing.Union[pyflight.results.Result, dict]
Synchronously execute a request.

4 Chapter 1. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pyflight Documentation, Release 0.1.2

Internally, this calls pyflight.send_sync(). You can also call the function directly. For further
information, please view documentation for pyflight.send_sync().

senior_count
The amount of passengers that are senior citizens.

solution_count
The amount of solutions to return. Defaults to 1.

ticketing_country
The IATA country code representing the point of ticketing, for example DE.

class pyflight.Slice(origin: str, destination: str, date: str)
Represents a slice that makes up a single itinerary of this trip.

For example, for one-way trips, usually one slice is used. A round trip would use two slices. (e.g. SFO - FRA -
SFO)

Optional attributes default to None or an empty list if applicable, but can be set if wanted.

raw_data
dict – The raw JSON / dictionary data which will be sent to the API.

origin
str – The airport or city IATA designator of the origin.

destination
str – The airport or city IATA designator of the destination.

date
str – The date on which this flight should take place, in the format YYYY-MM-DD.

max_stops
Optional[int] – The maximum amount of stops that the passenger(s) are willing to accept on this slice.

max_connection_duration
Optional[int] – The longest duration (in minutes) between two legs that passengers are willing to accept

preferred_cabin
Optional[str] – The preferred cabin for this slice. Allowed values are COACH, PREMIUM_COACH,
BUSINESS, and FIRST. A ValueError is raised if a value is assigned that is not listed above.

earliest_departure_time
Optional[str] – The earliest time for departure, local to the point of departure. Formatted as HH:MM.

latest_departure_time
Optional[str] – The latest time for departure, local to the point of departure. Formatted as HH:MM.

permitted_carriers
List[str] – A list of 2-letter IATA airline designators for which results should be returned.

prohibited_carriers
List[str] – A list of 2-letter IATA airline designators, for which no results will be returned.

date
The date on which this flight should take place, in the format YYYY-MM-DD.

destination
The airport or city IATA designator of the destination.

earliest_departure_time
The earliest time for departure, local to the point of departure. Formatted as HH:MM.

1.2. Making Requests 5

https://docs.python.org/3/library/exceptions.html#ValueError

pyflight Documentation, Release 0.1.2

latest_departure_time
The latest time for departure, local to the point of departure. Formatted as HH:MM.

max_connection_duration
The longest duration (in minutes) between two legs that passengers are willing to accept

max_stops
The maximum amount of stops that the passenger(s) are willing to accept on this slice.

origin
The airport or city IATA designator of the origin.

permitted_carriers
A list of 2-letter IATA airline designators for which results should be returned.

preferred_cabin
The preferred cabin for this slice. Allowed values are COACH, PREMIUM_COACH, BUSINESS, and
FIRST. A ValueError is raised if a value is assigned that is not listed above.

prohibited_carriers
A list of 2-letter IATA airline designators,

for which no results will be returned.

pyflight.send_async(request_body: typing.Union[dict, pyflight.requester.Request], use_containers:
bool = True)

Asynchronously execute and send a JSON Request or a Request. This is a coroutine - calling this func-
tion must be awaited.

Parameters

• request_body (Union[dict, Request]) – The body of the request to be sent
to the API. This must follow the structure described here: https://developers.google.com/
qpx-express/v1/trips/search It is heavily recommended to use Request instead of con-
structing request bodies manually.

• use_containers (Optional[bool]) – Whether the containers given should be used
or not. If False is given, any API call will return a dictionary of the “raw” API data without
any modification. Otherwise, an API call will return a Result object.

Raises APIException – If the API call did not return the normal 200 status code and thus, an
error occurred.

Returns

• Result – If use_containers is True and no Error occurred.

• dict – If use_containers is False, as a raw dictionary without any adjustments.

pyflight.send_sync(request_body: typing.Union[dict, pyflight.requester.Request], use_containers:
bool = True)

Synchronously execute and send a JSON-Request or a :class:‘Request. Note that this function is blocking.

Parameters

• request_body (Union[dict, Request]) – The body of the request to be sent
to the API. This must follow the structure described here: https://developers.google.com/
qpx-express/v1/trips/search It is heavily recommended to use Request instead of con-
structing request bodies manually.

6 Chapter 1. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://developers.google.com/qpx-express/v1/trips/search
https://developers.google.com/qpx-express/v1/trips/search
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://developers.google.com/qpx-express/v1/trips/search
https://developers.google.com/qpx-express/v1/trips/search

pyflight Documentation, Release 0.1.2

• use_containers (Optional[bool]) – Whether the containers given should be used
or not. If False is given, any API call will return a dictionary of the “raw” API data without
any modification. Otherwise, the API call will return a Result object.

Raises APIException – If the API call did not return the normal 200 status code and thus, an
error occurred.

Returns

• Result – If use_containers is True and no Error occurred.

• dict – If use_containers is ‘‘False‘, as a raw dictionary without any adjustments.

class pyflight.APIException(code: int, message: str, reason: str, *args, **kwargs)
Custom Exception that is raised from the Requests when an API call goes wrong, meaning the API did not

return a status code of 200.

code
int – The code of the Error that was returned

message
str – The error message as returned by the API

reason
str – The reason as specified by the API

Examples

try:
flight_info = send_sync(my_request_body, use_containers=False)

except pyflight.APIException as err:
print('Error trying to execute a request:')
print(err)

else:
...

The Exception will be formatted as: ‘<status-code>: <error-message> (reason)’, for example 400: Bad
Request (keyInvalid)

Working with the Response

These provide several Classes that contain the Results of a Request to simplify accessing them, as well as offering
several Methods to work with the Data from the Result.

Some of the Documentation is extracted from the resource reference from the API itself, for which a full documentation
can be found here: https://developers.google.com/qpx-express/v1/trips/search

class pyflight.results.Result(data: dict)
Contains Results of an API Call.

This Class supports various magic methods:

x == y Checks if two Results are identical. This is equivalent to x.request_id == y.request_id.

x != y Checks if two Results are not identical to each other. This is equivalent to x.request_id !=
y.request_id.

str(x) Returns the request_id for the Result this is invoked on.

1.3. Working with the Response 7

https://docs.python.org/3/library/functions.html#bool
https://developers.google.com/qpx-express/v1/trips/search

pyflight Documentation, Release 0.1.2

for trip in x This will call __iter__ of Result and return an iterator over the Trips saved in this
Result.

request_id
str – Specifies the Request ID, unique for each Request.

airports
List[Airport] – Contains Data for the Flights found in the Response.

aircraft
List[Aircraft] – Contains the Code and the Name of the Aircraft found in the Response.

carriers
List[Carrier] – Contains the Code and the Name of the Carriers found in the Response.

cities
List[City] – Contains the Code and the Name of the Cities found in the Response.

taxes
List[Tax] – Contains the Code and the Name of the Taxes found in the Response.

trips
List[Trip] – Contains information about trips (itinerary solutions) returned by the API. The Amount of
Trips is determined by the amount of Solutions set in the Request.

as_dict()→ dict
Returns a dictionary representation of this Result.

Useful for serializing data to JSON. Internally, this calls as_dict() on all of its members.

Returns The data stored in this Result as key / value pairs.

Return type dict

class pyflight.results.Carrier(code: str, name: str)
This Class inherits from FlightData and thus, supports all operations that FlightData supports. This repre-
sents a Tax with a code (unique identifier) and a Name. This will also be reflected in the Pricing section of a
Trip, but with more information such as the charge type, the country, and the price of the Tax. For Examples,
view the “Examples” section for FlightData.

class pyflight.results.City(code: str, name: str)
This Class inherits from FlightData and thus, supports all operations that FlightData supports. This repre-
sents a Tax with a code (unique identifier) and a Name. This will also be reflected in the Pricing section of a
Trip, but with more information such as the charge type, the country, and the price of the Tax. For Examples,
view the “Examples” section for FlightData.

class pyflight.results.Tax(code: str, name: str)
This Class inherits from FlightData and thus, supports all operations that FlightData supports. This repre-
sents a Tax with a code (unique identifier) and a Name. This will also be reflected in the Pricing section of a
Trip, but with more information such as the charge type, the country, and the price of the Tax. For Examples,
view the “Examples” section for FlightData.

class pyflight.results.Airport(airport: dict)
Contains Data of an Airport and its City Code.

This Class supports various magic methods:

x == y Compare two Airports with each other for equality by their Airport and City Codes.

x != y Compare two Airports with each other for inequality.

str(x) Get the Airport’s Name

8 Chapter 1. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

pyflight Documentation, Release 0.1.2

>>> str(my_airport)
'ABC International'

code
str – The Code of this Airport

name
str – The Name of this Airport

city
str – The Code of the City associated with the Airport

as_dict()
Get a dictionary representation of the Airport.

Example

>>> airport = {
'code': '3E7', 'city': 'XYZ', 'name': 'Example Airport'

}
>>> example_airport = Airport(airport)
>>> example_airport.as_dict()
{

'code': '3E7',
'city': 'XYZ',
'name': 'Example Airport',

}

Returns A dictionary representing this Airport.

Return type dict

class pyflight.results.Trip(trip_data: dict)
Contains Information about one Trip - an itinerary solution - from the API.

This class supports various magic methods:

x == y Compares two Trips with each other for equality. Returns True when x.id == y.id.

x != y Compares two Trips with each other for inequality. Returns True when x.id != y.id.

str(x) Returns the id of the Trip this is invoked on.

total_price
str – The total price as Currency followed by the Amount for all Passengers on the Trip, e.g. 'USD59.00'

id
str – The unique ID given to each Trip

routes
List[Route] – A list of Routes from this Trip

pricing
List[Pricing] – A list of pricing data from this Trip

as_dict()→ dict
Get a dictionary representation of this Trip.

Returns A dictionary containing the attributes of this Trip as key / value pairs.

1.3. Working with the Response 9

https://docs.python.org/3/library/stdtypes.html#dict

pyflight Documentation, Release 0.1.2

Return type dict

10 Chapter 1. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

pyflight Documentation, Release 0.1.2

12 Chapter 2. Indices and tables

Python Module Index

p
pyflight.results, 7

13

pyflight Documentation, Release 0.1.2

14 Python Module Index

Index

A
add_slice() (pyflight.Request method), 4
adult_count (pyflight.Request attribute), 3, 4
aircraft (pyflight.results.Result attribute), 8
Airport (class in pyflight.results), 8
airports (pyflight.results.Result attribute), 8
APIException (class in pyflight), 7
as_dict() (pyflight.Request method), 4
as_dict() (pyflight.results.Airport method), 9
as_dict() (pyflight.results.Result method), 8
as_dict() (pyflight.results.Trip method), 9

C
Carrier (class in pyflight.results), 8
carriers (pyflight.results.Result attribute), 8
children_count (pyflight.Request attribute), 3, 4
cities (pyflight.results.Result attribute), 8
City (class in pyflight.results), 8
city (pyflight.results.Airport attribute), 9
code (pyflight.APIException attribute), 7
code (pyflight.results.Airport attribute), 9

D
date (pyflight.Slice attribute), 5
destination (pyflight.Slice attribute), 5

E
earliest_departure_time (pyflight.Slice attribute), 5

I
id (pyflight.results.Trip attribute), 9
infant_in_lap_count (pyflight.Request attribute), 3, 4
infant_in_seat_count (pyflight.Request attribute), 3, 4

L
latest_departure_time (pyflight.Slice attribute), 5

M
max_connection_duration (pyflight.Slice attribute), 5, 6

max_price (pyflight.Request attribute), 4
max_stops (pyflight.Slice attribute), 5, 6
message (pyflight.APIException attribute), 7

N
name (pyflight.results.Airport attribute), 9

O
origin (pyflight.Slice attribute), 5, 6

P
permitted_carriers (pyflight.Slice attribute), 5, 6
preferred_cabin (pyflight.Slice attribute), 5, 6
pricing (pyflight.results.Trip attribute), 9
prohibited_carriers (pyflight.Slice attribute), 5, 6
pyflight.results (module), 7

R
raw_data (pyflight.Request attribute), 3
raw_data (pyflight.Slice attribute), 5
reason (pyflight.APIException attribute), 7
refundable (pyflight.Request attribute), 4
Request (class in pyflight), 3
request_id (pyflight.results.Result attribute), 8
Result (class in pyflight.results), 7
routes (pyflight.results.Trip attribute), 9

S
sale_country (pyflight.Request attribute), 4
send_async() (in module pyflight), 6
send_async() (pyflight.Request method), 4
send_sync() (in module pyflight), 6
send_sync() (pyflight.Request method), 4
senior_count (pyflight.Request attribute), 3, 5
set_api_key() (in module pyflight), 3
Slice (class in pyflight), 5
solution_count (pyflight.Request attribute), 4, 5

15

pyflight Documentation, Release 0.1.2

T
Tax (class in pyflight.results), 8
taxes (pyflight.results.Result attribute), 8
ticketing_country (pyflight.Request attribute), 4, 5
total_price (pyflight.results.Trip attribute), 9
Trip (class in pyflight.results), 9
trips (pyflight.results.Result attribute), 8

16 Index

	API Reference
	Basic Configuration
	Making Requests
	Working with the Response

	Indices and tables
	Python Module Index

