
pyfirebirdsql documentation
Release 1.0.0

Hajime Nakagami

Dec 23, 2018

Contents

1 Documentation Contents: 3
1.1 pyfirebirdsql Installation Guide . 3
1.2 Quick-start Guide / Tutorial . 4
1.3 Python Database API Specification 2.0 . 8
1.4 Compliance to Python Database API 2.0 . 16
1.5 Native Database Engine Features and Extensions Beyond the Python DB API 19
1.6 pyfirebirdsql Links . 62
1.7 pyfirebirdsql Changelog . 63
1.8 pyfirebirdsql LICENSE . 67

2 Indices and tables 69

Python Module Index 71

i

ii

pyfirebirdsql documentation, Release 1.0.0

pyfirebirdsql is a Python extension package that implements Python Database API 2.0-compliant support for the
open source relational database Firebird® . In addition to the minimal feature set of the standard Python DB API,
pyfirebirdsql also exposes nearly the entire native client API of the database engine.

pyfirebirdsql is free – covered by a permissive BSD-style license that both commercial and noncommercial users
should find agreeable.

This documentation set is not a tutorial on Python, SQL, or Firebird; rather, it is a topical presentation of pyfirebirdsql’s
feature set, with example code to demonstrate basic usage patterns. For detailed information about Firebird features,
see the Firebird documentation, and especially the excellent The Firebird Book written by Helen Borrie and published
by APress.

Contents 1

http://python.org
http://www.firebirdsql.org
license.html
http://www.firebirdsql.org/en/documentation/
http://www.ibphoenix.com/products/books/firebird_book

pyfirebirdsql documentation, Release 1.0.0

2 Contents

CHAPTER 1

Documentation Contents:

1.1 pyfirebirdsql Installation Guide

1.1.1 Dependencies

pyfirebirdsql requires a valid combination of the dependencies in the list below.

Detailed instructions on how to install each dependency are beyond the scope of this document; consult the dependency
distributor for installation instructions.

Satisfying the dependencies is not difficult! For mainstream operating systems – including Windows , Macosx and
Linux – easily installable binary distributions are available for all of pyfirebirdsql’s dependencies (see the download
links below).

1. Operating System - one of:

• Windows (32/64)

• Linux Any Cpu

• FreeBSD

• Macosx

• Other Unix or Unix-like operating system

2. Firebird 2.1 or later server version installation [download here] (Firebird client is not necessary to connect to a
server)

3. Python [download here] 2.6 or later (including Python 3.x) It was tested with cpython , ironpython and pypy

How to install

• Install by pip

• Install from FreeBSD ports collection

3

http://www.firebirdsql.org
http://www.firebirdsql.org/en/server-packages/
http://www.python.org
http://www.python.org/download/

pyfirebirdsql documentation, Release 1.0.0

• Install from source distribution

1.1.2 Install by pip

pip install firebirdsql

1.1.3 Installation from FreeBSD ports collection

FreeBSD has it’s port now:

cd /usr/ports/databases/py-firebirdsql/
make install clean

1.1.4 Installation from source distribution

Shortcut for the Experienced and Impatient:

(decompress pyfirebirdsql into *temp_dir*)
cd *temp_dir*
python setup.py install
python -c "import firebirdsql"
(delete *temp_dir*)

Then hit the Usage Guide.

1.1.5 Test your pyfirebirdsql installation

pyfirebirdsql has an extensive test suite, but it is not really intended for routine public use.

To verify that pyfirebirdsql is installed properly, switch to a directory other than the temporary directory into which
you decompressed the source distribution (to avoid conflict between the copy of firebirdsql in that directory and the
copy placed under the standard Python site-packages directory), then verify the importability of your pyfirebirdsql
installation by issuing the following command:

python -c "import firebirdsql as fb; print fb.__version__"

If the import attempt does not encounter any errors and the version number is what you expected, you are finished.
Next, consider reading the pyfirebirdsql Usage Guide.

You should not encounter any errors at this stage since you have already completed the installation steps successfully.
If you do, please report them to the firebird-python support list.

1.2 Quick-start Guide / Tutorial

This brief tutorial aims to get the reader started by demonstrating elementary usage of pyfirebirdsql. It is not a
comprehensive Python Database API tutorial, nor is it comprehensive in its coverage of anything else.

The numerous advanced features of pyfirebirdsql are covered in another section of this documentation, which is not in
a tutorial format, though it is replete with examples.

4 Chapter 1. Documentation Contents:

usage.html
http://tech.groups.yahoo.com/group/firebird-python/

pyfirebirdsql documentation, Release 1.0.0

1.2.1 Connecting to a Database

Example 1

A database connection is typically established with code such as this:

import firebirdsql

The server is named 'bison'; the database file is at '/temp/test.fdb'.
con = firebirdsql.connect(dsn='bison:/temp/test.fdb', user='sysdba', password='pass')

Or, equivalently:
con = firebirdsql.connect(

host='bison', database='/temp/test.fdb',
user='sysdba', password='pass'

)

Example 2

Suppose we want to connect to the database in SQL Dialect 1 and specifying UTF-8 as the character set of the
connection:

import firebirdsql

con = firebirdsql.connect(
dsn='bison:/temp/test.fdb',
user='sysdba', password='pass',
charset='UTF8' # specify a character set for the connection

)

1.2.2 Executing SQL Statements

For this section, suppose we have a table defined and populated by the following SQL code:

create table languages
(

name varchar(20),
year_released integer

);

insert into languages (name, year_released) values ('C', 1972);
insert into languages (name, year_released) values ('Python', 1991);

Example 1

This example shows the simplest way to print the entire contents of the languages table:

import firebirdsql

con = firebirdsql.connect(dsn='/temp/test.fdb', user='sysdba', password='masterkey')

Create a Cursor object that operates in the context of Connection con:
cur = con.cursor()

Execute the SELECT statement:
cur.execute("select * from languages order by year_released")

(continues on next page)

1.2. Quick-start Guide / Tutorial 5

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

Retrieve all rows as a sequence and print that sequence:
print cur.fetchall()

Sample output:

[('C', 1972), ('Python', 1991)]

Example 2

Here’s another trivial example that demonstrates various ways of fetching a single row at a time from a SELECT-
cursor:

import firebirdsql

con = firebirdsql.connect(dsn='/temp/test.fdb', user='sysdba', password='masterkey')

cur = con.cursor()
SELECT = "select name, year_released from languages order by year_released"

1. Iterate over the rows available from the cursor, unpacking the
resulting sequences to yield their elements (name, year_released):
cur.execute(SELECT)
for (name, year_released) in cur:

print '%s has been publicly available since %d.' % (name, year_released)

2. Equivalently:
cur.execute(SELECT)
for row in cur:

print '%s has been publicly available since %d.' % (row[0], row[1])

Sample output:

C has been publicly available since 1972.
Python has been publicly available since 1991.
C has been publicly available since 1972.
Python has been publicly available since 1991.

Example 3

The following program is a simplistic table printer (applied in this example to languages):

import firebirdsql as fb

TABLE_NAME = 'languages'
SELECT = 'select * from %s order by year_released' % TABLE_NAME

con = fb.connect(dsn='/temp/test.fdb', user='sysdba', password='masterkey')

cur = con.cursor()
cur.execute(SELECT)

Print a header.
for fieldDesc in cur.description:

Description name
print fieldDesc[0] ,

print # Finish the header with a newline.
print '-' * 78

(continues on next page)

6 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

For each row, print the value of each field left-justified within
the maximum possible width of that field.
fieldIndices = range(len(cur.description))
for row in cur:

for fieldIndex in fieldIndices:
fieldValue = str(row[fieldIndex])
#DESCRIPTION_DISPLAY_SIZE
fieldMaxWidth = cur.description[fieldIndex][2]

print fieldValue.ljust(fieldMaxWidth) ,

print # Finish the row with a newline.

Sample output:

NAME YEAR_RELEASED
--
C 1972
Python 1991

Example 4

Let’s insert more languages:

import firebirdsql

con = firebirdsql.connect(dsn='/temp/test.fdb', user='sysdba', password='masterkey')

cur = con.cursor()

newLanguages = [
('Lisp', 1958),
('Dylan', 1995),

]

cur.executemany("insert into languages (name, year_released) values (?, ?)",
newLanguages

)

The changes will not be saved unless the transaction is committed explicitly:
con.commit()

Note the use of a parameterized SQL statement above. When dealing with repetitive statements, this is much faster
and less error-prone than assembling each SQL statement manually. (You can read more about parameterized SQL
statements in the section on Prepared Statements.)

After running Example 4, the table printer from Example 3 would print:

NAME YEAR_RELEASED
--
Lisp 1958
C 1972
Python 1991
Dylan 1995

1.2. Quick-start Guide / Tutorial 7

pyfirebirdsql documentation, Release 1.0.0

1.2.3 Calling Stored Procedures

Firebird supports stored procedures written in a proprietary procedural SQL language. Firebird stored procedures can
have input parameters and/or output parameters. Some databases support input/output parameters, where the same
parameter is used for both input and output; Firebird does not support this.

It is important to distinguish between procedures that return a result set and procedures that populate and return
their output parameters exactly once. Conceptually, the latter “return their output parameters” like a Python function,
whereas the former “yield result rows” like a Python generator.

Firebird’s server-side procedural SQL syntax makes no such distinction, but client-side SQL code (and C API code)
must. A result set is retrieved from a stored procedure by SELECT‘ing from the procedure, whereas output parameters
are retrieved with an ‘EXECUTE PROCEDURE statement.

To retrieve a result set from a stored procedure with pyfirebirdsql, use code such as this:

cur.execute("select output1, output2 from the_proc(?, ?)", (input1, input2))

Ordinary fetch code here, such as:
for row in cur:

... # process row

con.commit() # If the procedure had any side effects, commit them.

To execute a stored procedure and access its output parameters, use code such as this:

cur.callproc("the_proc", (input1, input2))

If there are output parameters, retrieve them as though they were the
first row of a result set. For example:
outputParams = cur.fetchone()

con.commit() # If the procedure had any side effects, commit them.

This latter is not very elegant; it would be preferable to access the procedure’s output parameters as the return value of
Cursor.callproc(). The Python DB API specification requires the current behavior, however.

1.3 Python Database API Specification 2.0

pyfirebirdsql is the Python Database API 2.0 compliant driver for Firebird. The Reference / Usage Guide is therefore
divided into three parts:

• Python Database API 2.0 specification

• pyfirebirdsql Compliance to Python DB 2.0 API specification.

• pyfirebirdsql features beyond Python DB 2.0 API specification.

If you’re familiar to Python DB 2.0 API specification, you may skip directly to the next topic.

Note: This is a local copy of the specification. The online source copy is available at http://www.python.org/topics/
database/DatabaseAPI-2.0.html

8 Chapter 1. Documentation Contents:

http://www.python.org/topics/database/DatabaseAPI-2.0.html
http://www.python.org/topics/database/DatabaseAPI-2.0.html

pyfirebirdsql documentation, Release 1.0.0

1.3.1 Introduction

This API has been defined to encourage similarity between the Python modules that are used to access databases. By
doing this, we hope to achieve a consistency leading to more easily understood modules, code that is generally more
portable across databases, and a broader reach of database connectivity from Python.

The interface specification consists of several sections:

• Module Interface

• Connection Objects

• Cursor Objects

• Type Objects and Constructors

• Implementation Hints

• Major Changes from 1.0 to 2.0

Comments and questions about this specification may be directed to the SIG for Database Interfacing with Python.

For more information on database interfacing with Python and available packages see the Database Topics Guide on
www.python.org.

This document describes the Python Database API Specification 2.0. The previous version 1.0 version is still available
as reference. Package writers are encouraged to use this version of the specification as basis for new interfaces.

1.3.2 Module Interface

Access to the database is made available through connection objects. The module must provide the following con-
structor for these:

connect(parameters...)
Constructor for creating a connection to the database. Returns a Connection Object . It takes a number of
parameters which are database dependent.1

These module globals must be defined:

apilevel
String constant stating the supported DB API level. Currently only the strings ‘1.0’ and ‘2.0’ are allowed. If not
given, a Database API 1.0 level interface should be assumed.

threadsafety
Integer constant stating the level of thread safety the interface supports. Possible values are:

• 0 = Threads may not share the module.

• 1 = Threads may share the module, but not connections.

• 2 = Threads may share the module and connections.

• 3 = Threads may share the module, connections and cursors. Sharing in the above context means
that two threads may use a resource without wrapping it using a mutex semaphore to implement
resource locking.

Note that you cannot always make external resources thread safe by managing access using a mutex:
the resource may rely on global variables or other external sources that are beyond your control.

1 As a guideline the connection constructor parameters should be implemented as keyword parameters for more intuitive use and follow this order
of parameters: dsn = Data source name as string user = User name as string (optional) password = Password as string (optional) host = Hostname (op-
tional) database = Database name (optional) E.g. a connect could look like this: connect(dsn=’myhost:MYDB’,user=’guido’,password=‘234$?’)

1.3. Python Database API Specification 2.0 9

mailto:db-sig@python.org
http://www.python.org/topics/database/
http://www.python.org/
http://www.python.org/topics/database/DatabaseAPI-1.0.html
http://www.python.org/topics/database/DatabaseAPI-1.0.html

pyfirebirdsql documentation, Release 1.0.0

paramstyle
String constant stating the type of parameter marker formatting expected by the interface. Possible values are2:

• ‘qmark’ = Question mark style, e.g. ‘. . . WHERE name=?’

• ‘numeric’ = Numeric, positional style, e.g. ‘. . . WHERE name=:1’

• ‘named’ = Named style, e.g. ‘. . . WHERE name=:name’

• ‘format’ = ANSI C printf format codes, e.g. ‘. . . WHERE name=%s’

• ‘pyformat’ = Python extended format codes, e.g. ‘. . . WHERE name=%(name)s’

The module should make all error information available through these exceptions or subclasses thereof:

exception Warning
Exception raised for important warnings like data truncations while inserting, etc. It must be a subclass of the
Python StandardError (defined in the module exceptions).

exception Error
Exception that is the base class of all other error exceptions. You can use this to catch all errors with one single
‘except’ statement. Warnings are not considered errors and thus should not use this class as base. It must be a
subclass of the Python StandardError (defined in the module exceptions).

exception InterfaceError
Exception raised for errors that are related to the database interface rather than the database itself. It must be a
subclass of Error.

exception DatabaseError
Exception raised for errors that are related to the database. It must be a subclass of Error.

exception DataError
Exception raised for errors that are due to problems with the processed data like division by zero, numeric value
out of range, etc. It must be a subclass of DatabaseError.

exception OperationalError
Exception raised for errors that are related to the database’s operation and not necessarily under the control of the
programmer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction could not be
processed, a memory allocation error occurred during processing, etc. It must be a subclass of DatabaseError.

exception IntegrityError
Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails. It must
be a subclass of DatabaseError.

exception InternalError
Exception raised when the database encounters an internal error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc. It must be a subclass of DatabaseError.

exception ProgrammingError
Exception raised for programming errors, e.g. table not found or already exists, syntax error in the SQL state-
ment, wrong number of parameters specified, etc. It must be a subclass of DatabaseError.

exception NotSupportedError
Exception raised in case a method or database API was used which is not supported by the database, e.g.
requesting a .rollback() on a connection that does not support transaction or has transactions turned off. It must
be a subclass of DatabaseError.

This is the exception inheritance layout:

2 Module implementors should prefer ‘numeric’, ‘named’ or ‘pyformat’ over the other formats because these offer more clarity and flexibility.

10 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

StandardError
|__Warning
|__Error

|__InterfaceError
|__DatabaseError

|__DataError
|__OperationalError
|__IntegrityError
|__InternalError
|__ProgrammingError
|__NotSupportedError

Note: The values of these exceptions are not defined. They should give
the user a fairly good idea of what went wrong though.

1.3.3 Connection Objects

Connections Objects should respond to the following methods:

class Connection

close()
Close the connection now (rather than whenever __del__ is called). The connection will be unusable from
this point forward; an Error (or subclass) exception will be raised if any operation is attempted with the
connection. The same applies to all cursor objects trying to use the connection.

commit()
Commit any pending transaction to the database. Note that if the database supports an auto-commit feature,
this must be initially off. An interface method may be provided to turn it back on. Database modules that
do not support transactions should implement this method with void functionality.

rollback()
This method is optional since not all databases provide transaction support.3 In case a database does
provide transactions this method causes the the database to roll back to the start of any pending transaction.
Closing a connection without committing the changes first will cause an implicit rollback to be performed.

cursor()
Return a new Cursor Object using the connection. If the database does not provide a direct cursor concept,
the module will have to emulate cursors using other means to the extent needed by this specification.4

1.3.4 Cursor Objects

These objects represent a database cursor, which is used to manage the context of a fetch operation. Cursor Objects
should respond to the following methods and attributes:

class Cursor

3 If the database does not support the functionality required by the method, the interface should throw an exception in case the method is used.
The preferred approach is to not implement the method and thus have Python generate an AttributeError in case the method is requested. This
allows the programmer to check for database capabilities using the standard hasattr() function. For some dynamically configured interfaces it may
not be appropriate to require dynamically making the method available. These interfaces should then raise a NotSupportedError to indicate the
non-ability to perform the roll back when the method is invoked.

4 A database interface may choose to support named cursors by allowing a string argument to the method. This feature is not part of the
specification, since it complicates semantics of the .fetchXXX() methods.

1.3. Python Database API Specification 2.0 11

pyfirebirdsql documentation, Release 1.0.0

description
This read-only attribute is a sequence of 7-item sequences. Each of these sequences contains information
describing one result column: (name, type_code, display_size, internal_size, precision, scale, null_ok).
This attribute will be None for operations that do not return rows or if the cursor has not had an operation
invoked via the executeXXX() method yet. The type_code can be interpreted by comparing it to the Type
Objects specified in the section below.

rowcount
This read-only attribute specifies the number of rows that the last executeXXX() produced (for DQL state-
ments like select) or affected (for DML statements like update or insert). The attribute is -1 in case no
executeXXX() has been performed on the cursor or the rowcount of the last operation is not determinable
by the interface.7

callproc(procname[, parameters])
This method is optional since not all databases provide stored procedures.3 Call a stored database pro-
cedure with the given name. The sequence of parameters must contain one entry for each argument that
the procedure expects. The result of the call is returned as modified copy of the input sequence. Input
parameters are left untouched, output and input/output parameters replaced with possibly new values. The
procedure may also provide a result set as output. This must then be made available through the standard
fetchXXX() methods.

close()
Close the cursor now (rather than whenever __del__ is called). The cursor will be unusable from this point
forward; an Error (or subclass) exception will be raised if any operation is attempted with the cursor.

execute(operation[, parameters])
Prepare and execute a database operation (query or command). Parameters may be provided as sequence
or mapping and will be bound to variables in the operation. Variables are specified in a database-specific
notation (see the module’s paramstyle attribute for details).5 A reference to the operation will be retained
by the cursor. If the same operation object is passed in again, then the cursor can optimize its behavior.
This is most effective for algorithms where the same operation is used, but different parameters are bound
to it (many times). For maximum efficiency when reusing an operation, it is best to use the setinputsizes()
method to specify the parameter types and sizes ahead of time. It is legal for a parameter to not match
the predefined information; the implementation should compensate, possibly with a loss of efficiency. The
parameters may also be specified as list of tuples to e.g. insert multiple rows in a single operation, but this
kind of usage is depreciated: executemany() should be used instead. Return values are not defined.

executemany(operation, seq_of_parameters)
Prepare a database operation (query or command) and then execute it against all parameter sequences or
mappings found in the sequence seq_of_parameters. Modules are free to implement this method using
multiple calls to the execute() method or by using array operations to have the database process the se-
quence as a whole in one call. The same comments as for execute() also apply accordingly to this method.
Return values are not defined.

fetchone()
Fetch the next row of a query result set, returning a single sequence, or None when no more data is
available.6 An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce
any result set or no call was issued yet.

fetchmany([size=cursor.arraysize])
7 The rowcount attribute may be coded in a way that updates its value dynamically. This can be useful for databases that return useable rowcount

values only after the first call to a .fetchXXX() method.
5 The module will use the __getitem__ method of the parameters object to map either positions (integers) or names (strings) to parameter values.

This allows for both sequences and mappings to be used as input. The term “bound” refers to the process of binding an input value to a database
execution buffer. In practical terms, this means that the input value is directly used as a value in the operation. The client should not be required to
“escape” the value so that it can be used – the value should be equal to the actual database value.

6 Note that the interface may implement row fetching using arrays and other optimizations. It is not guaranteed that a call to this method will
only move the associated cursor forward by one row.

12 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An
empty sequence is returned when no more rows are available. The number of rows to fetch per call is
specified by the parameter. If it is not given, the cursor’s arraysize determines the number of rows to be
fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not
possible due to the specified number of rows not being available, fewer rows may be returned. An Error (or
subclass) exception is raised if the previous call to executeXXX() did not produce any result set or no call
was issued yet. Note there are performance considerations involved with the size parameter. For optimal
performance, it is usually best to use the arraysize attribute. If the size parameter is used, then it is best for
it to retain the same value from one fetchmany() call to the next.

fetchall()
Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of
tuples). Note that the cursor’s arraysize attribute can affect the performance of this operation. An Error
(or subclass) exception is raised if the previous call to executeXXX() did not produce any result set or no
call was issued yet.

nextset()
This method is optional since not all databases support multiple result sets.3 This method will make the
cursor skip to the next available set, discarding any remaining rows from the current set. If there are no
more sets, the method returns None. Otherwise, it returns a true value and subsequent calls to the fetch
methods will return rows from the next result set. An Error (or subclass) exception is raised if the previous
call to executeXXX() did not produce any result set or no call was issued yet.

setinputsizes(sizes)
This can be used before a call to executeXXX() to predefine memory areas for the operation’s parameters.
sizes is specified as a sequence – one item for each input parameter. The item should be a Type Object that
corresponds to the input that will be used, or it should be an integer specifying the maximum length of a
string parameter. If the item is None, then no predefined memory area will be reserved for that column (this
is useful to avoid predefined areas for large inputs). This method would be used before the executeXXX()
method is invoked. Implementations are free to have this method do nothing and users are free to not use
it.

setoutputsize(size[, column])
Set a column buffer size for fetches of large columns (e.g. LONGs, BLOBs, etc.). The column is specified
as an index into the result sequence. Not specifying the column will set the default size for all large columns
in the cursor. This method would be used before the executeXXX() method is invoked. Implementations
are free to have this method do nothing and users are free to not use it.

1.3.5 Type Objects and Constructors

Many databases need to have the input in a particular format for binding to an operation’s input parameters. For
example, if an input is destined for a DATE column, then it must be bound to the database in a particular string format.
Similar problems exist for “Row ID” columns or large binary items (e.g. blobs or RAW columns). This presents
problems for Python since the parameters to the executeXXX() method are untyped. When the database module sees a
Python string object, it doesn’t know if it should be bound as a simple CHAR column, as a raw BINARY item, or as a
DATE. To overcome this problem, a module must provide the constructors defined below to create objects that can hold
special values. When passed to the cursor methods, the module can then detect the proper type of the input parameter
and bind it accordingly. A Cursor Object’s description attribute returns information about each of the result columns
of a query. The type_code must compare equal to one of Type Objects defined below. Type Objects may be equal to
more than one type code (e.g. DATETIME could be equal to the type codes for date, time and timestamp columns; see
the Implementation Hints below for details). The module exports the following constructors and singletons:

Date(year, month, day)
This function constructs an object holding a date value.

1.3. Python Database API Specification 2.0 13

pyfirebirdsql documentation, Release 1.0.0

Time(hour, minute, second)
This function constructs an object holding a time value.

Timestamp(year, month, day, hour, minute, second)
This function constructs an object holding a time stamp value.

DateFromTicks(ticks)
This function constructs an object holding a date value from the given ticks value (number of seconds since the
epoch; see the documentation of the standard Python time module for details).

TimeFromTicks(ticks)
This function constructs an object holding a time value from the given ticks value (number of seconds since the
epoch; see the documentation of the standard Python time module for details).

TimestampFromTicks(ticks)
This function constructs an object holding a time stamp value from the given ticks value (number of seconds
since the epoch; see the documentation of the standard Python time module for details).

Binary(string)
This function constructs an object capable of holding a binary (long) string value.

STRING
This type object is used to describe columns in a database that are string-based (e.g. CHAR).

BINARY
This type object is used to describe (long) binary columns in a database (e.g. LONG, RAW, BLOBs).

NUMBER
This type object is used to describe numeric columns in a database.

DATETIME
This type object is used to describe date/time columns in a database.

ROWID
This type object is used to describe the “Row ID” column in a database.

SQL NULL values are represented by the Python None singleton on input and output. Note: Usage of Unix ticks for
database interfacing can cause troubles because of the limited date range they cover.

1.3.6 Implementation Hints

• The preferred object types for the date/time objects are those defined in the mxDateTime package. It provides
all necessary constructors and methods both at Python and C level.

• The preferred object type for Binary objects are the buffer types available in standard Python starting with
version 1.5.2. Please see the Python documentation for details. For information about the the C interface have a
look at Include/bufferobject.h and Objects/bufferobject.c in the Python source distribution.

• Here is a sample implementation of the Unix ticks based constructors for date/time delegating work to the
generic constructors:

import time

def DateFromTicks(ticks):

return apply(Date,time.localtime(ticks)[:3])

def TimeFromTicks(ticks):

return apply(Time,time.localtime(ticks)[3:6])
(continues on next page)

14 Chapter 1. Documentation Contents:

http://starship.python.net/%7Elemburg/mxDateTime.html

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

def TimestampFromTicks(ticks):

return apply(Timestamp,time.localtime(ticks)[:6])

• This Python class allows implementing the above type objects even though the description type code field yields
multiple values for on type object:

class DBAPITypeObject:
def __init__(self,*values):
self.values = values
def __cmp__(self,other):
if other in self.values:

return 0
if other < self.values:

return 1
else:

return -1

The resulting type object compares equal to all values passed to the
constructor.

• Here is a snippet of Python code that implements the exception hierarchy defined above:

import exceptions

class Error(exceptions.StandardError):
pass

class Warning(exceptions.StandardError):
pass

class InterfaceError(Error):
pass

class DatabaseError(Error):
pass

class InternalError(DatabaseError):
pass

class OperationalError(DatabaseError):
pass

class ProgrammingError(DatabaseError):
pass

class IntegrityError(DatabaseError):
pass

class DataError(DatabaseError):
pass

class NotSupportedError(DatabaseError):
pass

(continues on next page)

1.3. Python Database API Specification 2.0 15

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

In C you can use the `PyErr_NewException(fullname, base, NULL)` API to
create the exception objects.

1.3.7 Major Changes from Version 1.0 to Version 2.0

The Python Database API 2.0 introduces a few major changes compared to the 1.0 version. Because some
of these changes will cause existing DB API 1.0 based scripts to break, the major version number was
adjusted to reflect this change. These are the most important changes from 1.0 to 2.0:

• The need for a separate dbi module was dropped and the functionality merged into the module
interface itself.

• New constructors and Type Objects were added for date/time values, the RAW Type Object was
renamed to BINARY. The resulting set should cover all basic data types commonly found in modern
SQL databases.

• New constants (apilevel, threadlevel, paramstyle) and methods (executemany, nextset) were added
to provide better database bindings.

• The semantics of .callproc() needed to call stored procedures are now clearly defined.

• The definition of the .execute() return value changed. Previously, the return value was based on the
SQL statement type (which was hard to implement right) – it is undefined now; use the more flexible
.rowcount attribute instead. Modules are free to return the old style return values, but these are no
longer mandated by the specification and should be considered database interface dependent.

• Class based exceptions were incorporated into the specification. Module implementors are free to
extend the exception layout defined in this specification by subclassing the defined exception classes.

1.3.8 Open Issues

Although the version 2.0 specification clarifies a lot of questions that were left open in the 1.0 version, there are still
some remaining issues:

• Define a useful return value for .nextset() for the case where a new result set is available.

• Create a fixed point numeric type for use as loss-less monetary and decimal interchange format.

1.3.9 Footnotes

1.4 Compliance to Python Database API 2.0

1.4.1 Unsupported Optional Features

Cursor.nextset()
This method is not implemented because the database engine does not support opening multiple result sets
simultaneously with a single cursor.

1.4.2 Nominally Supported Optional Features

class firebirdsql.Cursor

16 Chapter 1. Documentation Contents:

http://www.python.org/topics/database/DatabaseAPI-1.0.html

pyfirebirdsql documentation, Release 1.0.0

arraysize

As required by the spec, the value of this attribute is observed with respect to the fetchmany method. However,
changing the value of this attribute does not make any difference in fetch efficiency because the database engine
only supports fetching a single row at a time.

setinputsizes()

Although this method is present, it does nothing, as allowed by the spec.

setoutputsize()

Although this method is present, it does nothing, as allowed by the spec.

1.4.3 Extensions and Caveats

pyfirebirdsql offers a large feature set beyond the minimal requirements of the Python DB API. Most of these ex-
tensions are documented in the section of this document entitled Native Database Engine Features and Extensions
Beyond the Python DB API.

This section attempts to document only those features that overlap with the DB API, or are too insignificant to warrant
their own subsection elsewhere.

firebirdsql.connect()
This function supports the following optional keyword arguments in addition to those required by the spec:

Role For connecting to a database with a specific SQL role.

Example:

firebirdsql.connect(dsn='host:/path/database.db', user='limited_user',
password='pass', role='MORE_POWERFUL_ROLE')

Charset For explicitly specifying the character set of the connection. See Firebird Documentation
for a list of available character sets, and Unicode Fields and pyfirebirdsql section for information
on handling extended character sets with pyfirebirdsql.

Example:

firebirdsql.connect(dsn='host:/path/database.db', user='sysdba',
password='pass', charset='UTF8')

Timeout (Optional) Dictionary with timeout and action specification. See section about Connection
Timeouts for details.

class firebirdsql.Connection

charset
(read-only) The character set of the connection (set via the charset parameter of firebirdsql.
connect()). See Firebird Documentation for a list of available character sets, and Unicode Fields and
pyfirebirdsql section for information on handling extended character sets with pyfirebirdsql.

server_version
(read-only) The version string of the database server to which this connection is connected. For example,
a connection to Firebird 1.0 on Windows has the following server_version: WI-V6.2.794 Firebird 1.0

1.4. Compliance to Python Database API 2.0 17

beyond-python-db-api.html#connection-timeout
beyond-python-db-api.html#connection-timeout

pyfirebirdsql documentation, Release 1.0.0

execute_immediate()
Executes a statement without caching its prepared form. The statement must not be of a type that returns a
result set. In most cases (especially cases in which the same statement – perhaps a parameterized statement
– is executed repeatedly), it is better to create a cursor using the connection’s cursor method, then execute
the statement using one of the cursor’s execute methods.

Arguments:

Sql String containing the SQL statement to execute.

commit(retaining=False)

rollback(retaining=False)
The commit and rollback methods accept an optional boolean parameter retaining (default False) that
indicates whether the transactional context of the transaction being resolved should be recycled. For de-
tails, see the Advanced Transaction Control: Retaining Operations section of this document. The rollback
method accepts an optional string parameter savepoint that causes the transaction to roll back only as far
as the designated savepoint, rather than rolling back entirely. For details, see the Advanced Transaction
Control: Savepoints section of this document.

class firebirdsql.Cursor

description
pyfirebirdsql makes absolutely no guarantees about description except those required by the Python
Database API Specification 2.0 (that is, description is either None or a sequence of 7-element sequences).
Therefore, client programmers should not rely on description being an instance of a particular class or
type. pyfirebirdsql provides several named positional constants to be used as indices into a given element
of description . The contents of all description elements are defined by the DB API spec; these constants
are provided merely for convenience.

DESCRIPTION_NAME
DESCRIPTION_TYPE_CODE
DESCRIPTION_DISPLAY_SIZE
DESCRIPTION_INTERNAL_SIZE
DESCRIPTION_PRECISION
DESCRIPTION_SCALE
DESCRIPTION_NULL_OK

Here is an example of accessing the name of the first field in the description of cursor cur:

nameOfFirstField = cur.description[0][firebirdsql.DESCRIPTION_NAME]

For more information, see the documentation of Cursor.description in the DB API Specification.

rowcount
Although pyfirebirdsql’s Cursor‘s implement this attribute, the database engine’s own support for the
determination of “rows affected”/”rows selected” is quirky. The database engine only supports the deter-
mination of rowcount for ‘INSERT, UPDATE, DELETE, and SELECT statements. When stored procedures
become involved, row count figures are usually not available to the client. Determining rowcount for SE-
LECT statements is problematic: the rowcount is reported as zero until at least one row has been fetched
from the result set, and the rowcount is misreported if the result set is larger than 1302 rows. The server
apparently marshals result sets internally in batches of 1302, and will misreport the rowcount for result
sets larger than 1302 rows until the 1303rd row is fetched, result sets larger than 2604 rows until the
2605th row is fetched, and so on, in increments of 1302. As required by the Python DB API Spec, the
rowcount attribute “is -1 in case no executeXX() has been performed on the cursor or the rowcount of the
last operation is not determinable by the interface”.

fetchone()

18 Chapter 1. Documentation Contents:

Python-DB-API-2.0.html

pyfirebirdsql documentation, Release 1.0.0

fetchmany()

fetchall()
pyfirebirdsql makes absolutely no guarantees about the return value of the fetchone / fetchmany / fetchall
methods except that it is a sequence indexed by field position. pyfirebirdsql makes absolutely no guarantees
about the return value of the fetchonemap / fetchmanymap / fetchallmap methods (documented below)
except that it is a mapping of field name to field value. Therefore, client programmers should not rely on
the return value being an instance of a particular class or type.

fetchonemap()
This method is just like the standard fetchone method of the DB API, except that it returns a mapping of
field name to field value, rather than a sequence.

fetchmanymap()
This method is just like the standard fetchmany method of the DB API, except that it returns a sequence of
mappings of field name to field value, rather than a sequence of sequences.

fetchallmap()
This method is just like the standard fetchall method of the DB API, except that it returns a sequence of
mappings of field name to field value, rather than a sequence of sequences.

iter()

itermap()
These methods are equivalent to the fetchall and fetchallmap methods, respectively, except that they return
iterators rather than materialized sequences. iter and itermap are exercised in this example.

1.5 Native Database Engine Features and Extensions Beyond the
Python DB API

1.5.1 Programmatic Database Creation and Deletion

The Firebird engine stores a database in a fairly straightforward manner: as a single file or, if desired, as a segmented
group of files.

The engine supports dynamic database creation via the SQL statement CREATE DATABASE.

The engine also supports dropping (deleting) databases dynamically, but dropping is a more complicated operation
than creating, for several reasons: an existing database may be in use by users other than the one who requests
the deletion, it may have supporting objects such as temporary sort files, and it may even have dependent shadow
databases. Although the database engine recognizes a DROP DATABASE SQL statement, support for that statement is
limited to the isql command-line administration utility. However, the engine supports the deletion of databases via an
API call, which pyfirebirdsql exposes to Python (see below).

pyfirebirdsql supports dynamic database creation and deletion via the module-level function firebirdsql.
create_database() and the method drop_database(). These are documented below, then demonstrated
by a brief example.

firebirdsql.create_database()
Creates a database according to the supplied CREATE DATABASE SQL statement. Returns an open connection
to the newly created database.

Arguments:

Sql string containing the CREATE DATABASE statement. Note that this statement may need to
include a username and password.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 19

pyfirebirdsql documentation, Release 1.0.0

Connection.drop_database()
Deletes the database to which the connection is attached.

This method performs the database deletion in a responsible fashion. Specifically, it:

• raises an OperationalError instead of deleting the database if there are other active connections to the
database

• deletes supporting files and logs in addition to the primary database file(s)

This method has no arguments.

Example program:

import firebirdsql

con = firebirdsql.create_database(
"create database '/temp/db.db' user 'sysdba' password 'pass'"
)

con.drop_database()

1.5.2 Advanced Transaction Control

For the sake of simplicity, pyfirebirdsql lets the Python programmer ignore transaction management to the greatest
extent allowed by the Python Database API Specification 2.0. The specification says, “if the database supports an
auto-commit feature, this must be initially off”. At a minimum, therefore, it is necessary to call the commit method of
the connection in order to persist any changes made to the database. Transactions left unresolved by the programmer
will be ‘rollback‘ed when the connection is garbage collected.

Remember that because of ACID, every data manipulation operation in the Firebird database engine takes place in
the context of a transaction, including operations that are conceptually “read-only”, such as a typical SELECT. The
client programmer of pyfirebirdsql establishes a transaction implicitly by using any SQL execution method, such as
execute_immediate(), Cursor.execute(), or Cursor.callproc().

Although pyfirebirdsql allows the programmer to pay little attention to transactions, it also exposes the full comple-
ment of the database engine’s advanced transaction control features: transaction parameters, retaining transactions,
savepoints, and distributed transactions.

Explicit transaction start

In addition to the implicit transaction initiation required by Python Database API, pyfirebirdsql allows the programmer
to start transactions explicitly via the Connection.begin method.

Connection.begin(tpb)
Starts a transaction explicitly. This is never required; a transaction will be started implicitly if necessary.

Tpb Optional transaction parameter buffer (TPB) populated with firebirdsql.isc_tpb_* constants.
See the Firebird API guide for these constants’ meanings.

Transaction Parameters

The database engine offers the client programmer an optional facility called transaction parameter buffers (TPBs) for
tweaking the operating characteristics of the transactions he initiates. These include characteristics such as whether
the transaction has read and write access to tables, or read-only access, and whether or not other simultaneously active
transactions can share table access with the transaction.

20 Chapter 1. Documentation Contents:

http://philip.greenspun.com/panda/databases-choosing#acid

pyfirebirdsql documentation, Release 1.0.0

Connections have a default_tpb attribute that can be changed to set the default TPB for all transactions subse-
quently started on the connection. Alternatively, if the programmer only wants to set the TPB for a single transaction,
he can start a transaction explicitly via the begin() method and pass a TPB for that single transaction.

For details about TPB construction, see the Firebird API documentation. In particular, the ibase.h supplied with
Firebird contains all possible TPB elements – single bytes that the C API defines as constants whose names begin
with isc_tpb_. pyfirebirdsql makes all of those TPB constants available (under the same names) as module-level
constants in the form of single-character strings. A transaction parameter buffer is handled in C as a character array;
pyfirebirdsql requires that TPBs be constructed as Python strings. Since the constants in the firebirdsql.isc_tpb_*
family are single-character Python strings, they can simply be concatenated to create a TPB.

Warning: This method requires good knowledge of tpc_block structure and proper order of various parameters,
as Firebird engine will raise an error when badly structured block would be used. Also definition of table reser-
vation parameters is uncomfortable as you’ll need to mix binary codes with table names passed as Pascal strings
(characters preceded by string length).

The following program uses explicit transaction initiation and TPB construction to establish an unobtrusive transaction
for read-only access to the database:

import firebirdsql

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password='pass
→˓')

Construct a TPB by concatenating single-character strings (bytes)
from the firebirdsql.isc_tpb_* family.
customTPB = (

firebirdsql.isc_tpb_read
+ firebirdsql.isc_tpb_read_committed
+ firebirdsql.isc_tpb_rec_version

)

Explicitly start a transaction with the custom TPB:
con.begin(tpb=customTPB)

Now read some data using cursors:
...

Commit the transaction with the custom TPB. Future transactions
opened on con will not use a custom TPB unless it is explicitly
passed to con.begin every time, as it was above, or
con.default_tpb is changed to the custom TPB, as in:
con.default_tpb = customTPB
con.commit()

For convenient and safe construction of custom tpb_block, pyfirebirdsql provides special utility class TPB.

class firebirdsql.TPB

access_mode
Required access mode. Default isc_tpb_write.

isolation_level
Required Transaction Isolation Level. Default isc_tpb_concurrency.

lock_resolution

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 21

pyfirebirdsql documentation, Release 1.0.0

Required lock resolution method. Default isc_tpb_wait.

lock_timeout
Required lock timeout. Default None.

table_reservation
Table reservation specification. Default None. Instead of changing the value of the table_reservation
object itself, you must change its elements by manipulating it as though it were a dictionary that mapped
“TABLE_NAME”: (sharingMode, accessMode) For example:

tpbBuilder.table_reservation["MY_TABLE"] =
(firebirdsql.isc_tpb_protected, firebirdsql.isc_tpb_lock_write)

render()
Returns valid transaction parameter block according to current values of member attributes.

import firebirdsql

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password='pass
→˓')

Use TPB to construct valid transaction parameter block
from the firebirdsql.isc_tpb_* family.
customTPB = TPB()
customTPB.access_mode = firebirdsql.isc_tpb_read
customTPB.isolation_level = firebirdsql.isc_tpb_read_committed

+ firebirdsql.isc_tpb_rec_version

Explicitly start a transaction with the custom TPB:
con.begin(tpb=customTPB.render())

Now read some data using cursors:
...

Commit the transaction with the custom TPB. Future transactions
opened on con will not use a custom TPB unless it is explicitly
passed to con.begin every time, as it was above, or
con.default_tpb is changed to the custom TPB, as in:
con.default_tpb = customTPB.render()
con.commit()

If you want to build only table reservation part of tpb (for example to add to various custom built parameter blocks),
you can use class TableReservation instead TPB.

class firebirdsql.TableReservation
This is a dictionary-like class, where keys are table names and values must be tuples of access parameters, i.e.
“TABLE_NAME”: (sharingMode, accessMode)

render()
Returns propely formatted table reservation part of transaction parameter block according to current val-
ues.

Conenction object also exposes two methods that return infromation about current transaction:

class firebirdsql.Connection

trans_info(request)
Pythonic wrapper around transaction_info() call.

22 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

Request One or more information request codes (see transaction_info for details). Multiple
codes must be passed as tuple.

Returns decoded response(s) for specified request code(s). When multiple requests are passed, returns a
dictionary where key is the request code and value is the response from server.

transaction_info(request, result_type)
Thin wrapper around Firebird API isc_transaction_info call. This function returns information about active
transaction. Raises ProgrammingError exception when transaction is not active.

Request One from the next constants:

• isc_info_tra_id

• isc_info_tra_oldest_interesting

• isc_info_tra_oldest_snapshot

• isc_info_tra_oldest_active

• isc_info_tra_isolation

• isc_info_tra_access

• isc_info_tra_lock_timeout

See Firebird API Guide for details.

Result_type String code for result type:

• ‘i’ for Integer

• ‘s’ fro String

Retaining Operations

The commit and rollback methods of firebirdsql.Connection accept an optional boolean parameter retaining (default
False) to indicate whether to recycle the transactional context of the transaction being resolved by the method call.

If retaining is True, the infrastructural support for the transaction active at the time of the method call will be “re-
tained” (efficiently and transparently recycled) after the database server has committed or rolled back the conceptual
transaction.

In code that commits or rolls back frequently, “retaining” the transaction yields considerably better performance.
However, retaining transactions must be used cautiously because they can interfere with the server’s ability to garbage
collect old record versions. For details about this issue, read the “Garbage” section of this document by Ann Harrison.

For more information about retaining transactions, see Firebird documentation.

Savepoints

Firebird 1.5 introduced support for transaction savepoints. Savepoints are named, intermediate control points within
an open transaction that can later be rolled back to, without affecting the preceding work. Multiple savepoints can
exist within a single unresolved transaction, providing “multi-level undo” functionality.

Although Firebird savepoints are fully supported from SQL alone via the SAVEPOINT ‘name’ and ROLLBACK TO
‘name’ statements, pyfirebirdsql also exposes savepoints at the Python API level for the sake of convenience.

Connection.savepoint(name)
Establishes a savepoint with the specified name. To roll back to a specific savepoint, call the rollback()
method and provide a value (the name of the savepoint) for the optional savepoint parameter. If the savepoint

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 23

http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1123236035:18161&page=ibp_expert4

pyfirebirdsql documentation, Release 1.0.0

parameter of rollback() is not specified, the active transaction is cancelled in its entirety, as required by the
Python Database API Specification.

The following program demonstrates savepoint manipulation via the pyfirebirdsql API, rather than raw SQL.

import firebirdsql

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password='pass
→˓')
cur = con.cursor()

cur.execute("recreate table test_savepoints (a integer)")
con.commit()

print 'Before the first savepoint, the contents of the table are:'
cur.execute("select * from test_savepoints")
print ' ', cur.fetchall()

cur.execute("insert into test_savepoints values (?)", [1])
con.savepoint('A')
print 'After savepoint A, the contents of the table are:'
cur.execute("select * from test_savepoints")
print ' ', cur.fetchall()

cur.execute("insert into test_savepoints values (?)", [2])
con.savepoint('B')
print 'After savepoint B, the contents of the table are:'
cur.execute("select * from test_savepoints")
print ' ', cur.fetchall()

cur.execute("insert into test_savepoints values (?)", [3])
con.savepoint('C')
print 'After savepoint C, the contents of the table are:'
cur.execute("select * from test_savepoints")
print ' ', cur.fetchall()

con.rollback(savepoint='A')
print 'After rolling back to savepoint A, the contents of the table are:'
cur.execute("select * from test_savepoints")
print ' ', cur.fetchall()

con.rollback()
print 'After rolling back entirely, the contents of the table are:'
cur.execute("select * from test_savepoints")
print ' ', cur.fetchall()

The output of the example program is shown below.

Before the first savepoint, the contents of the table are:
[]

After savepoint A, the contents of the table are:
[(1,)]

After savepoint B, the contents of the table are:
[(1,), (2,)]

After savepoint C, the contents of the table are:
[(1,), (2,), (3,)]

After rolling back to savepoint A, the contents of the table are:
[(1,)]

(continues on next page)

24 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

After rolling back entirely, the contents of the table are:
[]

Using multiple transactions with the same connection

Python Database API 2.0 was created with assumption that connection can support only one transactions per single
connection. However, Firebird can support multiple independent transactions that can run simultaneously within
single connection / attachment to the database. This feature is very important, as applications may require multiple
transaction openned simultaneously to perform various tasks, which would require to open multiple connections and
thus consume more resources than necessary.

pyfirebirdsql surfaces this Firebird feature through new class Transaction and extensions to Connection and
Cursor classes.

class firebirdsql.Connection

trans(tpb=None)
Creates a new Transaction that operates within the context of this connection. Cursors can be created
within that Transaction via its .cursor() method.

transactions
read-only property

List of non-close()d Transaction objects associated with this Connection. An element of this list may rep-
resent a resolved or unresolved physical transaction. Once a Transaction object has been created, it is only
removed from the Connection’s tracker if the Transaction’s close() method is called (Transaction.__del__
triggers an implicit close() call if necessary), or (obviously) if the Connection itself is close()d. The initial
implementation will not make any guarantees about the order of the Transactions in this list.

main_transaction
read-only property

Transaction object that represents the DB-API implicit transaction. The implementation guarantees that
the same Transaction object will be reused across all DB-API transactions during the lifetime of the Con-
nection.

prepare()
Manually triggers the first phase of a two-phase commit (2PC). Use of this method is optional; if prepa-
ration is not triggered manually, it will be performed implicitly by commit() in a 2PC. See also the ‘Dis-
tributed Transactions‘_ section for details.

class firebirdsql.Cursor

transaction
read-only property

Transaction with which this Cursor is associated. None if the Transaction has been close()d, or if the
Cursor has been close()d.

class firebirdsql.Transaction

__init__(connection, tpb=None)
Constructor requires open Connection object and optional tpb specification.

connection
read-only property

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 25

pyfirebirdsql documentation, Release 1.0.0

Connection object on which this Transaction is based. When the Connection’s close() method is called,
all Transactions that depend on the connection will also be implicitly close()d. If a Transaction has been
close()d, its connection property will be None.

closed
read-only property

True if Transaction has been closed (explicitly or implicitly).

n_physical
read-only property (int)

Number of physical transactions that have been executed via this Transaction object during its lifetime.

resolution
read-only property (int)

Zero if this Transaction object is currently managing an open physical transaction. One if the physical
transaction has been resolved normally. Note that this is an int property rather than a bool, and is named
resolution rather than resolved, so that the non-zero values other than one can be assigned to convey specific
information about the state of the transaction, in a future implementation (consider distributed transaction
prepared state, limbo state, etc.).

cursors
List of non-close()d Cursor objects associated with this Transaction. When Transaction’s close() method
is called, whether explicitly or implicitly, it will implicitly close() each of its Cursors. Current implemen-
tation do not make any guarantees about the order of the Cursors in this list.

begin(tpb)
See Connection.begin() for details.

commit(retaining=False)
See firebirdsql.Connection.commit() for details.

close()
Permanently closes the Transaction object and severs its associations with other objects. If the physical
transaction is unresolved when this method is called, a rollback() will be performed first.

prepare()
See Connection.prepare() for details.

rollback(retaining=False)
See firebirdsql.Connection.rollback() for details.

savepoint()
See Connection.savepoint() for details.

trans_info()
See Connection.trans_info() for details.

transaction_info()
See Connection.transaction_info() for details.

cursor()
Creates a new Cursor that will operate in the context of this Transaction. The association between a Cursor
and its Transaction is set when the Cursor is created, and cannot be changed during the lifetime of that
Cursor. See Connection.cursor() for more details.

If you don’t want multiple transactions, you can use implicit transaction object associated with Connection and control
it via transaction-management and cursor methods of the Connection.

Alternatively, you can directly access the implicit transaction exposed as main_transaction and control it via its
transaction-management methods.

26 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

To use additional transactions, create new Transaction object calling Connection.trans() method.

1.5.3 Prepared Statements

When you define a Python function, the interpreter initially parses the textual representation of the function and
generates a binary equivalent called bytecode. The bytecode representation can then be executed directly by the
Python interpreter any number of times and with a variety of parameters, but the human-oriented textual definition of
the function never need be parsed again.

Database engines perform a similar series of steps when executing a SQL statement. Consider the following series of
statements:

cur.execute("insert into the_table (a,b,c) values ('aardvark', 1, 0.1)")
...
cur.execute("insert into the_table (a,b,c) values ('zymurgy', 2147483647, 99999.999)")

If there are many statements in that series, wouldn’t it make sense to “define a function” to insert the provided “pa-
rameters” into the predetermined fields of the predetermined table, instead of forcing the database engine to parse
each statement anew and figure out what database entities the elements of the statement refer to? In other words, why
not take advantage of the fact that the form of the statement (“the function”) stays the same throughout, and only the
values (“the parameters”) vary? Prepared statements deliver that performance benefit and other advantages as well.

The following code is semantically equivalent to the series of insert operations discussed previously, except that it uses
a single SQL statement that contains Firebird’s parameter marker (?) in the slots where values are expected, then
supplies those values as Python tuples instead of constructing a textual representation of each value and passing it to
the database engine for parsing:

insertStatement = "insert into the_table (a,b,c) values (?,?,?)"
cur.execute(insertStatement, ('aardvark', 1, 0.1))
...
cur.execute(insertStatement, ('zymurgy', 2147483647, 99999.999))

Only the values change as each row is inserted; the statement remains the same. For many years, pyfirebirdsql has
recognized situations similar to this one and automatically reused the same prepared statement in each Cursor.
execute() call. In pyfirebirdsql 3.2, the scheme for automatically reusing prepared statements has become more
sophisticated, and the API has been extended to offer the client programmer manual control over prepared statement
creation and use.

The entry point for manual statement preparation is the Cursor.prep method.

Cursor.prep(sql)

Sql string parameter that contains the SQL statement to be prepared. Returns a
PreparedStatement instance.

class firebirdsql.PreparedStatement
PreparedStatement has no public methods, but does have the following public read-only properties:

sql
A reference to the string that was passed to prep() to create this PreparedStatement.

statement_type
An integer code that can be matched against the statement type constants in the firebird-
sql.isc_info_sql_stmt_* series. The following statement type codes are currently available:

• isc_info_sql_stmt_commit

• isc_info_sql_stmt_ddl

• isc_info_sql_stmt_delete

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 27

pyfirebirdsql documentation, Release 1.0.0

• isc_info_sql_stmt_exec_procedure

• isc_info_sql_stmt_get_segment

• isc_info_sql_stmt_insert

• isc_info_sql_stmt_put_segment

• isc_info_sql_stmt_rollback

• isc_info_sql_stmt_savepoint

• isc_info_sql_stmt_select

• isc_info_sql_stmt_select_for_upd

• isc_info_sql_stmt_set_generator

• isc_info_sql_stmt_start_trans

• isc_info_sql_stmt_update

n_input_params
The number of input parameters the statement requires.

n_output_params
The number of output fields the statement produces.

plan
A string representation of the execution plan generated for this statement by the database engine’s opti-
mizer. This property can be used, for example, to verify that a statement is using the expected index.

description
A Python DB API 2.0 description sequence (of the same format as Cursor.description) that de-
scribes the statement’s output parameters. Statements without output parameters have a description of
None.

In addition to programmatically examining the characteristics of a SQL statement via the properties of Pre-
paredStatement, the client programmer can submit a PreparedStatement to Cursor.execute() or Cursor.
executemany() for execution. The code snippet below is semantically equivalent to both of the previous snip-
pets in this section, but it explicitly prepares the INSERT statement in advance, then submits it to Cursor.
executemany() for execution:

insertStatement = cur.prep("insert into the_table (a,b,c) values (?,?,?)")
inputRows = [

('aardvark', 1, 0.1),
...
('zymurgy', 2147483647, 99999.999)

]
cur.executemany(insertStatement, inputRows)

Example Program

The following program demonstrates the explicit use of PreparedStatements. It also benchmarks explicit Prepared-
Statement reuse against pyfirebirdsql’s automatic PreparedStatement reuse, and against an input strategy that prevents
PreparedStatement reuse.

import time
import firebirdsql

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test-20.firebird',
user='sysdba', password='masterkey'

)
(continues on next page)

28 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

cur = con.cursor()

Create supporting database entities:
cur.execute("recreate table t (a int, b varchar(50))")
con.commit()
cur.execute("create unique index unique_t_a on t(a)")
con.commit()

Explicitly prepare the insert statement:
psIns = cur.prep("insert into t (a,b) values (?,?)")
print 'psIns.sql: "%s"' % psIns.sql
print 'psIns.statement_type == firebirdsql.isc_info_sql_stmt_insert:', (

psIns.statement_type == firebirdsql.isc_info_sql_stmt_insert
)

print 'psIns.n_input_params: %d' % psIns.n_input_params
print 'psIns.n_output_params: %d' % psIns.n_output_params
print 'psIns.plan: %s' % psIns.plan

print

N = 10000
iStart = 0

The client programmer uses a PreparedStatement explicitly:
startTime = time.time()
for i in xrange(iStart, iStart + N):

cur.execute(psIns, (i, str(i)))
print (

'With explicit prepared statement, performed'
'\n %0.2f insertions per second.' % (N / (time.time() - startTime))

)
con.commit()

iStart += N

pyfirebirdsql automatically uses a PreparedStatement "under the hood":
startTime = time.time()
for i in xrange(iStart, iStart + N):

cur.execute("insert into t (a,b) values (?,?)", (i, str(i)))
print (

'With implicit prepared statement, performed'
'\n %0.2f insertions per second.' % (N / (time.time() - startTime))

)
con.commit()

iStart += N

A new SQL string containing the inputs is submitted every time, so
pyfirebirdsql is not able to implicitly reuse a PreparedStatement. Also, in a
more complicated scenario where the end user supplied the string input
values, the program would risk SQL injection attacks:
startTime = time.time()
for i in xrange(iStart, iStart + N):

cur.execute("insert into t (a,b) values (%d,'%s')" % (i, str(i)))
print (

'When unable to reuse prepared statement, performed'
(continues on next page)

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 29

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

'\n %0.2f insertions per second.' % (N / (time.time() - startTime))
)

con.commit()

Prepare a SELECT statement and examine its properties. The optimizer's plan
should use the unique index that we created at the beginning of this program.
print
psSel = cur.prep("select * from t where a = ?")
print 'psSel.sql: "%s"' % psSel.sql
print 'psSel.statement_type == firebirdsql.isc_info_sql_stmt_select:', (

psSel.statement_type == firebirdsql.isc_info_sql_stmt_select
)

print 'psSel.n_input_params: %d' % psSel.n_input_params
print 'psSel.n_output_params: %d' % psSel.n_output_params
print 'psSel.plan: %s' % psSel.plan

The current implementation does not allow PreparedStatements to be prepared
on one Cursor and executed on another:
print
print 'Note that PreparedStatements are not transferrable from one cursor to another:'
cur2 = con.cursor()
cur2.execute(psSel)

Output:

psIns.sql: "insert into t (a,b) values (?,?)"
psIns.statement_type == firebirdsql.isc_info_sql_stmt_insert: True
psIns.n_input_params: 2
psIns.n_output_params: 0
psIns.plan: None

With explicit prepared statement, performed
9551.10 insertions per second.

With implicit prepared statement, performed
9407.34 insertions per second.

When unable to reuse prepared statement, performed
1882.53 insertions per second.

psSel.sql: "select * from t where a = ?"
psSel.statement_type == firebirdsql.isc_info_sql_stmt_select: True
psSel.n_input_params: 1
psSel.n_output_params: 2
psSel.plan: PLAN (T INDEX (UNIQUE_T_A))

Note that PreparedStatements are not transferrable from one cursor to another:
Traceback (most recent call last):

File "adv_prepared_statements__overall_example.py", line 86, in ?
cur2.execute(psSel)

firebirdsql.ProgrammingError: (0, 'A PreparedStatement can only be used with the
Cursor that originally prepared it.')

As you can see, the version that prevents the reuse of prepared statements is about five times slower – for a trivial
statement. In a real application, SQL statements are likely to be far more complicated, so the speed advantage of using
prepared statements would only increase.

As the timings indicate, pyfirebirdsql does a good job of reusing prepared statements even if the client pro-
gram is written in a style strictly compatible with the Python DB API 2.0 (which accepts only strings – not

30 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

PreparedStatement objects – to the Cursor.execute() method). The performance loss in this case is
less than one percent.

1.5.4 Named Cursors

To allow the Python programmer to perform scrolling UPDATE or DELETE via the “SELECT . . . FOR UPDATE”
syntax, pyfirebirdsql provides the read/write property Cursor.name.

Cursor.name
Name for the SQL cursor. This property can be ignored entirely if you don’t need to use it.

Example Program

import firebirdsql

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password='pass
→˓')
curScroll = con.cursor()
curUpdate = con.cursor()

curScroll.execute("select city from addresses for update")
curScroll.name = 'city_scroller'
update = "update addresses set city=? where current of " + curScroll.name

for (city,) in curScroll:
city = ... # make some changes to city
curUpdate.execute(update, (city,))

con.commit()

1.5.5 Parameter Conversion

pyfirebirdsql converts bound parameters marked with a ? in SQL code in a standard way. However, the module
also offers several extensions to standard parameter binding, intended to make client code more readable and more
convenient to write.

Implicit Conversion of Input Parameters from Strings

The database engine treats most SQL data types in a weakly typed fashion: the engine may attempt to convert the raw
value to a different type, as appropriate for the current context. For instance, the SQL expressions 123 (integer) and
‘123’ (string) are treated equivalently when the value is to be inserted into an integer field; the same applies when
‘123’ and 123 are to be inserted into a varchar field.

This weak typing model is quite unlike Python’s dynamic yet strong typing. Although weak typing is regarded with
suspicion by most experienced Python programmers, the database engine is in certain situations so aggressive about
its typing model that pyfirebirdsql must compromise in order to remain an elegant means of programming the database
engine.

An example is the handling of “magic values” for date and time fields. The database engine interprets certain string
values such as ‘yesterday’ and ‘now’ as having special meaning in a date/time context. If pyfirebirdsql did not accept
strings as the values of parameters destined for storage in date/time fields, the resulting code would be awkward. Con-
sider the difference between the two Python snippets below, which insert a row containing an integer and a timestamp
into a table defined with the following DDL statement:

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 31

http://sourceforge.net/tracker/index.php?func=detail&aid=531828&group_id=9913&atid=309913

pyfirebirdsql documentation, Release 1.0.0

create table test_table (i int, t timestamp)

i = 1
t = 'now'
sqlWithMagicValues = "insert into test_table (i, t) values (?, '%s')" % t
cur.execute(sqlWithMagicValues, (i,))

i = 1
t = 'now'
cur.execute("insert into test_table (i, t) values (?, ?)", (i, t))

If pyfirebirdsql did not support weak parameter typing, string parameters that the database engine is to interpret as
“magic values” would have to be rolled into the SQL statement in a separate operation from the binding of the rest of
the parameters, as in the first Python snippet above. Implicit conversion of parameter values from strings allows the
consistency evident in the second snippet, which is both more readable and more general.

It should be noted that pyfirebirdsql does not perform the conversion from string itself. Instead, it passes that respon-
sibility to the database engine by changing the parameter metadata structure dynamically at the last moment, then
restoring the original state of the metadata structure after the database engine has performed the conversion.

A secondary benefit is that when one uses pyfirebirdsql to import large amounts of data from flat files into the database,
the incoming values need not necessarily be converted to their proper Python types before being passed to the database
engine. Eliminating this intermediate step may accelerate the import process considerably, although other factors such
as the chosen connection protocol and the deactivation of indexes during the import are more consequential. For
bulk import tasks, the database engine’s external tables also deserve consideration. External tables can be used to suck
semi-structured data from flat files directly into the relational database without the intervention of an ad hoc conversion
program.

Dynamic Type Translation

Dynamic type translators are conversion functions registered by the Python programmer to transparently convert
database field values to and from their internal representation.

The client programmer can choose to ignore translators altogether, in which case pyfirebirdsql will manage them
behind the scenes. Otherwise, the client programmer can use any of several standard type translators included with
pyfirebirdsql, register custom translators, or set the translators to None to deal directly with the pyfirebirdsql-internal
representation of the data type. When translators have been registered for a specific SQL data type, Python objects on
their way into a database field of that type will be passed through the input translator before they are presented to the
database engine; values on their way out of the database into Python will be passed through the corresponding output
translator. Output and input translation for a given type is usually implemented by two different functions.

Specifics of the Dynamic Type Translation API

Translators are managed with next methods of Connection and Cursor.

Connection.get_type_trans_in()
Retrieves the inbound type translation map.

Connection.set_type_trans_in(trans_dict)
Changes the inbound type translation map.

Cursor.get_type_trans_in()
Retrieves the inbound type translation map.

Cursor.set_type_trans_in(trans_dict)
Changes the inbound type translation map.

32 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

The set_type_trans_[in|out] methods accept a single argument: a mapping of type name to translator. The
get_type_trans[in|out] methods return a copy of the translation table.

Cursor‘s inherit their ‘Connection’s translation settings, but can override them without affecting the connection or
other cursors (much as subclasses can override the methods of their base classes).

The following code snippet installs an input translator for fixed point types (NUMERIC/ DECIMAL SQL types) into
a connection:

con.set_type_trans_in({'FIXED': fixed_input_translator_function})

The following method call retrieves the type translation table for con:

con.get_type_trans_in()

The method call above would return a translation table (dictionary) such as this:

{
'DATE': <function date_conv_in at 0x00920648>,
'TIMESTAMP': <function timestamp_conv_in at 0x0093E090>,
'FIXED': <function <lambda> at 0x00962DB0>,
'TIME': <function time_conv_in at 0x009201B0>

}

Notice that although the sample code registered only one type translator, there are four listed in the mapping returned
by the get_type_trans_in method. By default, pyfirebirdsql uses dynamic type translation to implement the conversion
of DATE, TIME, TIMESTAMP, NUMERIC, and DECIMAL values. For the source code locations of pyfirebirdsql’s
reference translators, see the table in the next section.

In the sample above, a translator is registered under the key ‘FIXED’, but Firebird has no SQL data type named FIXED.
The following table lists the names of the database engine’s SQL data types in the left column, and the corresponding
pyfirebirdsql-specific key under which client programmers can register translators in the right column.

Mapping of SQL Data Type Names to Translator Keys

SQL Type(s) Translator Key
CHAR / VARCHAR ‘TEXT’ for fields with charsets NONE, OCTETS, or ASCII

‘TEXT_UNICODE’ for all other charsets
BLOB ‘BLOB’
SMALL-
INT/INTEGER/BIGINT

‘INTEGER’

FLOAT/ DOUBLE PRECI-
SION

‘FLOATING’

NUMERIC / DECIMAL ‘FIXED’
DATE ‘DATE’
TIME ‘TIME’
TIMESTAMP ‘TIMESTAMP’

Database Arrays

pyfirebirdsql converts database arrays from Python sequences (except strings) on input; to Python lists on output.
On input, the Python sequence must be nested appropriately if the array field is multi- dimensional, and the incoming
sequence must not fall short of its maximum possible length (it will not be “padded” implicitly–see below). On output,
the lists will be nested if the database array has multiple dimensions.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 33

pyfirebirdsql documentation, Release 1.0.0

Database arrays have no place in a purely relational data model, which requires that data values be atomized (that
is, every value stored in the database must be reduced to elementary, non-decomposable parts). The Firebird imple-
mentation of database arrays, like that of most relational database engines that support this data type, is fraught with
limitations.

Database arrays are of fixed size, with a predeclared number of dimensions (max. 16) and number of elements per
dimension. Individual array elements cannot be set to NULL / None, so the mapping between Python lists (which
have dynamic length and are therefore not normally “padded” with dummy values) and non-trivial database arrays is
clumsy.

Stored procedures cannot have array parameters.

Finally, many interface libraries, GUIs, and even the isql command line utility do not support database arrays.

In general, it is preferable to avoid using database arrays unless you have a compelling reason.

Example Program

The following program inserts an array (nested Python list) into a single database field, then retrieves it.

import firebirdsql

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password='pass
→˓')
con.execute_immediate("recreate table array_table (a int[3,4])")
con.commit()

cur = con.cursor()

arrayIn = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10,11,12]

]

print 'arrayIn: %s' % arrayIn
cur.execute("insert into array_table values (?)", (arrayIn,))

cur.execute("select a from array_table")
arrayOut = cur.fetchone()[0]
print 'arrayOut: %s' % arrayOut

con.commit()

Output:

arrayIn: [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
arrayOut: [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

Blobs

pyfirebirdsql supports the insertion and retrieval of blobs either wholly in memory (“materialized mode”) or in chunks
(“streaming mode”) to reduce memory usage when handling large blobs. The default handling mode is “materialized”;
the “streaming” method is selectable via a special case of Dynamic Type Translation.

In materialized mode, input and output blobs are represented as Python str objects, with the result that the entirety
of each blob’s contents is loaded into memory. Unfortunately, flaws in the database engine’s C API prevent automatic
Unicode conversion from applying to textual blobs in the way it applies to Unicode CHAR and VARCHAR fields in
any Firebird version prior to version 2.1.

34 Chapter 1. Documentation Contents:

http://sourceforge.net/forum/forum.php?thread_id=1299756&forum_id=30917

pyfirebirdsql documentation, Release 1.0.0

Note: pyfirebirdsql 3.3 introduces new type_conv mode 300 that enables automatic type conversion for textual blobs
when you’re working with Firebird 2.1 and newer.

In streaming mode, any Python “file-like” object is acceptable as input for a blob parameter. Obvious examples of such
objects are instances of file or StringIO. Each output blob is represented by a firebirdsql.BlobReader
object.

class firebirdsql.BlobReader
BlobReader is a “file-like” class, so it acts much like a file instance opened in rb mode.

BlobReader adds one method not found in the “file-like” interface:

chunks()
Takes a single integer parameter that specifies the number of bytes to retrieve in each chunk (the final
chunk may be smaller).

For example, if the size of the blob is 50000000 bytes, BlobReader.chunks(2**20) will return 47 one-
megabyte chunks, and a smaller final chunk of 716928 bytes.

Due to the combination of CPython’s deterministic finalization with careful programming in pyfirebirdsql’s internals,
it is not strictly necessary to close BlobReader instances explicitly. A BlobReader object will be automatically closed
by its __del__ method when it goes out of scope, or when its Connection closes, whichever comes first. However, it is
always a better idea to close resources explicitly (via try. . . finally) than to rely on artifacts of the CPython implemen-
tation. (For the sake of clarity, the example program does not follow this practice.)

Example Program

The following program demonstrates blob storage and retrieval in both materialized and streaming modes.

import os.path
from cStringIO import StringIO

import firebirdsql

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test-20.firebird',
user='sysdba', password='masterkey'

)

cur = con.cursor()

cur.execute("recreate table blob_test (a blob)")
con.commit()

--- Materialized mode (str objects for both input and output) ---
Insertion:
cur.execute("insert into blob_test values (?)", ('abcdef',))
cur.execute("insert into blob_test values (?)", ('ghijklmnop',))
Retrieval:
cur.execute("select * from blob_test")
print 'Materialized retrieval (as str):'
print cur.fetchall()

cur.execute("delete from blob_test")

--- Streaming mode (file-like objects for input; firebirdsql.BlobReader
objects for output) ---
cur.set_type_trans_in ({'BLOB': {'mode': 'stream'}})
cur.set_type_trans_out({'BLOB': {'mode': 'stream'}})

(continues on next page)

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 35

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

Insertion:
cur.execute("insert into blob_test values (?)", (StringIO('abcdef'),))
cur.execute("insert into blob_test values (?)", (StringIO('ghijklmnop'),))

f = file(os.path.abspath(__file__), 'rb')
cur.execute("insert into blob_test values (?)", (f,))
f.close()

Retrieval using the "file-like" methods of BlobReader:
cur.execute("select * from blob_test")

readerA = cur.fetchone()[0]

print '\nStreaming retrieval (via firebirdsql.BlobReader):'

Python "file-like" interface:
print 'readerA.mode: "%s"' % readerA.mode
print 'readerA.closed: %s' % readerA.closed
print 'readerA.tell(): %d' % readerA.tell()
print 'readerA.read(2): "%s"' % readerA.read(2)
print 'readerA.tell(): %d' % readerA.tell()
print 'readerA.read(): "%s"' % readerA.read()
print 'readerA.tell(): %d' % readerA.tell()
print 'readerA.read(): "%s"' % readerA.read()
readerA.close()
print 'readerA.closed: %s' % readerA.closed

The chunks method (not part of the Python "file-like" interface, but handy):
print '\nFor a blob with contents "ghijklmnop", iterating over'
print 'BlobReader.chunks(3) produces:'
readerB = cur.fetchone()[0]
for chunkNo, chunk in enumerate(readerB.chunks(3)):

print 'Chunk %d is: "%s"' % (chunkNo, chunk)

Output:

Materialized retrieval (as str):
[('abcdef',), ('ghijklmnop',)]

Streaming retrieval (via firebirdsql.BlobReader):
readerA.mode: "rb"
readerA.closed: False
readerA.tell(): 0
readerA.read(2): "ab"
readerA.tell(): 2
readerA.read(): "cdef"
readerA.tell(): 6
readerA.read(): ""
readerA.closed: True

For a blob with contents "ghijklmnop", iterating over
BlobReader.chunks(3) produces:
Chunk 0 is: "ghi"
Chunk 1 is: "jkl"
Chunk 2 is: "mno"
Chunk 3 is: "p"

36 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

1.5.6 Connection Timeouts

Connection timeouts allow the programmer to request that a connection be automatically closed after a specified period
of inactivity. The simplest uses of connection timeouts are trivial, as demonstrated by the following snippet:

import firebirdsql

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test.db',
user='sysdba', password='masterkey',
timeout={'period': 120.0} # time out after 120.0 seconds of inactivity

)

...

The connection created in the example above is eligible to be automatically closed by pyfirebirdsql if it remains idle
for at least 120.0 consecutive seconds. pyfirebirdsql does not guarantee that the connection will be closed immediately
when the specified period has elapsed. On a busy system, there might be a considerable delay between the moment a
connection becomes eligible for timeout and the moment pyfirebirdsql actually closes it. However, the thread that per-
forms connection timeouts is programmed in such a way that on a lightly loaded system, it acts almost instantaneously
to take advantage of a connection’s eligibility for timeout.

After a connection has timed out, pyfirebirdsql reacts to attempts to reactivate the severed connection in a manner
dependent on the state of the connection when it timed out. Consider the following example program:

import time
import firebirdsql

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test.db',
user='sysdba', password='masterkey',
timeout={'period': 3.0}

)
cur = con.cursor()

cur.execute("recreate table test (a int, b char(1))")
con.commit()

cur.executemany("insert into test (a, b) values (?, ?)",
[(1, 'A'), (2, 'B'), (3, 'C')]

)
con.commit()

cur.execute("select * from test")
print 'BEFORE:', cur.fetchall()

cur.execute("update test set b = 'X' where a = 2")

time.sleep(6.0)

cur.execute("select * from test")
print 'AFTER: ', cur.fetchall()

So, should the example program print

BEFORE: [(1, 'A'), (2, 'B'), (3, 'C')]
AFTER: [(1, 'A'), (2, 'X'), (3, 'C')]

or

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 37

pyfirebirdsql documentation, Release 1.0.0

BEFORE: [(1, 'A'), (2, 'B'), (3, 'C')]
AFTER: [(1, 'A'), (2, 'B'), (3, 'C')]

or should it raise an exception? The answer is more complex than one might think.

First of all, we cannot guarantee much about the example program’s behavior because there is a race condition between
the obvious thread that’s executing the example code (which we’ll call “UserThread” for the rest of this section) and
the pyfirebirdsql-internal background thread that actually closes connections that have timed out (“TimeoutThread”).
If the operating system were to suspend UserThread just after the firebirdsql.connect() call for more than
the specified timeout period of 3.0 seconds, the TimeoutThread might close the connection before UserThread had
performed any preparatory operations on the database. Although such a scenario is extremely unlikely when more
“realistic” timeout periods such as 1800.0 seconds (30 minutes) are used, it is important to consider. We’ll explore
solutions to this race condition later.

The likely (but not guaranteed) behavior of the example program is that UserThread will complete all preparatory
database operations including the cur. execute (“update test set b = ‘X’ where a = 2”) statement in the example
program, then go to sleep for not less than 6.0 seconds. Not less than 3.0 seconds after UserThread executes the cur.
execute (“update test set b = ‘X’ where a = 2”) statement, TimeoutThread is likely to close the connection because
it has become eligible for timeout.

The crucial issue is how TimeoutThread should resolve the transaction that UserThread left open on con, and what
should happen when UserThread reawakens and tries to execute the cur. execute (“select * from test”) statement,
since the transaction that UserThread left open will no longer be active.

User-Supplied Connection Timeout Callbacks

In the context of a particular client program, it is not possible for pyfirebirdsql to know the best way for TimeoutThread
to react when it encounters a connection that is eligible for timeout, but has an unresolved transaction. For this
reason, pyfirebirdsql’s connection timeout system offers callbacks that the client programmer can use to guide the
TimeoutThread’s actions, or to log information about connection timeout patterns.

The “Before Timeout” Callback

The client programmer can supply a “before timeout” callback that accepts a single dictionary parameter and returns
an integer code to indicate how the TimeoutThread should proceed when it finds a connection eligible for timeout.
Within the dictionary, pyfirebirdsql provides the following entries:

dsn The dsn parameter that was passed to firebirdsql.connect when the connection was created.

has_transaction A boolean that indicates whether the connection has an unresolved transaction.

active_secs A float that indicates how many seconds elapsed between the point when the connection
attached to the server and the last client program activity on the connection.

idle_secs A float that indicates how many seconds have elapsed since the last client program activity on
the connection. This value will not be less than the specified timeout period, and is likely to only a
fraction of a second longer.

Based on those data, the user-supplied callback should return one of the following codes:

firebirdsql.CT_VETO
Directs the TimeoutThread not to close the connection at the current time, and not to reconsider timing the
connection out until at least another timeout period has passed. For example, if a connection was created with a
timeout period of 120.0 seconds, and the user-supplied “before callback” returns CT_VETO, the TimeoutThread
will not reconsider timing out that particular connection until at least another 120.0 seconds have elapsed.

38 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

firebirdsql.CT_NONTRANSPARENT
(“Nontransparent rollback”)

Directs the TimeoutThread to roll back the connection’s unresolved transaction (if any), then close the con-
nection. Any future attempt to use the connection will raise a firebirdsql.ConnectionTimedOut
exception.

firebirdsql.CT_ROLLBACK
(“Transparent rollback”)

Directs the TimeoutThread to roll back the connection’s unresolved transaction (if any), then close the connec-
tion. Upon any future attempt to use the connection, pyfirebirdsql will attempt to transparently reconnect to the
database and “resume where it left off” insofar as possible. Of course, network problems and the like could
prevent pyfirebirdsql’s attempt at transparent resumption from succeeding. Also, highly state-dependent objects
such as open result sets, BlobReader, and PreparedStatement cannot be used transparently across a
connection timeout.

firebirdsql.CT_COMMIT
(“Transparent commit”)

Directs the TimeoutThread to commit the connection’s unresolved transaction (if any), then close the connection.
Upon any future attempt to use the connection, pyfirebirdsql will attempt to transparently reconnect to the
database and “resume where it left off” insofar as possible.

If the user does not supply a “before timeout” callback, pyfirebirdsql considers the timeout transparent only if the
connection does not have an unresolved transaction.

If the user-supplied “before timeout” callback returns anything other than one of the codes listed above, or if it raises
an exception, the TimeoutThread will act as though CT_NONTRANSPARENT had been returned.

You might have noticed that the input dictionary to the “before timeout” callback does not include a reference to the
Connection object itself. This is a deliberate design decision intended to steer the client programmer away from
writing callbacks that take a long time to complete, or that manipulate the Connection instance directly. See the
caveats section for more information.

The “After Timeout” Callback

The client programmer can supply an “after timeout” callback that accepts a single dictionary parameter. Within that
dictionary, pyfirebirdsql currently provides the following entries:

dsn The dsn parameter that was passed to firebirdsql.connect() when the connection was cre-
ated.

active_secs A float that indicates how many seconds elapsed between the point when the connection
attached to the server and the last client program activity on the connection.

idle_secs A float that indicates how many seconds elapsed between the last client program activity on the
connection and the moment the TimeoutThread closed the connection.

pyfirebirdsql only calls the “after timeout” callback after the connection has actually been closed by the Timeout-
Thread. If the “before timeout” callback returns CT_VETO to cancel the timeout attempt, the “after timeout” callback
will not be called.

pyfirebirdsql discards the return value of the “after timeout” callback, and ignores any exceptions.

The same caveats that apply to the “before timeout” callback also apply to the “after timeout” callback.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 39

pyfirebirdsql documentation, Release 1.0.0

User-Supplied Connection Timeout Callback Caveats

• The user-supplied callbacks are executed by the TimeoutThread. They should be designed to avoid blocking the
TimeoutThread any longer than absolutely necessary.

• Manipulating the Connection object that is being timed out (or any of that connection’s subordinate objects
such as Cursor, BlobReader, or PreparedStatement) from the timeout callbacks is strictly forbidden.

Examples

Example: ‘CT_VETO‘

The following program registers a “before timeout” callback that unconditionally returns CT_VETO, which means
that the TimeoutThread never times the connection out. Although an “after timeout” callback is also registered, it will
never be called.

import time
import firebirdsql

def callback_before(info):
print
print 'callback_before called; input parameter contained:'
for key, value in info.items():

print ' %s: %s' % (repr(key).ljust(20), repr(value))
print
Unconditionally veto any timeout attempts:
return firebirdsql.CT_VETO

def callback_after(info):
assert False, 'This will never be called.'

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test.db',
user='sysdba', password='masterkey',
timeout={

'period': 3.0,
'callback_before': callback_before,
'callback_after': callback_after,

}
)

cur = con.cursor()

cur.execute("recreate table test (a int, b char(1))")
con.commit()

cur.executemany("insert into test (a, b) values (?, ?)",
[(1, 'A'), (2, 'B'), (3, 'C')]

)
con.commit()

cur.execute("select * from test")
print 'BEFORE:', cur.fetchall()

cur.execute("update test set b = 'X' where a = 2")

time.sleep(6.0)

cur.execute("select * from test")

(continues on next page)

40 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

rows = cur.fetchall()
The value of the second column of the second row of the table is still 'X',
because the transaction that changed it from 'B' to 'X' remains active.
assert rows[1][1] == 'X'
print 'AFTER: ', rows

Sample output:

BEFORE: [(1, 'A'), (2, 'B'), (3, 'C')]

callback_before called; input parameter contained:
'dsn' : 'localhost:D:\\temp\\test.db'
'idle_secs' : 3.0
'has_transaction' : True

AFTER: [(1, 'A'), (2, 'X'), (3, 'C')]

Example: Supporting Module ‘timeout_authorizer‘

The example programs for CT_NONTRANSPARENT, CT_ROLLBACK, and CT_COMMIT rely on the TimeoutAutho-
rizer class from the module below to guarantee that the TimeoutThread will not time the connection out before the
preparatory code has executed.

import threading
import firebirdsql

class TimeoutAuthorizer(object):
def __init__(self, opCodeWhenAuthorized):

self.currentOpCode = firebirdsql.CT_VETO
self.opCodeWhenAuthorized = opCodeWhenAuthorized

self.lock = threading.Lock()

def authorize(self):
self.lock.acquire()
try:

self.currentOpCode = self.opCodeWhenAuthorized
finally:

self.lock.release()

def __call__(self, info):
self.lock.acquire()
try:

return self.currentOpCode
finally:

self.lock.release()

Example: ‘CT_NONTRANSPARENT‘

import threading, time
import firebirdsql
import timeout_authorizer

authorizer = timeout_authorizer.TimeoutAuthorizer(firebirdsql.CT_NONTRANSPARENT)
connectionTimedOut = threading.Event()

def callback_after(info):
(continues on next page)

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 41

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

print
print 'The connection was closed nontransparently.'
print
connectionTimedOut.set()

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test.db',
user='sysdba', password='masterkey',
timeout={

'period': 3.0,
'callback_before': authorizer,
'callback_after': callback_after,

}
)

cur = con.cursor()

cur.execute("recreate table test (a int, b char(1))")
con.commit()

cur.executemany("insert into test (a, b) values (?, ?)",
[(1, 'A'), (2, 'B'), (3, 'C')]

)
con.commit()

cur.execute("select * from test")
print 'BEFORE:', cur.fetchall()

cur.execute("update test set b = 'X' where a = 2")

authorizer.authorize()
connectionTimedOut.wait()

This will raise a firebirdsql.ConnectionTimedOut exception because the
before callback returned firebirdsql.CT_NONTRANSPARENT:
cur.execute("select * from test")

Sample output:

BEFORE: [(1, 'A'), (2, 'B'), (3, 'C')]

The connection was closed nontransparently.

Traceback (most recent call last):
File "connection_timeouts_ct_nontransparent.py", line 42, in ?
cur.execute("select * from test")

firebirdsql.ConnectionTimedOut: (0, 'A transaction was still unresolved when
this connection timed out, so it cannot be transparently reactivated.')

Example: ‘CT_ROLLBACK‘

import threading, time
import firebirdsql
import timeout_authorizer

authorizer = timeout_authorizer.TimeoutAuthorizer(firebirdsql.CT_ROLLBACK)
connectionTimedOut = threading.Event()

def callback_after(info):
(continues on next page)

42 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

print
print 'The unresolved transaction was rolled back; the connection has been'
print ' closed transparently.'
print
connectionTimedOut.set()

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test.db',
user='sysdba', password='masterkey',
timeout={

'period': 3.0,
'callback_before': authorizer,
'callback_after': callback_after,

}
)

cur = con.cursor()

cur.execute("recreate table test (a int, b char(1))")
con.commit()

cur.executemany("insert into test (a, b) values (?, ?)",
[(1, 'A'), (2, 'B'), (3, 'C')]

)
con.commit()

cur.execute("select * from test")
print 'BEFORE:', cur.fetchall()

cur.execute("update test set b = 'X' where a = 2")

authorizer.authorize()
connectionTimedOut.wait()

The value of the second column of the second row of the table will have
reverted to 'B' when the transaction that changed it to 'X' was rolled back.
The cur.execute call on the next line will transparently reactivate the
connection, which was timed out transparently.
cur.execute("select * from test")
rows = cur.fetchall()
assert rows[1][1] == 'B'
print 'AFTER: ', rows

Sample output:

BEFORE: [(1, 'A'), (2, 'B'), (3, 'C')]

The unresolved transaction was rolled back; the connection has been
closed transparently.

AFTER: [(1, 'A'), (2, 'B'), (3, 'C')]

Example: ‘CT_COMMIT‘

import threading, time
import firebirdsql
import timeout_authorizer

authorizer = timeout_authorizer.TimeoutAuthorizer(firebirdsql.CT_COMMIT)
(continues on next page)

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 43

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

connectionTimedOut = threading.Event()

def callback_after(info):
print
print 'The unresolved transaction was committed; the connection has been'
print ' closed transparently.'
print
connectionTimedOut.set()

con = firebirdsql.connect(dsn=r'localhost:D:\temp\test.db',
user='sysdba', password='masterkey',
timeout={

'period': 3.0,
'callback_before': authorizer,
'callback_after': callback_after,

}
)

cur = con.cursor()

cur.execute("recreate table test (a int, b char(1))")
con.commit()

cur.executemany("insert into test (a, b) values (?, ?)",
[(1, 'A'), (2, 'B'), (3, 'C')]

)
con.commit()

cur.execute("select * from test")
print 'BEFORE:', cur.fetchall()

cur.execute("update test set b = 'X' where a = 2")

authorizer.authorize()
connectionTimedOut.wait()

The modification of the value of the second column of the second row of the
table from 'B' to 'X' will have persisted, because the TimeoutThread
committed the transaction before it timed the connection out.
The cur.execute call on the next line will transparently reactivate the
connection, which was timed out transparently.
cur.execute("select * from test")
rows = cur.fetchall()
assert rows[1][1] == 'X'
print 'AFTER: ', rows

Sample output:

BEFORE: [(1, 'A'), (2, 'B'), (3, 'C')]

The unresolved transaction was committed; the connection has been
closed transparently.

AFTER: [(1, 'A'), (2, 'X'), (3, 'C')]

44 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

1.5.7 Database Event Notification

What are database events?

The database engine features a distributed, interprocess communication mechanism based on messages called database
events. A database event is a message passed from a trigger or stored procedure to an application to announce the
occurrence of a specified condition or action, usually a database change such as an insertion, modification, or deletion
of a record. The Firebird event mechanism enables applications to respond to actions and database changes made
by other, concurrently running applications without the need for those applications to communicate directly with one
another, and without incurring the expense of CPU time required for periodic polling to determine if an event has
occurred.

Why use database events?

Anything that can be accomplished with database events can also be implemented using other techniques, so why
bother with events? Since you’ve chosen to write database-centric programs in Python rather than assembly language,
you probably already know the answer to this question, but let’s illustrate.

A typical application for database events is the handling of administrative messages. Suppose you have an adminis-
trative message database with a messages table, into which various applications insert timestamped status reports. It
may be desirable to react to these messages in diverse ways, depending on the status they indicate: to ignore them, to
initiate the update of dependent databases upon their arrival, to forward them by e-mail to a remote administrator, or
even to set off an alarm so that on-site administrators will know a problem has occurred.

It is undesirable to tightly couple the program whose status is being reported (the message producer) to the program
that handles the status reports (the message handler). There are obvious losses of flexibility in doing so. For example,
the message producer may run on a separate machine from the administrative message database and may lack access
rights to the downstream reporting facilities (e.g., network access to the SMTP server, in the case of forwarded e-
mail notifications). Additionally, the actions required to handle status reports may themselves be time-consuming and
error-prone, as in accessing a remote network to transmit e-mail.

In the absence of database event support, the message handler would probably be implemented via polling. Polling is
simply the repetition of a check for a condition at a specified interval. In this case, the message handler would check
in an infinite loop to see whether the most recent record in the messages table was more recent than the last message it
had handled. If so, it would handle the fresh message(s); if not, it would go to sleep for a specified interval, then loop.

The polling-based implementation of the message handler is fundamentally flawed. Polling is a form of busy-wait;
the check for new messages is performed at the specified interval, regardless of the actual activity level of the message
producers. If the polling interval is lengthy, messages might not be handled within a reasonable time period after their
arrival; if the polling interval is brief, the message handler program (and there may be many such programs) will waste
a large amount of CPU time on unnecessary checks.

The database server is necessarily aware of the exact moment when a new message arrives. Why not let the message
handler program request that the database server send it a notification when a new message arrives? The message
handler can then efficiently sleep until the moment its services are needed. Under this event-based scheme, the
message handler becomes aware of new messages at the instant they arrive, yet it does not waste CPU time checking
in vain for new messages when there are none available.

How events are exposed to the server and the client process?

1. Server Process (“An event just occurred!”)

To notify any interested listeners that a specific event has occurred, issue the POST_EVENT statement from
Stored Procedure or Trigger. The POST_EVENT statement has one parameter: the name of the event to post.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 45

http://www.catb.org/jargon/html/B/busy-wait.html

pyfirebirdsql documentation, Release 1.0.0

In the preceding example of the administrative message database, POST_EVENT might be used from an after
insert trigger on the messages table, like this:

create trigger trig_messages_handle_insert
for messages

after insert
as
begin
POST_EVENT 'new_message';

end

Note: The physical notification of the client process does not occur until the transaction in which the
POST_EVENT took place is actually committed. Therefore, multiple events may conceptually occur before
the client process is physically informed of even one occurrence. Furthermore, the database engine makes no
guarantee that clients will be informed of events in the same groupings in which they conceptually occurred.
If, within a single transaction, an event named event_a is posted once and an event named event_b is posted
once, the client may receive those posts in separate “batches”, despite the fact that they occurred in the same
conceptual unit (a single transaction). This also applies to multiple occurrences of the same event within a single
conceptual unit: the physical notifications may arrive at the client separately.

2. Client Process (“Send me a message when an event occurs.”)

Note: If you don’t care about the gory details of event notification, skip to the section that describes pyfirebird-
sql’s Python-level event handling API.

The Firebird C client library offers two forms of event notification. The first form is synchronous notification, by
way of the function :cfunc:‘isc_wait_for_event()‘. This form is admirably simple for a C programmer to use,
but is inappropriate as a basis for pyfirebirdsql’s event support, chiefly because it’s not sophisticated enough
to serve as the basis for a comfortable Python-level API. The other form of event notification offered by the
database client library is asynchronous, by way of the functions :cfunc:‘isc_que_events()‘ (note that the name
of that function is misspelled), :cfunc:‘isc_cancel_events()‘, and others. The details are as nasty as they are
numerous, but the essence of using asynchronous notification from C is as follows:

1. Call :cfunc:‘isc_event_block()‘ to create a formatted binary buffer that will tell the server which events
the client wants to listen for.

2. Call :cfunc:‘isc_que_events()‘ (passing the buffer created in the previous step) to inform the server that
the client is ready to receive event notifications, and provide a callback that will be asynchronously invoked
when one or more of the registered events occurs.

3. [The thread that called :cfunc:‘isc_que_events()‘ to initiate event listening must now do something else.]

4. When the callback is invoked (the database client library starts a thread dedicated to this purpose), it can
use the :cfunc:‘isc_event_counts()‘ function to determine how many times each of the registered events
has occurred since the last call to :cfunc:‘isc_event_counts()‘ (if any).

5. [The callback thread should now “do its thing”, which may include communicating with the thread that
called :cfunc:‘isc_que_events()‘.]

6. When the callback thread is finished handling an event notification, it must call :cfunc:‘isc_que_events()‘
again in order to receive future notifications. Future notifications will invoke the callback again, effectively
“looping” the callback thread back to Step 4.

46 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

How events are exposed to the Python programmer?

The pyfirebirdsql database event API is comprised of the following: the method Connection.event_conduit and the
class EventConduit.

Connection.event_conduit()
Creates a conduit (an instance of EventConduit) through which database event notifications will flow into
the Python program.

event_conduit is a method of Connection rather than a module-level function or a class constructor because the
database engine deals with events in the context of a particular database (after all, POST_EVENT must be issued
by a stored procedure or a trigger).

Arguments:

Event_names A sequence of string event names The EventConduit.wait()method will block
until the occurrence of at least one of the events named by the strings in event_names. pyfirebird-
sql’s own event-related code is capable of operating with up to 2147483647 events per conduit.
However, it has been observed that the Firebird client library experiences catastrophic problems
(including memory corruption) on some platforms with anything beyond about 100 events per
conduit. These limitations are dependent on both the Firebird version and the platform.

class firebirdsql.EventConduit

__init__()
The EventConduit class is not designed to be instantiated directly by the Python programmer. Instead, use
the Connection.event_conduit method to create EventConduit instances.

wait(timeout=None)
Blocks the calling thread until at least one of the events occurs, or the specified timeout (if any) expires.

If one or more event notifications has arrived since the last call to wait, this method will retrieve a notifi-
cation from the head of the EventConduit’s internal queue and return immediately.

The names of the relevant events were supplied to the Connection.event_conduit method during the cre-
ation of this EventConduit. In the code snippet below, the relevant events are named event_a and event_b:

conduit = connection.event_conduit(('event_a', 'event_b'))
conduit.wait()

Arguments:

Timeout optional number of seconds (use a float to indicate fractions of seconds) If not even
one of the relevant events has occurred after timeout seconds, this method will unblock and
return None. The default timeout is infinite.

Returns: None if the wait timed out, otherwise a dictionary that maps event_name ->
event_occurrence_count.

In the code snippet above, if event_a occurred once and event_b did not occur at all, the return value from
conduit.wait() would be the following dictionary:

{
'event_a': 1,
'event_b': 0

}

close()
Cancels the standing request for this conduit to be notified of events.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 47

pyfirebirdsql documentation, Release 1.0.0

After this method has been called, this EventConduit object is useless, and should be discarded. (The
boolean property closed is True after an EventConduit has been closed.)

This method has no arguments.

flush()
This method allows the Python programmer to manually clear any event notifications that have accumu-
lated in the conduit’s internal queue.

From the moment the conduit is created by the Connection.event_conduit() method, notifica-
tions of any events that occur will accumulate asynchronously within the conduit’s internal queue until the
conduit is closed either explicitly (via the close method) or implicitly (via garbage collection). There are
two ways to dispose of the accumulated notifications: call wait() to receive them one at a time (wait()
will block when the conduit’s internal queue is empty), or call this method to get rid of all accumulated
notifications.

This method has no arguments.

Returns: The number of event notifications that were flushed from the queue. The “number of event noti-
fications” is not necessarily the same as the “number of event occurrences”, since a single notification
can indicate multiple occurrences of a given event (see the return value of the wait method).

Example Program

The following code (a SQL table definition, a SQL trigger definition, and two Python programs) demonstrates
pyfirebirdsql-based event notification.

The example is based on a database at ‘localhost:/temp/test.db’, which contains a simple table named
test_table. test_table has an after insert trigger that posts several events. Note that the trigger posts test_event_a
twice, test_event_b once, and test_event_c once.

The Python event handler program connects to the database and establishes an EventConduit in the context of that
connection. As specified by the list of RELEVANT_EVENTS passed to event_conduit, the event conduit will concern
itself only with events named test_event_a and test_event_b. Next, the program calls the conduit’s wait method without
a timeout; it will wait infinitely until at least one of the relevant events is posted in a transaction that is subsequently
committed.

The Python event producer program simply connects to the database, inserts a row into test_table, and commits the
transaction. Notice that except for the printed comment, no code in the producer makes any mention of events – the
events are posted as an implicit consequence of the row’s insertion into test_table.

The insertion into test_table causes the trigger to conceptually post events, but those events are not physically sent to
interested listeners until the transaction is committed. When the commit occurs, the handler program returns from the
wait call and prints the notification that it received.

SQL table definition:

create table test_table (a integer)

SQL trigger definition:

create trigger trig_test_insert_event
for test_table
after insert

as
begin

post_event 'test_event_a';
post_event 'test_event_b';
post_event 'test_event_c';

(continues on next page)

48 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

post_event 'test_event_a';
end

Python event handler program:

import firebirdsql

RELEVANT_EVENTS = ['test_event_a', 'test_event_b']

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password='pass
→˓')
conduit = con.event_conduit(RELEVANT_EVENTS)

print 'HANDLER: About to wait for the occurrence of one of %s...\n' % RELEVANT_EVENTS
result = conduit.wait()
print 'HANDLER: An event notification has arrived:'
print result
conduit.close()

Python event producer program:

import firebirdsql

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password='pass
→˓')
cur = con.cursor()

cur.execute("insert into test_table values (1)")
print 'PRODUCER: Committing transaction that will cause event notification to be sent.
→˓'
con.commit()

Event producer output:

PRODUCER: Committing transaction that will cause event notification to be sent.

Event handler output (assuming that the handler was already started and waiting when the event producer program
was executed):

HANDLER: About to wait for the occurrence of one of ['test_event_a', 'test_event_b']..
→˓.

HANDLER: An event notification has arrived:
{'test_event_a': 2, 'test_event_b': 1}

Notice that there is no mention of test_event_c in the result dictionary received by the event handler program. Although
test_event_c was posted by the after insert trigger, the event conduit in the handler program was created to listen only
for test_event_a and test_event_b events.

Pitfalls and Limitations

• Remember that if an EventConduit is left active (not yet closed or garbage collected), notifications for any
registered events that actually occur will continue to accumulate in the EventConduit’s internal queue even if the

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 49

pyfirebirdsql documentation, Release 1.0.0

Python programmer doesn’t call EventConduit.wait() to receive the notifications or EventConduit.
flush() to clear the queue. The ill-informed may misinterpret this behavior as a memory leak in pyfirebirdsql;
it is not.

• NEVER use LOCAL-protocol connections in a multithreaded program that also uses event handling! The
database client library implements the local protocol on some platforms in such a way that deadlocks may arise
in bizarre places if you do this. This no-LOCAL prohibition is not limited to connections that are used as the
basis for event conduits; it applies to all connections throughout the process. So why doesn’t pyfirebirdsql
protect the Python programmer from this mistake? Because the event handling thread is started by the database
client library, and it operates beyond the synchronization domain of pyfirebirdsql at times.

Note: The restrictions on the number of active EventConduit‘s in a process, and on the number of event names that
a single ‘EventConduit can listen for, have been removed in pyfirebirdsql 3.2.

1.5.8 The database_info API

Firebird provides various informations about server and connected database via database_info API call. pyfirebirdsql
surfaces this API through next methods on Connection object:

Connection.database_info(request, result_type)
This method is a very thin wrapper around function :cfunc:‘isc_database_info()‘. This method does not attempt
to interpret its results except with regard to whether they are a string or an integer.

For example, requesting :cdata:‘isc_info_user_names‘ with the call

con.database_info(firebirdsql.isc_info_user_names, 's')

will return a binary string containing a raw succession of length- name pairs. A more convenient way to access
the same functionality is via the db_info() method.

Arguments:

Request One of the firebirdsql.isc_info_* constants.

Result_type Must be either ‘s’ if you expect a string result, or ‘i’ if you expect an integer result.

Example Program

import firebirdsql

con = firebirdsql.connect(dsn='localhost:/temp/test.db', user='sysdba', password=
→˓'pass')

Retrieving an integer info item is quite simple.
bytesInUse = con.database_info(firebirdsql.isc_info_current_memory, 'i')

print 'The server is currently using %d bytes of memory.' % bytesInUse

Retrieving a string info item is somewhat more involved, because the
information is returned in a raw binary buffer that must be parsed
according to the rules defined in the Interbase® 6 API Guide section
entitled "Requesting buffer items and result buffer values" (page 51).
#
Often, the buffer contains a succession of length-string pairs
(one byte telling the length of s, followed by s itself).
Function firebirdsql.raw_byte_to_int is provided to convert a raw

(continues on next page)

50 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

byte to a Python integer (see examples below).
buf = con.database_info(firebirdsql.isc_info_db_id, 's')

Parse the filename from the buffer.
beginningOfFilename = 2
The second byte in the buffer contains the size of the database filename
in bytes.
lengthOfFilename = firebirdsql.raw_byte_to_int(buf[1])
filename = buf[beginningOfFilename:beginningOfFilename + lengthOfFilename]

Parse the host name from the buffer.
beginningOfHostName = (beginningOfFilename + lengthOfFilename) + 1
The first byte after the end of the database filename contains the size
of the host name in bytes.
lengthOfHostName = firebirdsql.raw_byte_to_int(buf[beginningOfHostName - 1])
host = buf[beginningOfHostName:beginningOfHostName + lengthOfHostName]

print 'We are connected to the database at %s on host %s.' % (filename, host)

Sample output:

The server is currently using 8931328 bytes of memory.
We are connected to the database at C:\TEMP\TEST.DB on host WEASEL.

As you can see, extracting data with the database_info function is rather clumsy. In pyfirebirdsql 3.2, a higher-
level means of accessing the same information is available: the db_info() method. Also, the Services API
(accessible to Python programmers via the firebirdsql.services module) provides high-level support
for querying database statistics and performing maintenance.

Connection.db_info(request)
High-level convenience wrapper around the database_info() method that parses the output of
database_info into Python-friendly objects instead of returning raw binary uffers in the case of complex re-
sult types. If an unrecognized isc_info_* code is requested, this method raises ValueError.

For example, requesting :cdata:‘isc_info_user_names‘ with the call

con.db_info(firebirdsql.isc_info_user_names)

returns a dictionary that maps (username -> number of open connections). If SYSDBA has one open connection
to the database to which con is connected, and TEST_USER_1 has three open connections to that same database,
the return value would be {‘SYSDBA’: 1, ‘TEST_USER_1’: 3}

Arguments:

Request must be either:

• A single firebirdsql.isc_info_* info request code. In this case, a single result is returned.

• A sequence of such codes. In this case, a mapping of (info request code -> result) is returned.

Example Program

import os.path

import firebirdsql

DB_FILENAME = r'D:\temp\test-20.firebird'
DSN = 'localhost:' + DB_FILENAME

(continues on next page)

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 51

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

###
Querying an isc_info_* item that has a complex result:
###
Establish three connections to the test database as TEST_USER_1, and one
connection as SYSDBA. Then use the Connection.db_info method to query the
number of attachments by each user to the test database.
testUserCons = []
for i in range(3):

tCon = firebirdsql.connect(dsn=DSN, user='test_user_1', password='pass')
testUserCons.append(tCon)

con = firebirdsql.connect(dsn=DSN, user='sysdba', password='masterkey')

print 'Open connections to this database:'
print con.db_info(firebirdsql.isc_info_user_names)

###
Querying multiple isc_info_* items at once:
###
Request multiple db_info items at once, specifically the page size of the
database and the number of pages currently allocated. Compare the size
computed by that method with the size reported by the file system.
The advantages of using db_info instead of the file system to compute
database size are:
- db_info works seamlessly on connections to remote databases that reside
in file systems to which the client program lacks access.
- If the database is split across multiple files, db_info includes all of
them.
res = con.db_info(

[firebirdsql.isc_info_page_size, firebirdsql.isc_info_allocation]
)

pagesAllocated = res[firebirdsql.isc_info_allocation]
pageSize = res[firebirdsql.isc_info_page_size]
print '\ndb_info indicates database size is', pageSize * pagesAllocated, 'bytes'
print 'os.path.getsize indicates size is ', os.path.getsize(DB_FILENAME), 'bytes
→˓'

Sample output:

Open connections to this database:
{'SYSDBA': 1, 'TEST_USER_1': 3}

db_info indicates database size is 20684800 bytes
os.path.getsize indicates size is 20684800 bytes

1.5.9 Using Firebird Services API

Database server maintenance tasks such as user management, load monitoring, and database backup have traditionally
been automated by scripting the command-line tools gbak, gfix, gsec, and gstat.

The API presented to the client programmer by these utilities is inelegant because they are, after all, command-line
tools rather than native components of the client language. To address this problem, Firebird has a facility called the
Services API, which exposes a uniform interface to the administrative functionality of the traditional command-line
tools.

52 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

The native Services API, though consistent, is much lower-level than a Pythonic API. If the native version were
exposed directly, accomplishing a given task would probably require more Python code than scripting the tradi-
tional command-line tools. For this reason, pyfirebirdsql presents its own abstraction over the native API via the
firebirdsql.services module.

Establishing Services API Connections

All Services API operations are performed in the context of a connection to a specific database server, represented by
the firebirdsql.services.Connection class.

firebirdsql.services.connect(host=’service_mgr’, user=’sysdba’, password=None)
Establish a connection to database server Services and returns firebirdsql.services.Connection
object.

Host The network name of the computer on which the database server is running.

User The name of the database user under whose authority the maintenance tasks are to be per-
formed.

Password User’s password.

Since maintenance operations are most often initiated by an administrative user on the same computer as the
database server, host defaults to the local computer, and user defaults to SYSDBA.

The three calls to firebirdsql.services.connect() in the following program are equivalent:

from firebirdsql import services

con = services.connect(password='masterkey')
con = services.connect(user='sysdba', password='masterkey')
con = services.connect(host='localhost', user='sysdba', password='masterkey')

class firebirdsql.services.Connection

close()
Explicitly terminates a Connection; if this is not invoked, the underlying connection will be closed
implicitly when the Connection object is garbage collected.

Server Configuration and Activity Levels

Connection.getServiceManagerVersion()
To help client programs adapt to version changes, the service manager exposes its version number as an integer.

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getServiceManagerVersion()

Output (on Firebird 1.5.0):

2

firebirdsql.services is a thick wrapper of the Services API that can shield its users from changes in the underlying
C API, so this method is unlikely to be useful to the typical Python client programmer.

Connection.getServerVersion()
Returns the server’s version string:

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 53

pyfirebirdsql documentation, Release 1.0.0

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getServerVersion()

Output (on Firebird 1.5.0/Win32):

WI-V1.5.0.4290 Firebird 1.5

At first glance, thhis method appears to duplicate the functionality of the firebirdsql.Connection.
server_version property, but when working with Firebird, there is a difference. firebirdsql.
Connection.server_version is based on a C API call (:cfunc:‘isc_database_info()‘) that existed long
before the introduction of the Services API. Some programs written before the advent of Firebird test the version
number in the return value of :cfunc:‘isc_database_info()‘, and refuse to work if it indicates that the server is
too old. Since the first stable version of Firebird was labeled 1.0, this pre-Firebird version testing scheme
incorrectly concludes that (e.g.) Firebird 1.0 is older than Interbase 5.0.

Firebird addresses this problem by making :cfunc:‘isc_database_info()‘ return a “pseudo-InterBase” version
number, whereas the Services API returns the true Firebird version, as shown:

import firebirdsql
con = firebirdsql.connect(dsn='localhost:C:/temp/test.db', user='sysdba',
→˓password='masterkey')
print 'Interbase-compatible version string:', con.server_version

import firebirdsql.services
svcCon = firebirdsql.services.connect(host='localhost', user='sysdba', password=
→˓'masterkey')
print 'Actual Firebird version string: ', svcCon.getServerVersion()

Output (on Firebird 1.5.0/Win32):

Interbase-compatible version string: WI-V6.3.0.4290 Firebird 1.5
Actual Firebird version string: WI-V1.5.0.4290 Firebird 1.5

Connection.getArchitecture()
Returns platform information for the server, including hardware architecture and operating system family.

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getArchitecture()

Output (on Firebird 1.5.0/Windows 2000):

Firebird/x86/Windows NT

Unfortunately, the architecture string is almost useless because its format is irregular and sometimes outright
idiotic, as with Firebird 1.5.0 running on x86 Linux:

Firebird/linux Intel

Magically, Linux becomes a hardware architecture, the ASCII store decides to hold a 31.92% off sale, and Intel
grabs an unfilled niche in the operating system market.

Connection.getHomeDir()
Returns the equivalent of the RootDirectory setting from firebird.conf:

54 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getHomeDir()

Output (on a particular Firebird 1.5.0/Windows 2000 installation):

C:\dev\db\firebird150\

Output (on a particular Firebird 1.5.0/Linux installation):

/opt/firebird/

Connection.getSecurityDatabasePath()
Returns the location of the server’s core security database, which contains user definitions and such. Interbase®
and Firebird 1.0 named this database isc4.gdb, while in Firebird 1.5 it’s renamed to security.fdb and
to security2.fdb in Firebird 2.0 and later.

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getSecurityDatabasePath()

Output (on a particular Firebird 1.5.0/Windows 2000 installation):

C:\dev\db\firebird150\security.fdb

Output (on a particular Firebird 1.5.0/Linux installation):

/opt/firebird/security.fdb

Connection.getLockFileDir()
The database engine uses a lock file to coordinate interprocess communication; getLockFileDir() returns the
directory in which that file resides:

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getLockFileDir()

Output (on a particular Firebird 1.5.0/Windows 2000 installation):

C:\dev\db\firebird150\

Output (on a particular Firebird 1.5.0/Linux installation):

/opt/firebird/

Connection.getCapabilityMask()
The Services API offers “a bitmask representing the capabilities currently enabled on the server”, but the only
availabledocumentation for this bitmask suggests that it is “reserved for future implementation”. firebirdsql
exposes this bitmask as a Python int returned from the getCapabilityMask() method.

Connection.getMessageFileDir()
To support internationalized error messages/prompts, the database engine stores its messages in a file named
interbase.msg (Interbase® and Firebird 1.0) or firebird.msg (Firebird 1.5 and later). The directory in
which this file resides can be determined with the getMessageFileDir() method.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 55

http://www.ibphoenix.com/resources/documents/general/doc_48

pyfirebirdsql documentation, Release 1.0.0

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getMessageFileDir()

Output (on a particular Firebird 1.5.0/Windows 2000 installation):

C:\dev\db\firebird150\

Output (on a particular Firebird 1.5.0/Linux installation):

/opt/firebird/

Connection.getConnectionCount()
Returns the number of active connections to databases managed by the server. This count only includes database
connections (such as open instances of firebirdsql.Connection), not services manager connections
(such as open instances of firebirdsql.services.Connection).

import firebirdsql, firebirdsql.services
svcCon = firebirdsql.services.connect(host='localhost', user='sysdba', password=
→˓'masterkey')

print 'A:', svcCon.getConnectionCount()

con1 = firebirdsql.connect(dsn='localhost:C:/temp/test.db', user='sysdba',
→˓password='masterkey')
print 'B:', svcCon.getConnectionCount()

con2 = firebirdsql.connect(dsn='localhost:C:/temp/test.db', user='sysdba',
→˓password='masterkey')
print 'C:', svcCon.getConnectionCount()

con1.close()
print 'D:', svcCon.getConnectionCount()

con2.close()
print 'E:', svcCon.getConnectionCount()

On an otherwise inactive server, the example program generates the following output:

A: 0
B: 1
C: 2
D: 1
E: 0

Connection.getAttachedDatabaseNames()
Returns a list of the names of all databases to which the server is maintaining at least one connection. The
database names are not guaranteed to be in any particular order.

import firebirdsql, firebirdsql.services
svcCon = firebirdsql.services.connect(host='localhost', user='sysdba', password=
→˓'masterkey')

print 'A:', svcCon.getAttachedDatabaseNames()

con1 = firebirdsql.connect(dsn='localhost:C:/temp/test.db', user='sysdba',
→˓password='masterkey') (continues on next page)

56 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

print 'B:', svcCon.getAttachedDatabaseNames()

con2 = firebirdsql.connect(dsn='localhost:C:/temp/test2.db', user='sysdba',
→˓password='masterkey')
print 'C:', svcCon.getAttachedDatabaseNames()

con3 = firebirdsql.connect(dsn='localhost:C:/temp/test2.db', user='sysdba',
→˓password='masterkey')
print 'D:', svcCon.getAttachedDatabaseNames()

con1.close()
print 'E:', svcCon.getAttachedDatabaseNames()

con2.close()
print 'F:', svcCon.getAttachedDatabaseNames()

con3.close()
print 'G:', svcCon.getAttachedDatabaseNames()

On an otherwise inactive server, the example program generates the following output:

A: []
B: ['C:\\TEMP\\TEST.DB']
C: ['C:\\TEMP\\TEST2.DB', 'C:\\TEMP\\TEST.DB']
D: ['C:\\TEMP\\TEST2.DB', 'C:\\TEMP\\TEST.DB']
E: ['C:\\TEMP\\TEST2.DB']
F: ['C:\\TEMP\\TEST2.DB']
G: []

Connection.getLog()
Returns the contents of the server’s log file (named interbase.log by Interbase® and Firebird 1.0;
firebird.log by Firebird 1.5 and later):

from firebirdsql import services
con = services.connect(host='localhost', user='sysdba', password='masterkey')

print con.getLog()

Output (on a particular Firebird 1.5.0/Windows 2000 installation):

WEASEL (Client) Thu Jun 03 12:01:35 2004
INET/inet_error: send errno = 10054

WEASEL (Client) Sun Jun 06 19:21:17 2004
INET/inet_error: connect errno = 10061

Database Statistics

Connection.getStatistics(database, showOnlyDatabaseLogPages=0...)
Returns a string containing a printout in the same format as the output of the gstat command-line utility. This
method has one required parameter, the location of the database on which to compute statistics, and five optional
boolean parameters for controlling the domain of the statistics.

Map of gstat paremeters to getStatistics options

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 57

pyfirebirdsql documentation, Release 1.0.0

gstat command-line option getStatistics boolean parameter
-header showOnlyDatabaseHeaderPages
-log showOnlyDatabaseLogPages
-data showUserDataPages
-index showUserIndexPages
-system showSystemTablesAndIndexes

The following program presents several getStatistics calls and their gstat-command-line equivalents. In this
context, output is considered “equivalent” even if their are some whitespace differences. When collecting textual
output from the Services API, firebirdsql terminates lines with n regardless of the platform’s convention; gstat
is platform-sensitive.

from firebirdsql import services
con = services.connect(user='sysdba', password='masterkey')

Equivalent to 'gstat -u sysdba -p masterkey C:/temp/test.db':
print con.getStatistics('C:/temp/test.db')

Equivalent to 'gstat -u sysdba -p masterkey -header C:/temp/test.db':
print con.getStatistics('C:/temp/test.db', showOnlyDatabaseHeaderPages=True)

Equivalent to 'gstat -u sysdba -p masterkey -log C:/temp/test.db':
print con.getStatistics('C:/temp/test.db', showOnlyDatabaseLogPages=True)

Equivalent to 'gstat -u sysdba -p masterkey -data -index -system C:/temp/test.db
→˓':
print con.getStatistics('C:/temp/test.db',

showUserDataPages=True,
showUserIndexPages=True,
showSystemTablesAndIndexes=True

)

The output of the example program is not shown here because it is quite long.

Backup and Restoration

pyfirebirdsql offers convenient programmatic control over database backup and restoration via the backup and restore
methods.

At the time of this writing, released versions of Firebird/Interbase® do not implement incremental backup, so we can
simplistically define backup as the process of generating and storing an archived replica of a live database, and restora-
tion as the inverse. The backup/restoration process exposes numerous parameters, which are properly documented in
Firebird Documentation to gbak. The pyfirebirdsql API to these parameters is presented with minimal documentation
in the sample code below.

Connection.backup(sourceDatabase, destFilenames, destFileSizes=(), <options>)
Creates a backup file from database content.

Simple Form

The simplest form of backup creates a single backup file that contains everything in the database. Although the
extension ‘.fbk’ is conventional, it is not required.

from firebirdsql import services
con = services.connect(user='sysdba', password='masterkey')

(continues on next page)

58 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

(continued from previous page)

backupLog = con.backup('C:/temp/test.db', 'C:/temp/test_backup.fbk')
print backupLog

In the example, backupLog is a string containing a gbak-style log of the backup process. It is too long to
reproduce here.

Although the return value of the backup method is a freeform log string, backup will raise an exception if there
is an error. For example:

from firebirdsql import services
con = services.connect(user='sysdba', password='masterkey')

Pass an invalid backup path to the engine:
backupLog = con.backup('C:/temp/test.db', 'BOGUS/PATH/test_backup.fbk')
print backupLog

Traceback (most recent call last):
File "adv_services_backup_simplest_witherror.py", line 5, in ?

backupLog = con.backup('C:/temp/test.db', 'BOGUS/PATH/test_backup.fbk')
File "C:\code\projects\firebirdsql\Kinterbasdb-3.0\build\lib.win32-2.

→˓3\firebirdsql\services.py", line 269, in backup
return self._actAndReturnTextualResults(request)

File "C:\code\projects\firebirdsql\Kinterbasdb-3.0\build\lib.win32-2.
→˓3\firebirdsql\services.py", line 613, in _actAndReturnTextualResults

self._act(requestBuffer)
File "C:\code\projects\firebirdsql\Kinterbasdb-3.0\build\lib.win32-2.

→˓3\firebirdsql\services.py", line 610, in _act
return _ksrv.action_thin(self._C_conn, requestBuffer.render())

firebirdsql.OperationalError: (-902, '_kiservices could not perform the action:
→˓cannot open backup file BOGUS/PATH/test_backup.fbk. ')

Multifile Form

The database engine has built-in support for splitting the backup into multiple files, which is useful for circum-
venting operating system file size limits or spreading the backup across multiple discs.

pyfirebirdsql exposes this facility via the Connection.backup parameters destFilenames and destFileSizes. dest-
Filenames (the second positional parameter of Connection.backup) can be either a string (as in the example
above, when creating the backup as a single file) or a sequence of strings naming each constituent file of the
backup. If destFilenames is a string-sequence with length N, destFileSizes must be a sequence of integer file
sizes (in bytes) with length N-1. The database engine will constrain the size of each backup constituent file
named in destFilenames[:-1] to the corresponding size specified in destFileSizes; any remaining backup data
will be placed in the file name by destFilenames[-1].

Unfortunately, the database engine does not appear to expose any convenient means of calculating the total
size of a database backup before its creation. The page size of the database and the number of pages in the
database are available via database_info() calls: database_info(firebirdsql.isc_info_page_size, ‘i’) and
database_info(firebirdsql.isc_info_db_size_in_pages, ‘i’), respectively, but the size of the backup file is usually
smaller than the size of the database.

There should be no harm in submitting too many constituent specifications; the engine will write an empty
header record into the excess constituents. However, at the time of this writing, released versions of the database
engine hang the backup task if more than 11 constituents are specified (that is, if len(destFilenames) > 11).
pyfirebirdsql does not prevent the programmer from submitting more than 11 constituents, but it does issue a
warning.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 59

pyfirebirdsql documentation, Release 1.0.0

The following program directs the engine to split the backup of the database at C:/temp/test.db into
C:/temp/back01.fbk, a file 4096 bytes in size, C:/temp/back02.fbk, a file 16384 bytes in size, and
C:/temp/back03.fbk, a file containing the remainder of the backup data.

from firebirdsql import services
con = services.connect(user='sysdba', password='masterkey')

con.backup('C:/temp/test.db',
('C:/temp/back01.fbk', 'C:/temp/back02.fbk', 'C:/temp/back03.fbk'),
destFileSizes=(4096, 16384)

)

Extended Options

In addition to the three parameters documented previously (positional sourceDatabase, positional destFile-
names, and keyword destFileSizes), the Connection.backup method accepts six boolean parameters that control
aspects of the backup process and the backup file output format. These options are well documented so in this
document we present only a table of equivalence between gbak options and names of the boolean keyword
parameters:

gbak option Parameter Name Default Value
-T transportable True
-M metadataOnly False
-G garbageCollect True
-L ignoreLimboTransactions False
-IG ignoreChecksums False
-CO convertExternalTablesToInternalTables True

Connection.restore(sourceFilenames, destFilenames, destFilePages=(), <options>)
Restores database from backup file.

Simplest Form

The simplest form of restore creates a single-file database, regardless of whether the backup data were split
across multiple files.

from firebirdsql import services
con = services.connect(user='sysdba', password='masterkey')

restoreLog = con.restore('C:/temp/test_backup.fbk', 'C:/temp/test_restored.db')
print restoreLog

In the example, restoreLog is a string containing a gbak-style log of the restoration process. It is too long to
reproduce here.

Multifile Form

The database engine has built-in support for splitting the restored database into multiple files, which is useful
for circumventing operating system file size limits or spreading the database across multiple discs.

pyfirebirdsql exposes this facility via the Connection.restore parameters destFilenames and destFilePages. dest-
Filenames (the second positional argument of Connection.restore) can be either a string (as in the example
above, when restoring to a single database file) or a sequence of strings naming each constituent file of the
restored database. If destFilenames is a string-sequence with length N, destFilePages must be a sequence of
integers with length N-1. The database engine will constrain the size of each database constituent file named in
destFilenames[:-1] to the corresponding page count specified in destFilePages; any remaining database pages
will be placed in the file name by destFilenames[-1].

60 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

The following program directs the engine to restore the backup file at C:/temp/test_backup.
fbk into a database with three constituent files: C:/temp/test_restored01.db, C:/temp/
test_restored02.db, and C:/temp/test_restored03.db. The engine is instructed to place fifty
user data pages in the first file, seventy in the second, and the remainder in the third file. In practice, the first
database constituent file will be larger than pageSize*destFilePages[0], because metadata pages must also be
stored in the first constituent of a multifile database.

from firebirdsql import services
con = services.connect(user='sysdba', password='masterkey')

con.restore('C:/temp/test_backup.fbk',
('C:/temp/test_restored01.db', 'C:/temp/test_restored02.db', 'C:/temp/test_

→˓restored03.db'),
destFilePages=(50, 70),
pageSize=1024,
replace=True

)

Extended Options

These options are well documented so in this document we present only a table of equivalence between the
gbak options and the names of the keyword parameters to Connection.restore:

gbak option Parameter Name Default Value
-P pageSize [use server default]
-REP replace False
-O commitAfterEachTable False
-K doNotRestoreShadows False
-I deactivateIndexes False
-N doNotEnforceConstraints False
-USE useAllPageSpace False
-MO accessModeReadOnly False
-BU cacheBuffers [use server default]

Database Operating Modes, Sweeps, and Repair

Connection.sweep(database, markOutdatedRecordsAsFreeSpace=1)
Not yet documented.

Connection.setSweepInterval(database, n)
Not yet documented.

Conenction.setDefaultPageBuffers(database, n)
Not yet documented.

Conenction.setShouldReservePageSpace(database, shouldReserve)
Not yet documented.

Conenction.setWriteMode(database, mode)
Not yet documented.

Conenction.setAccessMode(database, mode)
Not yet documented.

Conenction.activateShadowFile(database)
Not yet documented.

1.5. Native Database Engine Features and Extensions Beyond the Python DB API 61

pyfirebirdsql documentation, Release 1.0.0

Conenction.shutdown(database, shutdownMethod, timeout)
Not yet documented.

Conenction.bringOnline(database)
Not yet documented.

Conenction.getLimboTransactionIDs(database)
Not yet documented.

Conenction.commitLimboTransaction(database, transactionID)
Not yet documented.

Conenction.rollbackLimboTransaction(database, transactionID)
Not yet documented.

Conenction.repair(database, <options>)
Not yet documented.

User Maintenance

Conenction.getUsers(username=None)
By default, lists all users.

Conenction.addUser(user)

User An instance of User with at least its username and password attributes specified as non-empty
values.

Conenction.modifyUser(user)
Changes user data.

User An instance of User with at least its username and password attributes specified as non-empty
values.

Conenction.removeUser(user)
Accepts either an instance of services.User or a string username, and deletes the specified user.

Conenction.userExists(user)
Returns a boolean that indicates whether the specified user exists.

class firebirdsql.services.User
Not yet documented.

1.6 pyfirebirdsql Links

1.6.1 python firebird database adapters

• The Python Wiki >> Firebird

– pyfirebirdsql

– FDB

1.6.2 Python + Databases

• Python

• distutils Home Page

62 Chapter 1. Documentation Contents:

http://wiki.python.org/moin/Firebird
https://github.com/nakagami/pyfirebirdsql
http://pypi.python.org/pypi/fdb/
http://www.python.org
http://www.python.org/sigs/distutils-sig/

pyfirebirdsql documentation, Release 1.0.0

• distutils Installation Instructions for Generic Packages

• Python Database Topic Guide

• Python DB-API Spec 2.0

– PEP 249 - Augmented Python DB-API Spec 2.0

1.6.3 Firebird

• Firebird

• IBPhoenix

– IBPhoenix Tools Downloads Area

• Flamerobin - nice open source and cross platform GUI for Firebird

1.6.4 Help

• Firebird-Python list (Yahoo Group)

• Firebird-Support list (Yahoo Group)

• Python Database SIG mailing list

1.7 pyfirebirdsql Changelog

1.7.1 Version 0.6.5

• callproc() is implemented.

• document is prepared.

1.7.2 Version 0.6.6

• fix issue #28 InternalError after commit

• fix issue #30 Incorrect handling empty row for RowMapping

1.7.3 Version 0.7.0

• change parameter name ‘explain_plan’ in class PrepareStatement.__init__().

• issue #32 don’t decode character set OCTETS

• issue #33 op_allocate_statement do not require a transaction handle.

• add event notification

1.7.4 Version 0.7.1

• fix fetchonemap()

• issue #35 add timeout parameter to conduit.wait()

1.7. pyfirebirdsql Changelog 63

http://www.python.org/doc/current/inst/inst.html
http://www.python.org/topics/database/
http://www.python.org/topics/database/DatabaseAPI-2.0.html
http://www.python.org/peps/pep-0249.html
http://www.firebirdsql.org/
http://www.ibphoenix.com
http://ibphoenix.com/download/tools/
http://flamerobin.org
http://groups.yahoo.com/group/firebird-python/
http://groups.yahoo.com/group/firebird-support/
http://mail.python.org/pipermail/db-sig/

pyfirebirdsql documentation, Release 1.0.0

1.7.5 Version 0.7.2

• issue #36 add Cur.itermap() method

• run tests in FB 1.5 (error treatment db_info(), trans_info())

• issue #37 truncate field name from system table in FB 1.5

1.7.6 Version 0.7.3

• issue #38 fix some problems (thanx sergyp)

• issue #39 AttributeError when accessing cursor.description

• issue #41 fix int parameter bug

• issue #42 Implemented Cursor.rowcount() (thanx jtasker)

• setup.py test command

1.7.7 Version 0.7.4

• refactoring

• call socket.close()

1.7.8 Version 0.8.0

• refactoring

• buf fix

• add ‘role’ parameter to connection

• fetch right striped string if CHAR type

• fetch string if BLOB subtype 1

• boolean type support (Firebird 3)

• connection keep only one transaction

• ‘INSERT . . . RETURNING . . . ’ statement support

1.7.9 Version 0.8.1

• bug fix (send all packets)

1.7.10 Version 0.8.2

• support 32k bytes over execute() parameter.

64 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

1.7.11 Version 0.8.3

• refactoring

• add repair() method in Services

• add is_disconnect() method in Connection

1.7.12 Version 0.8.4

• fix release bug (add insufficient files)

1.7.13 Version 0.8.5

• add bringOnline(), shutdown() methods in Services

1.7.14 Version 0.8.6

• fix exception when fetch after insert. return None

1.7.15 Version 0.9.0

• support Firebird 3 (experimental)

1.7.16 Version 0.9.1

• Refactoring

• bugfixes

• Modify isolation level. Similar to fdb.

• Add Connection.set_autocommit() autocommit mode.

1.7.17 Version 0.9.2

• fix Binary() function

• return recordset as tuple not list

1.7.18 Version 0.9.3

• refactoring

• fix issue #50 alternative to crypt on windows

1.7. pyfirebirdsql Changelog 65

pyfirebirdsql documentation, Release 1.0.0

1.7.19 Version 0.9.4

• fix Cursor.rowcount.

• Cursor.callproc() return out parameters.

• Cursor.execute() return cursor instance itself.

1.7.20 Version 0.9.5

• Protocol version 11 support

1.7.21 Version 0.9.6

• support Firebird 3 (CORE-2897)

1.7.22 Version 0.9.7

• fix null indicator for Firebird 3

• PyCrypto support for Firebird 3

1.7.23 Version 0.9.8

• fix issue #58 wrong logic for handling lage BLOBs.

• update error messages.

1.7.24 Version 0.9.9

• refactoring

• fix issue #60

1.7.25 Version 0.9.10

• fix bug for non posix (windows) environment. issue #62

1.7.26 Version 0.9.11

• fix issue #60 (again)

1.7.27 Version 0.9.12

• Enable Srp authentication and disable Wireprotocol for Firebird 3

• fix a bug about srp authentication

• refactoring and flake8

66 Chapter 1. Documentation Contents:

pyfirebirdsql documentation, Release 1.0.0

1.7.28 Version 0.9.13

• PEP 479 issue #66

1.7.29 Version 1.0.0

• refactoring

• Add license file.

• Documents update.

1.7.30 Version 1.0.1

• IPv6 support

1.7.31 Version 1.1.0

• Firebird4 DecFloat support

• Modify statement allocate, drop treatment

• Add factory parameter in cursor() method.

• Add client process pid and name to op_attach https://github.com/nakagami/firebirdsql/pull/60

1.7.32 Version 1.1.0

• fix parse decfloat value

1.7.33 Version 1.1.1

• fix parse decfloat value

• Srp256 support

• fix issue #74 #75 #76 #77

1.7.34 Version 1.1.2

• refactoring

• Add experimental Firebird4 timezone support

1.8 pyfirebirdsql LICENSE

Copyright (c) 2009-2016 Hajime Nakagami<nakagami@gmail.com>.All rights reserverd.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1.8. pyfirebirdsql LICENSE 67

https://github.com/nakagami/firebirdsql/pull/60
mailto:nakagami@gmail.com

pyfirebirdsql documentation, Release 1.0.0

1 Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY HAJIME NAKAGAMI ‘‘AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL HAJIME NAK-
AGAMI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

68 Chapter 1. Documentation Contents:

CHAPTER 2

Indices and tables

• genindex

69

pyfirebirdsql documentation, Release 1.0.0

70 Chapter 2. Indices and tables

Python Module Index

f
firebirdsql, 1
firebirdsql.services, 52

71

pyfirebirdsql documentation, Release 1.0.0

72 Python Module Index

Index

Symbols
__init__() (firebirdsql.EventConduit method), 47
__init__() (firebirdsql.Transaction method), 25

A
access_mode (firebirdsql.TPB attribute), 21
activateShadowFile() (firebird-

sql.services.Conenction method), 61
addUser() (firebirdsql.services.Conenction method),

62
apilevel (built-in variable), 9
arraysize (firebirdsql.Cursor attribute), 16

B
backup() (firebirdsql.services.Connection method), 58
begin() (firebirdsql.Connection method), 20
begin() (firebirdsql.Transaction method), 26
BINARY (built-in variable), 14
Binary() (built-in function), 14
BlobReader (class in firebirdsql), 35
bringOnline() (firebirdsql.services.Conenction

method), 62

C
callproc() (Cursor method), 12
charset (firebirdsql.Connection attribute), 17
chunks() (firebirdsql.BlobReader method), 35
close() (Connection method), 11
close() (Cursor method), 12
close() (firebirdsql.EventConduit method), 47
close() (firebirdsql.services.Connection method), 53
close() (firebirdsql.Transaction method), 26
closed (firebirdsql.Transaction attribute), 26
commit() (Connection method), 11
commit() (firebirdsql.Connection method), 18
commit() (firebirdsql.Transaction method), 26
commitLimboTransaction() (firebird-

sql.services.Conenction method), 62
connect() (built-in function), 9

connect() (in module firebirdsql), 17
connect() (in module firebirdsql.services), 53
Connection (built-in class), 11
Connection (class in firebirdsql), 17, 22, 25
Connection (class in firebirdsql.services), 53
connection (firebirdsql.Transaction attribute), 25
create_database() (in module firebirdsql), 19
CT_COMMIT (in module firebirdsql), 39
CT_NONTRANSPARENT (in module firebirdsql), 38
CT_ROLLBACK (in module firebirdsql), 39
CT_VETO (in module firebirdsql), 38
Cursor (built-in class), 11
Cursor (class in firebirdsql), 16, 18, 25
cursor() (Connection method), 11
cursor() (firebirdsql.Transaction method), 26
cursors (firebirdsql.Transaction attribute), 26

D
database_info() (firebirdsql.Connection method),

50
DatabaseError, 10
DataError, 10
Date() (built-in function), 13
DateFromTicks() (built-in function), 14
DATETIME (built-in variable), 14
db_info() (firebirdsql.Connection method), 51
description (Cursor attribute), 11
description (firebirdsql.Cursor attribute), 18
description (firebirdsql.PreparedStatement at-

tribute), 28
drop_database() (firebirdsql.Connection method),

19

E
Error, 10
event_conduit() (firebirdsql.Connection method),

47
EventConduit (class in firebirdsql), 47
execute() (Cursor method), 12

73

pyfirebirdsql documentation, Release 1.0.0

execute_immediate() (firebirdsql.Connection
method), 17

executemany() (Cursor method), 12

F
fetchall() (Cursor method), 13
fetchall() (firebirdsql.Cursor method), 19
fetchallmap() (firebirdsql.Cursor method), 19
fetchmany() (Cursor method), 12
fetchmany() (firebirdsql.Cursor method), 18
fetchmanymap() (firebirdsql.Cursor method), 19
fetchone() (Cursor method), 12
fetchone() (firebirdsql.Cursor method), 18
fetchonemap() (firebirdsql.Cursor method), 19
firebirdsql (module), 1
firebirdsql.services (module), 52
flush() (firebirdsql.EventConduit method), 48

G
get_type_trans_in() (firebirdsql.Connection

method), 32
get_type_trans_in() (firebirdsql.Cursor method),

32
getArchitecture() (firebird-

sql.services.Connection method), 54
getAttachedDatabaseNames() (firebird-

sql.services.Connection method), 56
getCapabilityMask() (firebird-

sql.services.Connection method), 55
getConnectionCount() (firebird-

sql.services.Connection method), 56
getHomeDir() (firebirdsql.services.Connection

method), 54
getLimboTransactionIDs() (firebird-

sql.services.Conenction method), 62
getLockFileDir() (firebirdsql.services.Connection

method), 55
getLog() (firebirdsql.services.Connection method), 57
getMessageFileDir() (firebird-

sql.services.Connection method), 55
getSecurityDatabasePath() (firebird-

sql.services.Connection method), 55
getServerVersion() (firebird-

sql.services.Connection method), 53
getServiceManagerVersion() (firebird-

sql.services.Connection method), 53
getStatistics() (firebirdsql.services.Connection

method), 57
getUsers() (firebirdsql.services.Conenction method),

62

I
IntegrityError, 10
InterfaceError, 10

InternalError, 10
isolation_level (firebirdsql.TPB attribute), 21
iter() (firebirdsql.Cursor method), 19
itermap() (firebirdsql.Cursor method), 19

L
lock_resolution (firebirdsql.TPB attribute), 21
lock_timeout (firebirdsql.TPB attribute), 22

M
main_transaction (firebirdsql.Connection at-

tribute), 25
modifyUser() (firebirdsql.services.Conenction

method), 62

N
n_input_params (firebirdsql.PreparedStatement at-

tribute), 28
n_output_params (firebirdsql.PreparedStatement at-

tribute), 28
n_physical (firebirdsql.Transaction attribute), 26
name (firebirdsql.Cursor attribute), 31
nextset() (Cursor method), 13
nextset() (firebirdsql.Cursor method), 16
NotSupportedError, 10
NUMBER (built-in variable), 14

O
OperationalError, 10

P
paramstyle (built-in variable), 9
plan (firebirdsql.PreparedStatement attribute), 28
prep() (firebirdsql.Cursor method), 27
prepare() (firebirdsql.Connection method), 25
prepare() (firebirdsql.Transaction method), 26
PreparedStatement (class in firebirdsql), 27
ProgrammingError, 10

R
removeUser() (firebirdsql.services.Conenction

method), 62
render() (firebirdsql.TableReservation method), 22
render() (firebirdsql.TPB method), 22
repair() (firebirdsql.services.Conenction method), 62
resolution (firebirdsql.Transaction attribute), 26
restore() (firebirdsql.services.Connection method),

60
rollback() (Connection method), 11
rollback() (firebirdsql.Connection method), 18
rollback() (firebirdsql.Transaction method), 26
rollbackLimboTransaction() (firebird-

sql.services.Conenction method), 62

74 Index

pyfirebirdsql documentation, Release 1.0.0

rowcount (Cursor attribute), 12
rowcount (firebirdsql.Cursor attribute), 18
ROWID (built-in variable), 14

S
savepoint() (firebirdsql.Connection method), 23
savepoint() (firebirdsql.Transaction method), 26
server_version (firebirdsql.Connection attribute),

17
set_type_trans_in() (firebirdsql.Connection

method), 32
set_type_trans_in() (firebirdsql.Cursor method),

32
setAccessMode() (firebirdsql.services.Conenction

method), 61
setDefaultPageBuffers() (firebird-

sql.services.Conenction method), 61
setinputsizes() (Cursor method), 13
setinputsizes() (firebirdsql.Cursor method), 17
setoutputsize() (Cursor method), 13
setoutputsize() (firebirdsql.Cursor method), 17
setShouldReservePageSpace() (firebird-

sql.services.Conenction method), 61
setSweepInterval() (firebird-

sql.services.Connection method), 61
setWriteMode() (firebirdsql.services.Conenction

method), 61
shutdown() (firebirdsql.services.Conenction method),

61
sql (firebirdsql.PreparedStatement attribute), 27
statement_type (firebirdsql.PreparedStatement at-

tribute), 27
STRING (built-in variable), 14
sweep() (firebirdsql.services.Connection method), 61

T
table_reservation (firebirdsql.TPB attribute), 22
TableReservation (class in firebirdsql), 22
threadsafety (built-in variable), 9
Time() (built-in function), 13
TimeFromTicks() (built-in function), 14
Timestamp() (built-in function), 14
TimestampFromTicks() (built-in function), 14
TPB (class in firebirdsql), 21
trans() (firebirdsql.Connection method), 25
trans_info() (firebirdsql.Connection method), 22
trans_info() (firebirdsql.Transaction method), 26
Transaction (class in firebirdsql), 25
transaction (firebirdsql.Cursor attribute), 25
transaction_info() (firebirdsql.Connection

method), 23
transaction_info() (firebirdsql.Transaction

method), 26
transactions (firebirdsql.Connection attribute), 25

U
User (class in firebirdsql.services), 62
userExists() (firebirdsql.services.Conenction

method), 62

W
wait() (firebirdsql.EventConduit method), 47
Warning, 10

Index 75

	Documentation Contents:
	pyfirebirdsql Installation Guide
	Quick-start Guide / Tutorial
	Python Database API Specification 2.0
	Compliance to Python Database API 2.0
	Native Database Engine Features and Extensions Beyond the Python DB API
	pyfirebirdsql Links
	pyfirebirdsql Changelog
	pyfirebirdsql LICENSE

	Indices and tables
	Python Module Index

