

 Navigation

 	
 index

 	
 next |

 	pyfatsecret 0.2.1 documentation

FatSecret

This library provides a lightweight python wrapper for the Fatsecret API with the goal of making it easier to visualize
the data retrieved from the API. To that end, this library will usually return lists of identical elements for ease of
plotting, discarding extra header fields that the Fatsecret API otherwise includes. All API calls return either a
single or list of JSON dictionaries.

Installation

Install the module via pip:

$ pip install fatsecret

or easy_install:

$ easy_install fatsecret

Config

Register for a developer account at Fatsecret [http://platform.fatsecret.com/api/]. You will need your Consumer Key and Consumer Secret key for
your application.

Usage

Fatsecret supports both delegated and public calls. Only through delegated calls can you access Fatsecret user
profile data.

If you’re only interested in the public data you only require a session to make HTTP requests:

from fatsecret import Fatsecret

fs = Fatsecret(consumer_key, consumer_secret)

Once you have created a session then you can start reading from Fatsecret’s public food and recipe database

foods = fs.foods_search("Tacos")

OAuth Examples

You will need to authenticate to a Fatsecret user profile via OAuth 1.0 in order to access profile specific
data such as the meal diary, favorite meals, etc.

	OAuth Examples
	Web Application

	CLI Application

	Use New Profiles for Your App

API Reference

	API Documentation

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyfatsecret 0.2.1 documentation

OAuth Examples

Fatsecret supports 3-legged OAuth authentication. You can also authenticate to a profile that your application
created.

Web Application

from flask import Flask, redirect, url_for, request
from fatsecret import Fatsecret

consumer_key = 'Replace with your key'
consumer_secret = 'Replace with your key'

app = Flask(__name__)
fs = Fatsecret(consumer_key, consumer_secret)

@app.route("/")
def index():
 if request.args.get('oauth_verifier'):

 verifier_pin = request.args.get('oauth_verifier')

 # Store token as desired. The session is now authenticated
 session_token = fs.authenticate(verifier_pin)

 return redirect(url_for('profile'))

 else:
 return "Authenticate Access Here".format(url_for('authenticate'))

@app.route("/auth")
def authenticate():

 auth_url = fs.get_authorize_url(callback_url="http://127.0.0.1:5000")

 return redirect(auth_url)

@app.route("/profile")
def profile():
 food = fs.foods_get_most_eaten()

 return "<h1>Profile</h1><div>Most Eaten Foods
{}</div>"\
 .format(food)

if __name__ == "__main__":
 app.run()

CLI Application

from fatsecret import Fatsecret

fs = Fatsecret(consumer_key, consumer_secret)

auth_url = fs.get_authorize_url()

print("Browse to the following URL in your browser to authorize access:\n{}"\
 .format(auth_url)

pin = input("Enter the PIN provided by FatSecret: ")
session_token = fs.authenticate(pin)

foods = fs.foods_get_most_eaten()
print("Most Eaten Food Results: {}".format(len(foods)))

Use New Profiles for Your App

You’re able to directly authenticate to any profile that your app has created

from fatsecret import Fatsecret

fs = Fatsecret(consumer_key, secret_key)

session_token = fs.profile_create('new_user_001')

Fatsecret states that each session_token persists indefinitely for profiles created by your app
so you can store it and use it later as needed.

Note: Using a session_token from a previously authorized session for a Fatsecret user profile
is also possible but Fatsecret isn’t as clear about the lifetime of those tokens.

session_token = # retrieve from your database

Or you can save the user_id instead and get the session_token from Fatsecret each time. Keep in mind that
this will only work for profiles created by your application. You’ll still need to go through the 3-legged OAuth
process for profiles you didn’t create.

session_token = fs.profile_get_auth('new_user_001')

new_session = Fatsecret(consumer_key, secret_key, session_token=session_token)

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	pyfatsecret 0.2.1 documentation

API Documentation

	
class fatsecret.Fatsecret(consumer_key, consumer_secret, session_token=None)[source]

	Session for API interaction

Can have an unauthorized session for access to public data or a 3-legged Oauth authenticated session
for access to Fatsecret user profile data

Fatsecret only supports OAuth 1.0 with HMAC-SHA1 signed requests.

	
authenticate(verifier)[source]

	Retrieve access tokens once user has approved access to authenticate session

	Parameters:	verifier (int) – PIN displayed to user or returned by authorize_url when callback url is provided

	
close()[source]

	Session cleanup

	
exercise_entries_get_month(date=None)[source]

	Returns the summary estimated daily calories expended for a user’s exercise diary entries for
the month specified. Use this call to display total energy expenditure information to users about their
exercise and activities for a nominated month.

	Parameters:	date (datetime) – Day within month to retrieve (default value is the current day for the current month).

	
exercise_entries_save_template(days, date=None)[source]

	Takes the set of exercise entries on a nominated date and saves these entries as “template”
entries for nominated days of the week.

	Parameters:	
	days (str) – The days of the week specified as bits with Sunday being the 1st bit and Saturday being the
last. For example Tuesday and Thursday would be represented as 00010100 in bits where Tuesday is the 3rd
bit from the right and Thursday being the 5th.

	date (datetime) – Day of exercises to use as the template (default value is the current day).

	
exercise_entry_edit(shift_to_id, shift_from_id, minutes, date=None, shift_to_name=None, shift_from_name=None, kcals=None)[source]

	Records a change to a user’s exercise diary entry for a nominated date.

All changes to an exercise diary involve either increasing the duration of an existing activity or
introducing a new activity for a nominated duration. Because there are always 24 hours worth of exercise
entries on any given date, the user must nominate the exercise or activity from which the time was taken
to balance out the total duration of activities and exercises for the 24 hour period. As such, each change
to the exercise entries on a given day is a “shifting” operation where time is moved from one activity to
another. An exercise is removed from the day when all of the time allocated to it is shifted to other exercises.

	Parameters:	
	shift_to_id (str) – The ID of the exercise type to shift to.

	shift_from_id (str) – The ID of the exercise type to shift from.

	minutes (int) – The number of minutes to shift.

	date (datetime) – Day to edit (default value is the current day).

	shift_to_name (str) – Only required if shift_to_id is 0 (exercise type “Other”).
This is the name of the new custom exercise type to shift to.

	shift_from_name (str) – Only required if shift_from_id is 0 (exercise type “Other”).
This is the name of the custom exercise type to shift from.

	
exercises_entries_commit_day(date=None)[source]

	Saves the default exercise entries for the user on a nominated date.

	Parameters:	date (datetime) – Date to save default exercises on (default value is the current day).

	
exercises_entries_get(date=None)[source]

	Returns the daily exercise entries for the user on a nominated date.

The API will always return 24 hours worth of exercise entries for a given user on a given date.
These entries will either be “template” entries (which a user may override for any given day of the week)
or saved exercise entry values.

	Parameters:	date (datetime) – Day of exercises to retrieve (default value is the current day).

	
exercises_get()[source]

	This is a utility method, returning the full list of all supported exercise type names and
their associated unique identifiers.

	
food_add_favorite(food_id, serving_id=None, number_of_units=None)[source]

	Add a food to a user’s favorite according to the parameters specified.

	Parameters:	
	food_id (str) – The ID of the favorite food to add.

	serving_id (str) – Only required if number_of_units is present. This is the ID of the favorite serving.

	number_of_units (float) – Only required if serving_id is present. This is the favorite number of servings.

	
food_delete_favorite(food_id, serving_id=None, number_of_units=None)[source]

	Delete the food to a user’s favorite according to the parameters specified.

	Parameters:	
	food_id (str) – The ID of the favorite food to add.

	serving_id (str) – Only required if number_of_units is present. This is the ID of the favorite serving.

	number_of_units (float) – Only required if serving_id is present. This is the favorite number of servings.

	
food_entries_copy(from_date, to_date, meal=None)[source]

	Copies the food entries for a specified meal from a nominated date to a nominated date.

	Parameters:	
	from_date (datetime) – The date to copy food entries from

	to_date (datetime) – The date to copy food entries to (default value is the current day).

	meal (str) – The type of meal to copy. Valid meal types are “breakfast”, “lunch”, “dinner” and “other”
(default value is all).

	
food_entries_copy_saved_meal(meal_id, meal, date=None)[source]

	Copies the food entries for a specified saved meal to a specified meal.

	Parameters:	
	meal_id (str) – The ID of the saved meal

	meal (str) – The type of meal eaten. Valid meal types are “breakfast”, “lunch”, “dinner” and “other”.

	date (datetime) – Day to copy meal to. (default value is the current day).

	
food_entries_get(food_entry_id=None, date=None)[source]

	Returns saved food diary entries for the user according to the filter specified.

This method can be used to return all food diary entries recorded on a nominated date or a single food
diary entry with a nominated food_entry_id.

:: You must specify either date or food_entry_id.

	Parameters:	
	food_entry_id (str) – The ID of the food entry to retrieve. You must specify either date or food_entry_id.

	date (datetime) – Day to filter food entries by (default value is the current day).

	
food_entries_get_month(date=None)[source]

	Returns summary daily nutritional information for a user’s food diary entries for the month specified.

Use this call to display nutritional information to users about their food intake for a nominated month.

	Parameters:	date (datetime) – Day in the month to return (default value is the current day to get current month).

	
food_entry_create(food_id, food_entry_name, serving_id, number_of_units, meal, date=None)[source]

	Records a food diary entry for the user according to the parameters specified.

	Parameters:	
	food_id (str) – The ID of the food eaten.

	food_entry_name (str) – The name of the food entry.

	serving_id (str) – The ID of the serving

	number_of_units (float) – The number of servings eaten.

	meal (str) – The type of meal eaten. Valid meal types are “breakfast”, “lunch”, “dinner” and “other”.

	date (datetime) – Day to create food entry on (default value is the current day).

	
food_entry_delete(food_entry_id)[source]

	Deletes the specified food entry for the user.

	Parameters:	food_entry_id (str) – The ID of the food entry to delete.

	
food_entry_edit(food_entry_id, entry_name=None, serving_id=None, num_units=None, meal=None)[source]

	Adjusts the recorded values for a food diary entry.

Note that the date of the entry may not be adjusted, however one or more of the other remaining
properties – food_entry_name, serving_id, number_of_units, or meal may be altered. In order to shift
the date for which a food diary entry was recorded the original entry must be deleted and a new entry recorded.

	Parameters:	
	food_entry_id (str) – The ID of the food entry to edit.

	entry_name (str) – The new name of the food entry.

	serving_id (str) – The new ID of the serving to change to.

	num_units (float) – The new number of servings eaten.

	meal (str) – The new type of meal eaten. Valid meal types are “breakfast”, “lunch”, “dinner” and “other”.

	
food_get(food_id)[source]

	Returns detailed nutritional information for the specified food.

Use this call to display nutrition values for a food to users.

	Parameters:	food_id (str) – Fatsecret food identifier

	
foods_get_favorites()[source]

	Returns the favorite foods for the authenticated user.

	
foods_get_most_eaten(meal=None)[source]

	Returns the most eaten foods for the user according to the meal specified.

	Parameters:	meal (str) – ‘breakfast’, ‘lunch’, ‘dinner’, or ‘other’

	
foods_get_recently_eaten(meal=None)[source]

	Returns the recently eaten foods for the user according to the meal specified

	Parameters:	meal (str) – ‘breakfast’, ‘lunch’, ‘dinner’, or ‘other’

	
foods_search(search_expression, page_number=None, max_results=None)[source]

	Conducts a search of the food database using the search expression specified.

The results are paginated according to a zero-based “page” offset. Successive pages of results
may be retrieved by specifying a starting page offset value. For instance, specifying a max_results
of 10 and page_number of 4 will return results numbered 41-50.

	Parameters:	
	search_expression (str) – term or phrase to search

	page_number (int) – page set to return (default 0)

	max_results (int) – total results per page (default 20)

	
get_authorize_url(callback_url='oob')[source]

	URL used to authenticate app to access Fatsecret User data

If no callback url is provided then you’ll need to allow the user to enter in a PIN that Fatsecret
displays once access was allowed by the user

	Parameters:	callback_url (str) – An absolute URL to redirect the User to when they have completed authentication

	
profile_create(user_id=None)[source]

	Creates a new profile and returns the oauth_token and oauth_secret for the new profile.

The token and secret returned by this method are persisted indefinitely and may be used in order to
provide profile-specific information storage for users including food and exercise diaries and weight tracking.

	Parameters:	user_id (str) – You can set your own ID for the newly created profile if you do not wish to store the
auth_token and auth_secret. Particularly useful if you are only using the FatSecret JavaScript API.
Use profile.get_auth to retrieve auth_token and auth_secret.

	
profile_get()[source]

	Returns general status information for a nominated user.

	
profile_get_auth(user_id)[source]

	Returns the authentication information for a nominated user.

	Parameters:	user_id (str) – The user_id specified in profile.create.

	
recipe_get(recipe_id)[source]

	Returns detailed information for the specified recipe.

	Parameters:	recipe_id (str) – Fatsecret ID of desired recipe

	
recipe_types_get()[source]

	This is a utility method, returning the full list of all supported recipe type names.

	
recipes_add_favorite(recipe_id)[source]

	Add a recipe to a user’s favorite.

	Parameters:	recipe_id (str) – The ID of the favorite recipe to add.

	
recipes_delete_favorite(recipe_id)[source]

	Delete a recipe to a user’s favorite.

	Parameters:	recipe_id (str) – The ID of the favorite recipe to delete.

	
recipes_get_favorites()[source]

	Returns the favorite recipes for the specified user.

	
recipes_search(search_expression, recipe_type=None, page_number=None, max_results=None)[source]

	Conducts a search of the recipe database using the search expression specified.

The results are paginated according to a zero-based “page” offset. Successive pages of results may be
retrieved by specifying a starting page offset value. For instance, specifying a max_results of 10 and
page_number of 4 will return results numbered 41-50.

	Parameters:	
	search_expression (str) – phrase to search on

	recipe_type (str) – type of recipe to filter

	page_number (int) – result page to return (default 0)

	max_results (int) – total results per page to return (default 20)

	
saved_meal_create(meal_name, meal_desc=None, meals=None)[source]

	Records a saved meal for the user according to the parameters specified.

	Parameters:	
	meal_name (str) – The name of the saved meal.

	meal_desc (str) – A short description of the saved meal.

	meals (list) – A comma separated list of the types of meal this saved meal is suitable for.
Valid meal types are “breakfast”, “lunch”, “dinner” and “other”.

	
saved_meal_delete(meal_id)[source]

	Deletes the specified saved meal for the user.

	Parameters:	meal_id (str) – The ID of the saved meal to delete.

	
saved_meal_edit(meal_id, new_name=None, meal_desc=None, meals=None)[source]

	Records a change to a user’s saved meal.

	Parameters:	
	meal_id (str) – The ID of the food entry to edit.

	new_name (str) – The new name of the saved meal.

	meal_desc (str) – The new description of the saved meal.

	meals (str) – The new comma separated list of the types of meal this saved meal is suitable for.
Valid meal types are “breakfast”, “lunch”, “dinner” and “other”.

	
saved_meal_get(meal=None)[source]

	Returns saved meals for the authenticated user

	Parameters:	meal (str) – Filter result set to ‘Breakfast’, ‘Lunch’, ‘Dinner’, or ‘Other’

	
saved_meal_item_add(meal_id, food_id, food_entry_name, serving_id, num_units)[source]

	Adds a food to a user’s saved meal according to the parameters specified.

	Parameters:	
	meal_id (str) – The ID of the saved meal.

	food_id (str) – The ID of the food to add to the saved meal.

	food_entry_name (str) – The name of the food to add to the saved meal.

	serving_id (str) – The ID of the serving of the food to add to the saved meal.

	num_units (float) – The number of servings of the food to add to the saved meal.

	
saved_meal_item_delete(meal_item_id)[source]

	Deletes the specified saved meal item for the user.

	Parameters:	meal_item_id (str) – The ID of the saved meal item to delete.

	
saved_meal_item_edit(meal_item_id, item_name=None, num_units=None)[source]

	Records a change to a user’s saved meal item.

Note that the serving_id of the saved meal item may not be adjusted, however one or more of the other
remaining properties – saved_meal_item_name or number_of_units may be altered. In order to adjust a
serving_id for which a saved_meal_item was recorded the original item must be deleted and a new item recorded.

	Parameters:	
	meal_item_id (str) – The ID of the saved meal item to edit.

	item_name (str) – The new name of the saved meal item.

	num_units (float) – The new number of servings of the saved meal item.

	
saved_meal_items_get(meal_id)[source]

	Returns saved meal items for a specified saved meal.

	Parameters:	meal_id (str) – The ID of the saved meal to retrieve the saved_meal_items for.

	
static unix_time(dt)[source]

	Convert the provided datetime into number of days since the Epoch

	Parameters:	dt (datetime) – Date to convert

	
static valid_response(response)[source]

	Helper function to check JSON response for errors and to strip headers

	Parameters:	response (dict) – JSON response from API call

	
weight_update(current_weight_kg, date=None, weight_type='kg', height_type='cm', goal_weight_kg=None, current_height_cm=None, comment=None)[source]

	Records a user’s weight for a nominated date.

First time weigh-ins require the goal_weight_kg and current_height_cm parameters.

	Parameters:	
	current_weight_kg (float) – The current weight of the user in kilograms.

	date (datetime) – Day to for weight record (default value is the current day).

	weight_type (str) – The weight measurement type for this user profile. Valid types are “kg” and “lb”

	height_type (str) – The height measurement type for this user profile. Valid types are “cm” and “inch”

	goal_weight_kg (float) – The goal weight of the user in kilograms. This is required for the first weigh-in.

	current_height_cm (float) – The current height of the user in centimetres. This is required for the first
weigh-in. You can only set this for the first time (subsequent updates will not change a user’s height)

	comment (str) – A comment for this weigh-in.

	
weights_get_month(date=None)[source]

	Returns the recorded weights for a user for the month specified. Use this call to display a user’s
weight chart or log of weight changes for a nominated month.

	Parameters:	date (datetime) – Day within month to return (default value is the current day for the current month).

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	pyfatsecret 0.2.1 documentation

Index

 A
 | C
 | E
 | F
 | G
 | P
 | R
 | S
 | U
 | V
 | W

A

 	

 	authenticate() (fatsecret.Fatsecret method)

C

 	

 	close() (fatsecret.Fatsecret method)

E

 	

 	exercise_entries_get_month() (fatsecret.Fatsecret method)

 	exercise_entries_save_template() (fatsecret.Fatsecret method)

 	exercise_entry_edit() (fatsecret.Fatsecret method)

 	

 	exercises_entries_commit_day() (fatsecret.Fatsecret method)

 	exercises_entries_get() (fatsecret.Fatsecret method)

 	exercises_get() (fatsecret.Fatsecret method)

F

 	

 	Fatsecret (class in fatsecret)

 	food_add_favorite() (fatsecret.Fatsecret method)

 	food_delete_favorite() (fatsecret.Fatsecret method)

 	food_entries_copy() (fatsecret.Fatsecret method)

 	food_entries_copy_saved_meal() (fatsecret.Fatsecret method)

 	food_entries_get() (fatsecret.Fatsecret method)

 	food_entries_get_month() (fatsecret.Fatsecret method)

 	food_entry_create() (fatsecret.Fatsecret method)

 	

 	food_entry_delete() (fatsecret.Fatsecret method)

 	food_entry_edit() (fatsecret.Fatsecret method)

 	food_get() (fatsecret.Fatsecret method)

 	foods_get_favorites() (fatsecret.Fatsecret method)

 	foods_get_most_eaten() (fatsecret.Fatsecret method)

 	foods_get_recently_eaten() (fatsecret.Fatsecret method)

 	foods_search() (fatsecret.Fatsecret method)

G

 	

 	get_authorize_url() (fatsecret.Fatsecret method)

P

 	

 	profile_create() (fatsecret.Fatsecret method)

 	profile_get() (fatsecret.Fatsecret method)

 	

 	profile_get_auth() (fatsecret.Fatsecret method)

R

 	

 	recipe_get() (fatsecret.Fatsecret method)

 	recipe_types_get() (fatsecret.Fatsecret method)

 	recipes_add_favorite() (fatsecret.Fatsecret method)

 	

 	recipes_delete_favorite() (fatsecret.Fatsecret method)

 	recipes_get_favorites() (fatsecret.Fatsecret method)

 	recipes_search() (fatsecret.Fatsecret method)

S

 	

 	saved_meal_create() (fatsecret.Fatsecret method)

 	saved_meal_delete() (fatsecret.Fatsecret method)

 	saved_meal_edit() (fatsecret.Fatsecret method)

 	saved_meal_get() (fatsecret.Fatsecret method)

 	

 	saved_meal_item_add() (fatsecret.Fatsecret method)

 	saved_meal_item_delete() (fatsecret.Fatsecret method)

 	saved_meal_item_edit() (fatsecret.Fatsecret method)

 	saved_meal_items_get() (fatsecret.Fatsecret method)

U

 	

 	unix_time() (fatsecret.Fatsecret static method)

V

 	

 	valid_response() (fatsecret.Fatsecret static method)

W

 	

 	weight_update() (fatsecret.Fatsecret method)

 	

 	weights_get_month() (fatsecret.Fatsecret method)

 Copyright 2014.
 Created using Sphinx 1.2.2.

 _modules/index.html

 Navigation

 		
 index

 		pyfatsecret 0.2.1 documentation »

 All modules for which code is available

		fatsecret

 © Copyright 2014.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		pyfatsecret 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_modules/fatsecret.html

 Navigation

 		
 index

 		pyfatsecret 0.2.1 documentation »

 		Module code »

 Source code for fatsecret

"""
 fatsecret

 Simple python wrapper of the Fatsecret API

"""

import datetime

from rauth.service import OAuth1Service

FIXME add method to set default units and make it an optional argument to the constructor
[docs]class Fatsecret:
 """
 Session for API interaction

 Can have an unauthorized session for access to public data or a 3-legged Oauth authenticated session
 for access to Fatsecret user profile data

 Fatsecret only supports OAuth 1.0 with HMAC-SHA1 signed requests.

 """

 def __init__(self, consumer_key, consumer_secret, session_token=None):
 """ Create unauthorized session or open existing authorized session

 :param consumer_key: App API Key. Register at http://platform.fatsecret.com/api/
 :type consumer_key: str
 :param consumer_secret: Secret app API key
 :type consumer_secret: str
 :param session_token: Access Token / Access Secret pair from existing authorized session
 :type session_token: tuple
 """

 self.consumer_key = consumer_key
 self.consumer_secret = consumer_secret

 # Needed for new access. Generated by running get_authorize_url()
 self.request_token = None
 self.request_token_secret = None

 # Required for accessing user info. Generated by running authenticate()
 self.access_token = None
 self.access_token_secret = None

 self.oauth = OAuth1Service(
 name='fatsecret',
 consumer_key=consumer_key,
 consumer_secret=consumer_secret,
 request_token_url='http://www.fatsecret.com/oauth/request_token',
 access_token_url='http://www.fatsecret.com/oauth/access_token',
 authorize_url='http://www.fatsecret.com/oauth/authorize',
 base_url='http://platform.fatsecret.com/rest/server.api')

 # Open prior session or default to unauthorized session
 if session_token:
 self.access_token = session_token[0]
 self.access_token_secret = session_token[1]
 self.session = self.oauth.get_session(token=session_token)
 else:
 # Default to unauthorized session
 self.session = self.oauth.get_session()

 @property
 def api_url(self):

 return 'http://platform.fatsecret.com/rest/server.api'

[docs] def get_authorize_url(self, callback_url='oob'):
 """ URL used to authenticate app to access Fatsecret User data

 If no callback url is provided then you'll need to allow the user to enter in a PIN that Fatsecret
 displays once access was allowed by the user

 :param callback_url: An absolute URL to redirect the User to when they have completed authentication
 :type callback_url: str
 """
 self.request_token, self.request_token_secret = \
 self.oauth.get_request_token(method='GET', params={'oauth_callback': callback_url})

 return self.oauth.get_authorize_url(self.request_token)

[docs] def authenticate(self, verifier):
 """ Retrieve access tokens once user has approved access to authenticate session

 :param verifier: PIN displayed to user or returned by authorize_url when callback url is provided
 :type verifier: int
 """

 session_token = self.oauth.get_access_token(self.request_token, self.request_token_secret,
 params={'oauth_verifier': verifier})

 self.access_token = session_token[0]
 self.access_token_secret = session_token[1]
 self.session = self.oauth.get_session(session_token)

 # Return session token for app specific caching
 return session_token

[docs] def close(self):
 """Session cleanup"""
 self.session.close()

 @staticmethod
[docs] def unix_time(dt):
 """Convert the provided datetime into number of days since the Epoch

 :param dt: Date to convert
 :type dt: datetime
 """
 epoch = datetime.datetime.utcfromtimestamp(0)
 delta = dt - epoch
 return delta.days

 @staticmethod
[docs] def valid_response(response):
 """Helper function to check JSON response for errors and to strip headers

 :param response: JSON response from API call
 :type response: dict
 """
 if response.json():

 for key in response.json():

 # Error Code Handling
 if key == 'error':
 code = response.json()[key]['code']
 message = response.json()[key]['message']
 if code == 2:
 raise AuthenticationError(2, "This api call requires an authenticated session")

 elif code in [1, 10, 11, 12, 20, 21]:
 raise GeneralError(code, message)

 elif 3 <= code <= 9:
 raise AuthenticationError(code, message)

 elif 101 <= code <= 108:
 raise ParameterError(code, message)

 elif 201 <= code <= 207:
 raise ApplicationError(code, message)

 # All other response options
 elif key == 'success':
 return True

 elif key == 'foods':
 return response.json()[key]['food']

 elif key == 'recipes':
 return response.json()[key]['recipe']

 elif key == 'saved_meals':
 return response.json()[key]['saved_meal']

 elif key == 'saved_meal_items':
 return response.json()[key]['saved_meal_item']

 elif key == 'exercise_types':
 return response.json()[key]['exercise']

 elif key == 'food_entries':
 return response.json()[key]['food_entry']

 elif key == 'month':
 return response.json()[key]['day']

 elif key == 'profile':
 if 'auth_token' in response.json()[key]:
 return response.json()[key]['auth_token'], response.json()[key]['auth_secret']
 else:
 return response.json()[key]

 elif key in ('food', 'recipe', 'recipe_types', 'saved_meal_id', 'saved_meal_item_id', 'food_entry_id'):
 return response.json()[key]

[docs] def food_add_favorite(self, food_id, serving_id=None, number_of_units=None):
 """ Add a food to a user's favorite according to the parameters specified.

 :param food_id: The ID of the favorite food to add.
 :type food_id: str
 :param serving_id: Only required if number_of_units is present. This is the ID of the favorite serving.
 :type serving_id: str
 :param number_of_units: Only required if serving_id is present. This is the favorite number of servings.
 :type number_of_units: float
 """

 params = {'method': 'food.add_favorite', 'format': 'json', 'food_id': food_id}

 if serving_id and number_of_units:
 params['serving_id'] = serving_id
 params['number_of_units'] = number_of_units

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_delete_favorite(self, food_id, serving_id=None, number_of_units=None):
 """ Delete the food to a user's favorite according to the parameters specified.

 :param food_id: The ID of the favorite food to add.
 :type food_id: str
 :param serving_id: Only required if number_of_units is present. This is the ID of the favorite serving.
 :type serving_id: str
 :param number_of_units: Only required if serving_id is present. This is the favorite number of servings.
 :type number_of_units: float
 """

 params = {'method': 'food.delete_favorite', 'format': 'json', 'food_id': food_id}

 if serving_id and number_of_units:
 params['serving_id'] = serving_id
 params['number_of_units'] = number_of_units

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_get(self, food_id):
 """Returns detailed nutritional information for the specified food.

 Use this call to display nutrition values for a food to users.

 :param food_id: Fatsecret food identifier
 :type food_id: str
 """

 params = {'method': 'food.get', 'food_id': food_id, 'format': 'json'}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def foods_get_favorites(self):
 """Returns the favorite foods for the authenticated user."""

 params = {'method': 'foods.get_favorites', 'format': 'json'}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def foods_get_most_eaten(self, meal=None):
 """ Returns the most eaten foods for the user according to the meal specified.

 :param meal: 'breakfast', 'lunch', 'dinner', or 'other'
 :type meal: str
 """
 params = {'method': 'foods.get_most_eaten', 'format': 'json'}

 if meal in ['breakfast', 'lunch', 'dinner', 'other']:
 params['meal'] = meal

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def foods_get_recently_eaten(self, meal=None):
 """ Returns the recently eaten foods for the user according to the meal specified

 :param meal: 'breakfast', 'lunch', 'dinner', or 'other'
 :type meal: str
 """
 params = {'method': 'foods.get_recently_eaten', 'format': 'json'}

 if meal in ['breakfast', 'lunch', 'dinner', 'other']:
 params['meal'] = meal

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def foods_search(self, search_expression, page_number=None, max_results=None):
 """Conducts a search of the food database using the search expression specified.

 The results are paginated according to a zero-based "page" offset. Successive pages of results
 may be retrieved by specifying a starting page offset value. For instance, specifying a max_results
 of 10 and page_number of 4 will return results numbered 41-50.

 :param search_expression: term or phrase to search
 :type search_expression: str
 :param page_number: page set to return (default 0)
 :type page_number: int
 :param max_results: total results per page (default 20)
 :type max_results: int
 """
 params = {'method': 'foods.search', 'search_expression': search_expression, 'format': 'json'}

 if page_number and max_results:
 params['page_number'] = page_number
 params['max_results'] = max_results

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def recipes_add_favorite(self, recipe_id):
 """ Add a recipe to a user's favorite.

 :param recipe_id: The ID of the favorite recipe to add.
 :type recipe_id: str
 """

 params = {'method': 'recipes.add_favorites', 'format': 'json', 'recipe_id': recipe_id}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def recipes_delete_favorite(self, recipe_id):
 """ Delete a recipe to a user's favorite.

 :param recipe_id: The ID of the favorite recipe to delete.
 :type recipe_id: str
 """

 params = {'method': 'recipes.delete_favorites', 'format': 'json', 'recipe_id': recipe_id}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def recipe_get(self, recipe_id):
 """Returns detailed information for the specified recipe.

 :param recipe_id: Fatsecret ID of desired recipe
 :type recipe_id: str
 """

 params = {'method': 'recipe.get', 'format': 'json', 'recipe_id': recipe_id}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def recipes_get_favorites(self):
 """Returns the favorite recipes for the specified user."""

 params = {'method': 'recipes.get_favorites', 'format': 'json'}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def recipes_search(self, search_expression, recipe_type=None, page_number=None, max_results=None):
 """ Conducts a search of the recipe database using the search expression specified.

 The results are paginated according to a zero-based "page" offset. Successive pages of results may be
 retrieved by specifying a starting page offset value. For instance, specifying a max_results of 10 and
 page_number of 4 will return results numbered 41-50.

 :param search_expression: phrase to search on
 :type search_expression: str
 :param recipe_type: type of recipe to filter
 :type recipe_type: str
 :param page_number: result page to return (default 0)
 :type page_number: int
 :param max_results: total results per page to return (default 20)
 :type max_results: int
 """

 params = {'method': 'recipes.search', 'search_expression': search_expression, 'format': 'json'}

 if recipe_type:
 params['recipe_type'] = recipe_type
 if page_number and max_results:
 params['page_number'] = page_number
 params['max_results'] = max_results

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def recipe_types_get(self):
 """ This is a utility method, returning the full list of all supported recipe type names. """

 params = {'method': 'recipe_types.get', 'format': 'json'}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def saved_meal_create(self, meal_name, meal_desc=None, meals=None):
 """ Records a saved meal for the user according to the parameters specified.

 :param meal_name: The name of the saved meal.
 :type meal_name: str
 :param meal_desc: A short description of the saved meal.
 :type meal_desc: str
 :param meals: A comma separated list of the types of meal this saved meal is suitable for.
 Valid meal types are "breakfast", "lunch", "dinner" and "other".
 :type meals: list
 """

 params = {'method': 'saved_meal.create', 'format': 'json', 'saved_meal_name': meal_name}
 if meal_desc:
 params['saved_meal_description'] = meal_desc
 if meals:
 params['meals'] = ",".join(meals)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def saved_meal_delete(self, meal_id):
 """ Deletes the specified saved meal for the user.

 :param meal_id: The ID of the saved meal to delete.
 :type meal_id: str
 """

 params = {'method': 'saved_meal.delete', 'format': 'json', 'saved_meal_id': meal_id}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def saved_meal_edit(self, meal_id, new_name=None, meal_desc=None, meals=None):
 """ Records a change to a user's saved meal.

 :param meal_id: The ID of the food entry to edit.
 :type meal_id: str
 :param new_name: The new name of the saved meal.
 :type new_name: str
 :param meal_desc: The new description of the saved meal.
 :type meal_desc: str
 :param meals: The new comma separated list of the types of meal this saved meal is suitable for.
 Valid meal types are "breakfast", "lunch", "dinner" and "other".
 :type meals: str
 """

 params = {'method': 'saved_meal.edit', 'format': 'json', 'saved_meal_id': meal_id}

 if new_name:
 params['saved_meal_name'] = new_name
 if meal_desc:
 params['saved_meal_description'] = meal_desc
 if meals:
 params['meals'] = ",".join(meals)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def saved_meal_get(self, meal=None):
 """ Returns saved meals for the authenticated user

 :param meal: Filter result set to 'Breakfast', 'Lunch', 'Dinner', or 'Other'
 :type meal: str
 """

 params = {'method': 'saved_meals.get', 'format': 'json'}

 if meal:
 params['meal'] = meal

 response = self.session.get(self.api_url, params)
 return self.valid_response(response)

[docs] def saved_meal_item_add(self, meal_id, food_id, food_entry_name, serving_id, num_units):
 """ Adds a food to a user's saved meal according to the parameters specified.

 :param meal_id: The ID of the saved meal.
 :type meal_id: str
 :param food_id: The ID of the food to add to the saved meal.
 :type food_id: str
 :param food_entry_name: The name of the food to add to the saved meal.
 :type food_entry_name: str
 :param serving_id: The ID of the serving of the food to add to the saved meal.
 :type serving_id: str
 :param num_units: The number of servings of the food to add to the saved meal.
 :type num_units: float
 """
 params = {'method': 'saved_meal_item.add', 'format': 'json', 'saved_meal_id': meal_id,
 'food_id': food_id, 'food_entry_name': food_entry_name, 'serving_id': serving_id,
 'number_of_units': num_units}

 response = self.session.get(self.api_url, params)
 return self.valid_response(response)

[docs] def saved_meal_item_delete(self, meal_item_id):
 """ Deletes the specified saved meal item for the user.

 :param meal_item_id: The ID of the saved meal item to delete.
 :type meal_item_id: str
 """

 params = {'method': 'saved_meal_item.delete', 'format': 'json', 'saved_meal_item_id': meal_item_id}

 response = self.session.get(self.api_url, params)
 return self.valid_response(response)

[docs] def saved_meal_item_edit(self, meal_item_id, item_name=None, num_units=None):
 """ Records a change to a user's saved meal item.

 Note that the serving_id of the saved meal item may not be adjusted, however one or more of the other
 remaining properties – saved_meal_item_name or number_of_units may be altered. In order to adjust a
 serving_id for which a saved_meal_item was recorded the original item must be deleted and a new item recorded.

 :param meal_item_id: The ID of the saved meal item to edit.
 :type meal_item_id: str
 :param item_name: The new name of the saved meal item.
 :type item_name: str
 :param num_units: The new number of servings of the saved meal item.
 :type num_units: float
 """

 params = {'method': 'saved_meal_item.edit', 'format': 'json', 'saved_meal_item_id': meal_item_id}

 if item_name:
 params['saved_meal_item_name'] = item_name
 if num_units:
 params['number_of_units'] = num_units

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def saved_meal_items_get(self, meal_id):
 """ Returns saved meal items for a specified saved meal.

 :param meal_id: The ID of the saved meal to retrieve the saved_meal_items for.
 :type meal_id: str
 """

 params = {'method': 'saved_meal_items.get', 'format': 'json', 'saved_meal_id': meal_id}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def exercises_get(self):
 """ This is a utility method, returning the full list of all supported exercise type names and
 their associated unique identifiers.
 """

 params = {'method': 'exercises.get', 'format': 'json'}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def profile_create(self, user_id=None):
 """ Creates a new profile and returns the oauth_token and oauth_secret for the new profile.

 The token and secret returned by this method are persisted indefinitely and may be used in order to
 provide profile-specific information storage for users including food and exercise diaries and weight tracking.

 :param user_id: You can set your own ID for the newly created profile if you do not wish to store the
 auth_token and auth_secret. Particularly useful if you are only using the FatSecret JavaScript API.
 Use profile.get_auth to retrieve auth_token and auth_secret.
 :type user_id: str
 """

 params = {'method': 'profile.create', 'format': 'json'}

 if user_id:
 params['user_id'] = user_id

 response = self.session.get(self.api_url, params=params)

 return self.valid_response(response)

[docs] def profile_get(self):
 """ Returns general status information for a nominated user. """

 params = {'method': 'profile.get', 'format': 'json'}
 response = self.session.get(self.api_url, params=params)

 return self.valid_response(response)

[docs] def profile_get_auth(self, user_id):
 """ Returns the authentication information for a nominated user.

 :param user_id: The user_id specified in profile.create.
 :type user_id: str
 """

 params = {'method': 'profile.get_auth', 'format': 'json', 'user_id': user_id}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_entries_copy(self, from_date, to_date, meal=None):
 """ Copies the food entries for a specified meal from a nominated date to a nominated date.

 :param from_date: The date to copy food entries from
 :type from_date: datetime
 :param to_date: The date to copy food entries to (default value is the current day).
 :type to_date: datetime
 :param meal: The type of meal to copy. Valid meal types are "breakfast", "lunch", "dinner" and "other"
 (default value is all).
 :type meal: str
 """

 params = {'method': 'food_entries.copy', 'format': 'json',
 'from_date': self.unix_time(from_date), 'to_date': self.unix_time(to_date)}

 if meal:
 params['meal'] = meal

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_entries_copy_saved_meal(self, meal_id, meal, date=None):
 """ Copies the food entries for a specified saved meal to a specified meal.

 :param meal_id: The ID of the saved meal
 :type meal_id: str
 :param meal: The type of meal eaten. Valid meal types are "breakfast", "lunch", "dinner" and "other".
 :type meal: str
 :param date: Day to copy meal to. (default value is the current day).
 :type date: datetime
 """

 params = {'method': 'food_entries.copy_saved_meal', 'format': 'json',
 'saved_meal_id': meal_id, 'meal': meal}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_entries_get(self, food_entry_id=None, date=None):
 """ Returns saved food diary entries for the user according to the filter specified.

 This method can be used to return all food diary entries recorded on a nominated date or a single food
 diary entry with a nominated food_entry_id.

 :: You must specify either date or food_entry_id.

 :param food_entry_id: The ID of the food entry to retrieve. You must specify either date or food_entry_id.
 :type food_entry_id: str
 :param date: Day to filter food entries by (default value is the current day).
 :type date: datetime
 """

 params = {'method': 'food_entries.get', 'format': 'json'}

 if food_entry_id:
 params['food_entry_id'] = food_entry_id
 elif date:
 params['date'] = self.unix_time(date)
 else:
 return # exit without running as no valid parameter was provided

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_entries_get_month(self, date=None):
 """ Returns summary daily nutritional information for a user's food diary entries for the month specified.

 Use this call to display nutritional information to users about their food intake for a nominated month.

 :param date: Day in the month to return (default value is the current day to get current month).
 :type date: datetime
 """

 params = {'method': 'food_entries.get_month', 'format': 'json'}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_entry_create(self, food_id, food_entry_name, serving_id, number_of_units, meal, date=None):
 """ Records a food diary entry for the user according to the parameters specified.

 :param food_id: The ID of the food eaten.
 :type food_id: str
 :param food_entry_name: The name of the food entry.
 :type food_entry_name: str
 :param serving_id: The ID of the serving
 :type serving_id: str
 :param number_of_units: The number of servings eaten.
 :type number_of_units: float
 :param meal: The type of meal eaten. Valid meal types are "breakfast", "lunch", "dinner" and "other".
 :type meal: str
 :param date: Day to create food entry on (default value is the current day).
 :type date: datetime
 """

 params = {'method': 'food_entry.create', 'format': 'json', 'food_id': food_id,
 'food_entry_name': food_entry_name, 'serving_id': serving_id, 'number_of_units': number_of_units,
 'meal': meal}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_entry_delete(self, food_entry_id):
 """ Deletes the specified food entry for the user.

 :param food_entry_id: The ID of the food entry to delete.
 :type food_entry_id: str
 """

 params = {'method': 'food_entry.delete', 'format': 'json', 'food_entry_id': food_entry_id}

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def food_entry_edit(self, food_entry_id, entry_name=None, serving_id=None, num_units=None, meal=None):
 """ Adjusts the recorded values for a food diary entry.

 Note that the date of the entry may not be adjusted, however one or more of the other remaining
 properties – food_entry_name, serving_id, number_of_units, or meal may be altered. In order to shift
 the date for which a food diary entry was recorded the original entry must be deleted and a new entry recorded.

 :param food_entry_id: The ID of the food entry to edit.
 :type food_entry_id: str
 :param entry_name: The new name of the food entry.
 :type entry_name: str
 :param serving_id: The new ID of the serving to change to.
 :type serving_id: str
 :param num_units: The new number of servings eaten.
 :type num_units: float
 :param meal: The new type of meal eaten. Valid meal types are "breakfast", "lunch", "dinner" and "other".
 :type meal: str
 """

 params = {'method': 'food_entry.edit', 'food_entry_id': food_entry_id, 'format': 'json'}

 if entry_name:
 params['food_entry_name'] = entry_name

 if serving_id:
 params['serving_id'] = serving_id

 if num_units:
 params['number_of_units'] = num_units

 if meal:
 params['meal'] = meal

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def exercises_entries_commit_day(self, date=None):
 """ Saves the default exercise entries for the user on a nominated date.

 :param date: Date to save default exercises on (default value is the current day).
 :type date: datetime
 """

 params = {'method': 'exercises_entries.commit_day', 'format': 'json'}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def exercises_entries_get(self, date=None):
 """ Returns the daily exercise entries for the user on a nominated date.

 The API will always return 24 hours worth of exercise entries for a given user on a given date.
 These entries will either be "template" entries (which a user may override for any given day of the week)
 or saved exercise entry values.

 :param date: Day of exercises to retrieve (default value is the current day).
 :type date: datetime
 """

 params = {'method': 'exercises_entries.get', 'format': 'json'}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def exercise_entries_get_month(self, date=None):
 """ Returns the summary estimated daily calories expended for a user's exercise diary entries for
 the month specified. Use this call to display total energy expenditure information to users about their
 exercise and activities for a nominated month.

 :param date: Day within month to retrieve (default value is the current day for the current month).
 :type date: datetime
 """

 params = {'method': 'exercises_entries.get_month', 'format': 'json'}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def exercise_entries_save_template(self, days, date=None):
 """ Takes the set of exercise entries on a nominated date and saves these entries as "template"
 entries for nominated days of the week.

 :param days: The days of the week specified as bits with Sunday being the 1st bit and Saturday being the
 last. For example Tuesday and Thursday would be represented as 00010100 in bits where Tuesday is the 3rd
 bit from the right and Thursday being the 5th.
 :type days: str
 :param date: Day of exercises to use as the template (default value is the current day).
 :type date: datetime
 """
 params = {'method': 'exercises_entries.get_month', 'format': 'json', 'days': int(days)}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def exercise_entry_edit(self, shift_to_id, shift_from_id, minutes, date=None, shift_to_name=None,
 shift_from_name=None, kcals=None):
 """ Records a change to a user's exercise diary entry for a nominated date.

 All changes to an exercise diary involve either increasing the duration of an existing activity or
 introducing a new activity for a nominated duration. Because there are always 24 hours worth of exercise
 entries on any given date, the user must nominate the exercise or activity from which the time was taken
 to balance out the total duration of activities and exercises for the 24 hour period. As such, each change
 to the exercise entries on a given day is a "shifting" operation where time is moved from one activity to
 another. An exercise is removed from the day when all of the time allocated to it is shifted to other exercises.

 :param shift_to_id: The ID of the exercise type to shift to.
 :type shift_to_id: str
 :param shift_from_id: The ID of the exercise type to shift from.
 :type shift_from_id: str
 :param minutes: The number of minutes to shift.
 :type minutes: int
 :param date: Day to edit (default value is the current day).
 :type date: datetime
 :param shift_to_name: Only required if shift_to_id is 0 (exercise type "Other").
 This is the name of the new custom exercise type to shift to.
 :type shift_to_name: str
 :param shift_from_name: Only required if shift_from_id is 0 (exercise type "Other").
 This is the name of the custom exercise type to shift from.
 :type shift_from_name: str
 """

 params = {'method': 'exercise_entry.edit', 'format': 'json', 'shift_to_id': shift_to_id,
 'shift_from_id': shift_from_id, 'minutes': minutes}

 if date:
 params['date'] = self.unix_time(date)

 if shift_to_id == 0:
 if shift_to_name:
 params['shift_to_name'] = shift_to_name
 elif kcals:
 params['kcals'] = kcals
 else:
 return
 if shift_from_id == 0:
 if shift_from_name:
 params['shift_from_name'] = shift_from_name
 else:
 return

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def weight_update(self, current_weight_kg, date=None, weight_type='kg', height_type='cm', goal_weight_kg=None,
 current_height_cm=None, comment=None):
 """ Records a user's weight for a nominated date.

 First time weigh-ins require the goal_weight_kg and current_height_cm parameters.

 :param current_weight_kg: The current weight of the user in kilograms.
 :type current_weight_kg: float
 :param date: Day to for weight record (default value is the current day).
 :type date: datetime
 :param weight_type: The weight measurement type for this user profile. Valid types are "kg" and "lb"
 :type weight_type: str
 :param height_type: The height measurement type for this user profile. Valid types are "cm" and "inch"
 :type height_type: str
 :param goal_weight_kg: The goal weight of the user in kilograms. This is required for the first weigh-in.
 :type goal_weight_kg: float
 :param current_height_cm: The current height of the user in centimetres. This is required for the first
 weigh-in. You can only set this for the first time (subsequent updates will not change a user's height)
 :type current_height_cm: float
 :param comment: A comment for this weigh-in.
 :type comment: str
 """

 params = {'method': 'weight.update', 'format': 'json', 'current_weight_kg': current_weight_kg,
 'weight_type': weight_type, 'height_type': height_type}

 if date:
 params['date'] = self.unix_time(date)
 if goal_weight_kg:
 params['goal_weight_kg'] = goal_weight_kg
 if current_height_cm:
 params['current_height_cm'] = current_height_cm
 if comment:
 params['comment'] = comment

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

[docs] def weights_get_month(self, date=None):
 """ Returns the recorded weights for a user for the month specified. Use this call to display a user's
 weight chart or log of weight changes for a nominated month.

 :param date: Day within month to return (default value is the current day for the current month).
 :type date: datetime
 """

 params = {'method': 'weights.get_month', 'format': 'json'}

 if date:
 params['date'] = self.unix_time(date)

 response = self.session.get(self.api_url, params=params)
 return self.valid_response(response)

class BaseFatsecretError(Exception):
 def __init__(self, code, message):
 Exception.__init__(self, "Error {0}: {1}".format(code, message))

class GeneralError(BaseFatsecretError):
 def __init__(self, code, message):
 BaseFatsecretError.__init__(self, code, message)

class AuthenticationError(BaseFatsecretError):
 def __init__(self, code, message):
 BaseFatsecretError.__init__(self, code, message)

class ParameterError(BaseFatsecretError):
 def __init__(self, code, message):
 BaseFatsecretError.__init__(self, code, message)

class ApplicationError(BaseFatsecretError):
 def __init__(self, code, message):
 BaseFatsecretError.__init__(self, code, message)

 © Copyright 2014.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

