

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	pyfarm latest documentation

PyFarm - A Python Based Distributed Job System

Attention

These documents are still undergoing revision

PyFarm is a Python based distributed job system which is intended to be easy
to deploy and maintain. Initially developed for individual use new revisions
have been engineered with larger deployments in mind. It’s a system that’s
focused on providing a framework for customized command execution while
taking into account resource management.

Since this project is under active development, if you have specific
questions or comments you’re always welcome to post to the google groups
discussion list [https://groups.google.com/forum/#!forum/pyfarm]
or via email to pyfarm@googlegroups.com.

Components

PyFarm has several distinct roles that it must fill in order to accomplish
what it was designed to do. Because of this the project has been broken
down into three components to help manage scope and limit interdependencies
as much as possible.

Core

[image: Build Status] [https://travis-ci.org/pyfarm/pyfarm-core] | [image: Code Coverage] [https://coveralls.io/r/pyfarm/pyfarm-core?branch=master] |
Documentation |
Source Code [https://github.com/pyfarm/pyfarm-core]

This is the base library which provides a few modules and objects which the
other two components of PyFarm use. The primary purpose of this component
is to centralize code basic functionality such as logging and configuration.

Master

[image: Build Status] [https://travis-ci.org/pyfarm/pyfarm-master] | [image: Code Coverage] [https://coveralls.io/r/pyfarm/pyfarm-master?branch=master] |
Documentation |
Source Code [https://github.com/pyfarm/pyfarm-master]

This is the component responsible for storing jobs and tasks to run as well
as allocation of work to remote hosts. This component is the largest of the
three components and contains the code necessary to run the web interface,
interact with the relational database, REST APIs and scheduler.

Agent

[image: Build Status] [https://travis-ci.org/pyfarm/pyfarm-agent] | [image: Code Coverage] [https://coveralls.io/r/pyfarm/pyfarm-agent?branch=master] |
Documentation |
Source Code [https://github.com/pyfarm/pyfarm-agent]

This component controls the execution of commands on remote systems as
instructed by the master. This component also contains the job types which
are used as a framework for executing commands.

Contents

	Contributing To PyFarm
	Summary

	Developer Resources
	Coding Style

	Project Structure
	Sub-Projects

	Requirements
	Summary

	Database

	Python

	Supported Software (Job Types)

	Installation
	Python Setup
	Windows

	Linux

	License
	1. Definitions

	2. Grant of Copyright License

	3. Grant of Patent License

	4. Redistribution

	5. Submission of Contributions

	6. Trademarks

	7. Disclaimer of Warranty

	8. Limitation of Liability

	9. Accepting Warranty or Additional Liability

Indices and tables

	Index

	Search Page

 Copyright 2014, Oliver Palmer, Ambient Entertainment GmbH & Co. KG.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	pyfarm latest documentation

Contributing To PyFarm

Summary

PyFarm is a Python based project with the goal of creating an easy to use and
deploy render farm. The project is written on top of several existing libraries
including SQLAlchemy [http://www.sqlalchemy.org/],
Flask [http://flask.pocoo.org/],
Twisted [https://twistedmatrix.com/trac/], and many more. While PyFarm’s
original goal is providing the base for running a render farm it can be used
for other types of work as well.

As flexible and easy to use as the project may be, contributions from the
community are always welcome. There are many ways one can contribute to the
overall project but generally they fall under either documentation, bug fixes,
features, or testing. With that in mind, if you’re looking to contribute to
any of these three areas then read on to get started.

Developer Resources

Below are some resources which are for developers wishing to contribute to
PyFarm.

	Coding Style
	Whitespace
	Tabs and Spaces

	Basic Syntax Considerations
	Quotations

	Standard Documentation

	Endpoint Documentation

	Line Continuations

	HTTP Endpoints
	URL Formatting

	Validating Data in API Endpoints

	Logging
	General

	Usage
	Log Formatting

	Use %r For Objects Instead of repr()

	Exceptions and Errors
	Suppressing All Exceptions

	Custom Exceptions

	Throwing Exceptions Inside A Request
	Default Method

	Alternate Method

	Platform Specific Code
	Import Handling

	Internal Logic Handling

	Supporting Multiple Python Versions
	Checking Python Versions

	Type Information

	2.x vs. 3.x Version Specific Python Imports

	Backwards Compatible Imports

Project Structure

Sub-Projects

The project is broken down into several smaller sub-projects to aid in long
term maintenance and isolation of code scope. Generally speaking there are two
kinds of sub-projects, supporting and operational. Supporting sub-projects
support all consumers of the project in some capacity (ex. documentation or
deployment tools). Operations sub-projects contain the code which operate
PyFarm (ex. agent or master). See the below table to get familiar with the
various sub-projects as they will be referenced later on:

Sub-Projects of PyFarm

 Coding Style

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	pyfarm latest documentation

 	Contributing To PyFarm

Coding Style

PyFarm developers should follow the conventions set fourth in PEP 8 [https://www.python.org/dev/peps/pep-0008] unless
told to do so otherwise. Any exceptions or more specific example will be noted
below and other may be added as time progresses. Coding style is an important
part of PyFarm because it keeps the code consistent and readable which
contributes to the overall quality of the source code.

One final thing to note is that there are places where there’s inconsistencies
in style and there always will be. It’s up to the team to maintain the style
so if you spot something inconsistent with this guide while working you should
always feel free to fix it.

For other areas where there’s contention about style the developers should
come to a consensus and then add their findings to this document.

Whitespace

Whitespace is an important component of any Python program. The below sets
out the standards that PyFarm follows which in practice is not far off
from PEP 8 [https://www.python.org/dev/peps/pep-0008]

Tabs and Spaces

Follow PEP8 and use spaces. To be more exact when working on PyFarm please
use four spaces. For non-python source code please also use four spaces unless
the language you’re working with explicitly does not allow this.

Basic Syntax Considerations

As with the parts above you should follow PEP 8 [https://www.python.org/dev/peps/pep-0008] when considering how you
use Python’s basic syntax structures. Below are some additional considerations
that are specific to PyFarm as well as some short explanations.

Quotations

Python has two forms of quotations ' and ". Functionally there’s not
any difference between two however all code, strings, error messages, etc
should use ". The exception to this rule is if you need " inside of
a string, then you should use ': 'hello "world"'. The reason for this
rule is two parts:

	it’s easy to be, and often is, inconsistent when you mix ' and "

	developers from other languages, such as C++, are more more used to
using " for strings instead of '

Standard Documentation

Docstrings are high encouraged for all callable functions, methods,
classmethods, and staticmethods. When creating a docstring please use """
instead of ''' to enclose the documentation.

def foo():
 """This is a single line doc string"""

def bar():
 """
 This is a multi-line documentation string. When you need to
 use multiple lines you should keep the left and right side of
 the opening and closing quotes clear.
 """

Endpoint Documentation

A large part of PyFarm is pyfarm.master [http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.html#module-pyfarm.master] which includes HTTP endpoints
serving as the master’s API. It’s important to document these using the
sphinxcontrib.httpdomain syntax so it’s readable. Take special note
that in the top level url the type and name of the thing being posted is in
the url, <str:item>, however in the examples it’s the real text.

from flask.views import MethodView
class FooItemsAPI(MethodView):
 def post(self, item=None):
 """
 ``POST`` method which

 .. http:post:: /api/v1/foo/<str:item> HTTP/1.1

 Request

 .. sourcecode:: http

 POST /api/v1/foo/foobar HTTP/1.1
 Accept: application/json

 {
 "item": "foobar"
 }

 Response (new item created)

 .. sourcecode:: http

 HTTP/1.1 201 CREATED
 Content-Type: application/json

 {
 "item": "foobar",
 "id": 1
 }

 :statuscode 200: an existing tag was found and returned
 :statuscode 201: a new tag was created
 """

Which ends up looking like this when rendered:

	
POST /api/v1/foo/<str:item> HTTP/1.1

	Request

POST /api/v1/foo/foobar HTTP/1.1
Accept: application/json

{
 "item": "foobar"
}

Response (agent newly tagged)

HTTP/1.1 201 CREATED
Content-Type: application/json

{
 "item": "foobar",
 "id": 1
}

	statuscode 200:	an existing tag was found and returned

	statuscode 201:	a new tag was created

Line Continuations

The default max line length for the project is 80 characters. Anything longer
should use a line continuation if it can’t be split up otherwise.

import continuations should use (), it's cleaner and easier to
modify later on
try:
 from httplib import (
 BAD_REQUEST, NOT_FOUND, UNAUTHORIZED, INTERNAL_SERVER_ERROR)
except ImportError:
 from http.client import (
 BAD_REQUEST, NOT_FOUND, UNAUTHORIZED, INTERNAL_SERVER_ERROR)

preferred
message = ("this is a message which you may not be "
 "able to fit onto one linet")

but this is ok too
message = "this is a message which you may not be " \
 "able to fit onto one line"

preferred
if (a == b and c == d and a == b
 or a and b and c and d):
 pass

but this is ok too
if a == b and c == d and a == b \
 or a and b and c and d:
 pass

HTTP Endpoints

URL Formatting

The following rules should be applied when constructing an HTTP endpoint:

	endpoints referring to objects should be plural so /items/ instead
of /item/

	any endpoint that’s not referring to a specific document should
contain a trailing slash: /items/

	endpoints that refer to a specific document shouldn’t contain a
trailing slash /items/1

	when working with groups of items under a single item the trailing
slash should be added /items/1/children/

	any endpoint that’s an API should contain a version number
/api/v1/items/

Validating Data in API Endpoints

Most of the time you’ll want a standard way of validating the incoming
request before you have to deal with it yourself. For this there’s the
validate_with_model [http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.utility.html#pyfarm.master.utility.validate_with_model]
function that in combination with
before_request [http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.application.html#pyfarm.master.application.before_request] will:

	ensure the incoming data to the API is json

	test the incoming data to ensure it has all the required keys

	test to make sure the incoming data does not contain keys that don’t
exist in the table

	check to ensure that all data included matches the expected types based
on the types in the model

	set flask.g.json if all of the above proceed without problems

	return a useful error message in response to the request if there’s
problems

A short example of how this works is below

try:
 from httplib import CREATED
except ImportError: # pragma: no cover
 from http.client import CREATED

from flask import g
from pyfarm.master.application import app, db
from pyfarm.master.utility import validate_with_model, jsonify
from pyfarm.models.tag import Tag

NOTE: this is an example only, not functional code as it does not
setup the route
@validate_with_model(Tag) # does all the validation in the points above
def put_tag():
 model = Tag(**g.json)
 db.session.add(model)
 db.session.commit()
 return jsonify(model.to_dict()), CREATED

Logging

General

You are welcome to use the print function on your own but before pushing code
or writing tests please switch to a logger:

from pyfarm.core.logger import getLogger
logger = getLogger("foobar")

The above will create a logger under the proper namespace with a reasonable
set of defaults applied. It will also create it under the proper namespace, in
this case pyfarm.foobar.

Warning

The above is not actually true for the agent and job types. Those will
require a special logging setup which is not yet addressed in this guide.

Usage

Below are some general guidelines that apply specifically to logging to
minimize potential performance problems and decrease inconsistencies in
usage. The following examples assume the code in the section above
was run.

Log Formatting

When providing arguments to the logger use lazy formatting

greeting = "morning"
logger.info("good %s", greeting)

Use %r For Objects Instead of repr()

Instead of always calling repr() on the object just use the %r string
formatter

data = {"true": True, "none", None}
logger.info("data: %r", data)

Exceptions and Errors

At some point you’ll have to handle or produce exception within PyFarm.
Depending on where in the code base you’re working the patterns may vary so
please see below for more information.

Suppressing All Exceptions

Always use try: except Exception when you must suppress all unhandled
exceptions. It’s also advised that you log the original exception message too
so we can find and better handle these errors in the future.

try:
 foobar()

always document exactly why you're suppressing
all unhandled exceptions. Generally speaking there
are **very few** cases where this should ever be a standard
practice.
except Exception as e:
 logger.exception(e) # this is sometimes skipped
 logger.warning("unhandled exception: %s", e)
 pass

Custom Exceptions

PyFarm used to throw more custom exceptions but since then nearly all of the
code has switched back to using standard exceptions. In the event a custom
exception must be created it should follow the general pattern below.

class PyFarmBaseException(Exception):
 """The base exception which all PyFarm exceptions derive from"""
 pass

you may optional subclass from a related builtin type too
class FileHandlingError(PyFarmBaseException):
 """Raised when there's a problem handling files"""
 pass

Throwing Exceptions Inside A Request

When working with pyfarm.master [http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.html#module-pyfarm.master] you’ll often need to throw exceptions
that will be used as responses to a request. There’s a couple of ways to do
this:

Default Method

This is the standard method for throwing exceptions in the web application
in response to a request. The below code will cause
pyfarm.master.errors.error_400() to produce an error response to the
request depending on the mimietype. For example if the incoming request it
application/json the below will construct a json response.

try:
 from httplib import BAD_REQUEST
except ImportError: # pragma: no cover
 from http.client import BAD_REQUEST

from flask import g, abort
from pyfarm.master.application import app

@app.route("/foobar/")
def foobar():
 # NOTE: like logging incomplete or single sentences should
 # start with a lower case letter
 g.error = "something went wrong"
 abort(BAD_REQUEST)

Alternate Method

Although uncommon in other cases it may make sense to response directly when
there’s a problem.

try:
 from httplib import BAD_REQUEST
except ImportError: # pragma: no cover
 from http.client import BAD_REQUEST

from flask import g, abort
from pyfarm.master.application import app
from pyfarm.master.utilities import jsonify

@app.route("/foobar/")
def foobar():
 # NOTE: like logging incomplete or single sentences should
 # start with a lower case letter
 return jsonify(error="something went wrong"), BAD_REQUEST

Platform Specific Code

PyFarm is a cross-platform application and because of this some consideration
about support multi-platforms in the same code base must be considered.

Import Handling

Imports for platform specific modules should be setup like below. This is
better than simply except ImportError: pass because the exception thrown
in the event of misuse will make more sense. In cases where you’ve tried the
best you can to determine the proper coarse of action raise an exception that
describes the situation best.

try:
 from os import fork
except ImportError:
 fork = NotImplemented

try:
 import win32process
except ImportError:
 win32process = NotImplemented

if fork is NotImplemented and win32process is not NotImplemented:
 subprocess.Popen(
 commands, creationflags=win32process.DETACHED_PROCESS)

elif fork is not NotImplemented:
 os.fork()

else:
 raise NotImplemented(
 "failed to determine correct way to launch process")

Internal Logic Handling

If you’re not working with imports like above and you just need to know what
platform you’re on use constants from pyfarm.core.enums [http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.enums.html#module-pyfarm.core.enums].

from pyfarm.core.enums import (
 LINUX, MAC, WINDOWS, POSIX, CASE_SENSITIVE_ENVIRONMENT,
 CASE_SENSITIVE_ENVIRONMENT)

Supporting Multiple Python Versions

PyFarm supports Python 2.6+ in most modules except for pyfarm.agent [http://pyfarm.readthedocs.org/projects/pyfarm-agent/en/latest/modules/pyfarm.agent.html#module-pyfarm.agent] or
pyfarm.jobtypes [http://pyfarm.readthedocs.org/projects/pyfarm-agent/en/latest/modules/pyfarm.jobtypes.html#module-pyfarm.jobtypes] which currently supports only Python 2.6 and Python 2.7
due to problems with Twisted and Python 3.x. Because of this certain
considerations must be made when working on the project.

Checking Python Versions

pyfarm.core.enums [http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.enums.html#module-pyfarm.core.enums] has some special constants for getting the current
Python version. There are other ways of checking the Python version however
these constants are provided for consistency and readability.

from pyfarm.core.enums import PY26, PY26, PY2, PY3

Type Information

Certain types consolidated or removed when Python 3 was released. Because of
this some of the older ways of checking for basic types had to change. Again
pyfarm.core.enums [http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.enums.html#module-pyfarm.core.enums] should be used for consistent and clean behavior
across Python versions.

from pyfarm.core.enums import STRING_TYPES, NUMERIC_TYPES

2.x vs. 3.x Version Specific Python Imports

Certain built-in imports where also consolidated or renamed when Python 3
came about. Rather than using constants to do a version check let Python’s
import system do the work for you.

Python 2.x imports should always go first since
most studios and operating systems that ship with Python
still default to 2.x
try:
 from UserDict import UserDict
except ImportError: # pragma: no cover
 from collections import UserDict

for objects or functions that were renamed
try:
 _range = xrange
except NameError: # pragma: no cover
 _range = range

for attributes which have changed
data = {}
try:
 items = data.iteritems
except AttributeError:
 items = data.items

Backwards Compatible Imports

Sometimes you’ll need access to new functions or modules that don’t with
whatever Python version or package you’re working with. In these situations,
like with version specific Python imports, you should use the import system
to make the decision for you.

NOTE: Python 2.6 and up includes json, which is what PyFarm requires,
this is just an example
try:
 import json
except ImportError: # pragma: no cover
 import simplejson as json

 Copyright 2014, Oliver Palmer, Ambient Entertainment GmbH & Co. KG.
 Created using Sphinx 1.3.5.

 Requirements

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	pyfarm latest documentation

Attention

This document is a draft

Requirements

This document covers the basic requirements for installation and operation of
PyFarm. These are the requirements to run PyFarm itself regardless of the
service being executed. These requirements do not cover the software
PyFarm may be executing or the infrastructure required.

Summary

	Python Depending on the module being used, different versions of Python
may be supported. Eventually Python 2.5 support will be dropped however this
likely will not happen until Python 3.0 support is added. In any case, notice
will be provided well in advance of a release if any of the below changes.

Module Specific Python Version Support

 Installation

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	pyfarm latest documentation

Attention

This document is a draft

Installation

These instructions cover the general installation of PyFarm’s components.
Please note they may vary between platforms though these differences are usually
noted.

	For reference, these instructions have been tested on the following platforms:

	
	Debian 7.1 64-bit

	Windows 7 Professional w/SP1 32-bit

	Windows XP Professional w/SP3 32-bit

Python Setup

Before installing PyFarm you must install Python. Below are the various steps
required to install the base Python interpreter and associated libraries. When
linked to a web page instead of a download please locate the installer package
for your architecture and download it.

Windows

Windows requires a little extra work in order to setup Python. Unlike platforms
such as Linux which make installing a compatible C-compiler a simple task
Windows adds a few extra steps.

Required Downloads

	7-zip [http://www.7-zip.org/download.html] - to extract the ISO

	Visual Studio 2008 Express w/SP1 [http://download.microsoft.com/download/E/8/E/E8EEB394-7F42-4963-A2D8-29559B738298/VS2008ExpressWithSP1ENUX1504728.iso]
- used to compile C extensions on the fly

	Python 2.7 MSI Installer [http://python.org/download/releases/2.7.5/] -
interpreter to run PyFarm

	setuptools [https://pypi.python.org/packages/source/s/setuptools/setuptools-1.1.5.tar.gz] - contains easy_install (used later on)

Installation

	7-zip - execute the installation package and follow the steps on the screen

	
	Visual Studio 2008 Express

	
	Right click on the ISO file and select 7-zip ->
Extract to “VS2008ExpressWithSP1ENUX1504728”. After this is complete
you are free to delete the ISO image if you wish.

	Run (double click) VS2008ExpressWithSP1ENUX1504728Setup.hta

	When the setup begins you will be prompted with a few different additions
to choose from. Select “Microsoft Visual C++ 2008 Express Edition”

	Accept the EULA and continue forward.

	
	There should be two boxes checked for additional components to install:

	
	Microsoft Silverlight Runtime

	Microsoft SQL Server 2008 Express Edition

These components are not required and you are welcome to uncheck them to
save time and space.

	Click next and continue with the installation. If the installation fails
check to make sure you don’t have any pending updates for windows or a
reboot scheduled because of a new driver.

	
	Python

	
	Start the installation

	Install for all users in the default location

	Open a run dialog or hold down the windows key and ‘r’. When the dialog
opens type ‘run’ (no quotes) and hit enter.

	When the terminal opens type ‘python’ and hit enter (again, no quotes).
If you get something like this:

'python' is not recognized as an internal or external command,
operable program or batch file.

	Then we’ll need to add some things to %PATH% to continue:

	
Warning

be careful editing these settings, deleting existing paths could
cause damage to your installation

	Right click on Computer and select Properties

	For Windows along the left side select you’ll select
“Advanced System Settings”. If you’re running Windows XP, skip
this step.

	In the dialog that opens select Advanced (if it’s not already)
then click the “Environment Variables” button in the bottom right

	In the lower half of the window there’s a “System Variables”
section, select “Path” and then click “Edit”

	in the “Variable value” field add this to the end:

;C:\Python27;C:\Python27\Scripts

	Right click on the setuptools gzipped tar (.tar.gz) and select 7-zip ->
extract here

	Navigate down into the ‘dist’ directory it produces and do the same thing
on the file inside that directory

	Once that’s complete open up a command window using run and run the
setup.py file. It should look something like this:

C:\Users\dev>python C:\Users\dev\Downloads\dist\setuptools-1.1.5\setup.py install

	Now easy_install pip:

C:\Users\dev>easy_install pip
Searching for pip
Reading https://pypi.python.org/simple/pip/
Best match: pip 1.4.1
Downloading https://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz#md5=6afbb46aeb48abac658d4df742bff714
Processing pip-1.4.1.tar.gz
Writing c:\users\dev\appdata\local\temp\easy_install-g3mjsb\pip-1.4.1\setup.cfg
Running pip-1.4.1\setup.py -q bdist_egg --dist-dir c:\users\dev\appdata\local\temp\easy_install-g3mjsb\pip-1.4.1\egg-dist-tmp-cthuvm
warning: no files found matching '*.html' under directory 'docs'
warning: no previously-included files matching '*.rst' found under directory 'docs_build'
no previously-included directories found matching 'docs_build_sources'
Adding pip 1.4.1 to easy-install.pth file
Installing pip-script.py script to C:\Python27\Scripts
Installing pip.exe script to C:\Python27\Scripts
Installing pip.exe.manifest script to C:\Python27\Scripts
Installing pip-2.7-script.py script to C:\Python27\Scripts
Installing pip-2.7.exe script to C:\Python27\Scripts
Installing pip-2.7.exe.manifest script to C:\Python27\Scripts

Installed c:\python27\lib\site-packages\pip-1.4.1-py2.7.egg
Processing dependencies for pip
Finished processing dependencies for pip

	Then pip install virtualenv:

C:\Users\dev>pip install virtualenv
Downloading/unpacking virtualenv
Downloading virtualenv-1.10.1.tar.gz (1.3MB): 1.3MB downloaded
Running setup.py egg_info for package virtualenv

 warning: no files found matching '*.egg' under directory 'virtualenv_support'
 warning: no previously-included files matching '*' found under directory 'docs_templates'
 warning: no previously-included files matching '*' found under directory 'docs_build'
Installing collected packages: virtualenv
Running setup.py install for virtualenv

 warning: no files found matching '*.egg' under directory 'virtualenv_support'
 warning: no previously-included files matching '*' found under directory 'docs_templates'
 warning: no previously-included files matching '*' found under directory 'docs_build'
 Installing virtualenv-script.py script to C:\Python27\Scripts
 Installing virtualenv.exe script to C:\Python27\Scripts
 Installing virtualenv.exe.manifest script to C:\Python27\Scripts
 Installing virtualenv-2.7-script.py script to C:\Python27\Scripts
 Installing virtualenv-2.7.exe script to C:\Python27\Scripts
 Installing virtualenv-2.7.exe.manifest script to C:\Python27\Scripts
Successfully installed virtualenv
Cleaning up...

	And now a quick test of the whole system. Your results will vary but it
should look something like this and say “Successfully installed psutil”
towards the end:

C:\Users\dev>virtualenv test
New python executable in test\Scripts\python.exe
Installing Setuptools..
...............done.
Installing Pip...
...done.

C:\Users\dev>test\Scripts\activate
(test) C:\Users\dev>
(test) C:\Users\dev>pip install psutil
Downloading/unpacking psutil
You are installing an externally hosted file. Future versions of pip will default to disallowing externally hosted files.
You are installing a potentially insecure and unverifiable file. Future versions of pip will default to disallowing insecure files.
Downloading psutil-1.0.1.tar.gz (159kB): 159kB downloaded
Running setup.py egg_info for package psutil

Installing collected packages: psutil
Running setup.py install for psutil
 building '_psutil_mswindows' extension
 C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/_psutil_mswindows.c /Fobuild\temp.wi
se\psutil/_psutil_mswindows.obj
 _psutil_mswindows.c
 psutil/_psutil_mswindows.c(307) : warning C4013: 'get_process_info' undefined; assuming extern returning int
 psutil/_psutil_mswindows.c(568) : warning C4047: 'function' : 'LPSTR' differs in levels of indirection from 'wchar_t (*)[260]'
 psutil/_psutil_mswindows.c(568) : warning C4024: 'GetProcessImageFileNameA' : different types for formal and actual parameter 2
 psutil/_psutil_mswindows.c(602) : warning C4133: 'function' : incompatible types - from 'PROCESS_MEMORY_COUNTERS_EX *' to 'PPROCESS_MEMORY_COUNTERS'
 psutil/_psutil_mswindows.c(2091) : warning C4047: 'function' : 'PDWORD_PTR' differs in levels of indirection from 'PDWORD_PTR *'
 psutil/_psutil_mswindows.c(2091) : warning C4024: 'GetProcessAffinityMask' : different types for formal and actual parameter 2
 psutil/_psutil_mswindows.c(2091) : warning C4047: 'function' : 'PDWORD_PTR' differs in levels of indirection from 'PDWORD_PTR *'
 psutil/_psutil_mswindows.c(2091) : warning C4024: 'GetProcessAffinityMask' : different types for formal and actual parameter 3
 psutil/_psutil_mswindows.c(2413) : warning C4005: '_ARRAYSIZE' : macro redefinition
 C:\Program Files\Microsoft SDKs\Windows\v6.0A\include\winnt.h(1021) : see previous definition of '_ARRAYSIZE'
 psutil/_psutil_mswindows.c(2482) : warning C4047: 'function' : 'LPSTR' differs in levels of indirection from 'LPTSTR [261]'
 psutil/_psutil_mswindows.c(2482) : warning C4024: 'GetVolumeInformationA' : different types for formal and actual parameter 7
 C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/_psutil_common.c /Fobuild\temp.win32
psutil/_psutil_common.obj
 _psutil_common.c
 C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/arch/mswindows/process_info.c /Fobui
-2.7\Release\psutil/arch/mswindows/process_info.obj
 process_info.c
 psutil/arch/mswindows/process_info.c(36) : warning C4013: 'AccessDenied' undefined; assuming extern returning int
 psutil/arch/mswindows/process_info.c(36) : warning C4047: 'return' : 'HANDLE' differs in levels of indirection from 'int'
 psutil/arch/mswindows/process_info.c(42) : warning C4013: 'NoSuchProcess' undefined; assuming extern returning int
 C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/arch/mswindows/process_handles.c /Fo
n32-2.7\Release\psutil/arch/mswindows/process_handles.obj
 process_handles.c
 psutil/arch/mswindows/process_handles.c(203) : warning C4022: 'NtDuplicateObject' : pointer mismatch for actual parameter 2
 C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/arch/mswindows/security.c /Fobuild\t
\Release\psutil/arch/mswindows/security.obj
 security.c
 psutil/arch/mswindows/security.c(86) : warning C4996: 'strcpy': This function or variable may be unsafe. Consider using strcpy_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for details.
 C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\link.exe /DLL /nologo /INCREMENTAL:NO /LIBPATH:C:\Python27\Libs /LIBPATH:C:\Users\dev\test\libs /LIBPATH:C:\Users\dev\test\PCbuild psapi.lib kernel32.lib advapi32.lib shell32.lib ne
hlpapi.lib wtsapi32.lib /EXPORT:init_psutil_mswindows build\temp.win32-2.7\Release\psutil/_psutil_mswindows.obj build\temp.win32-2.7\Release\psutil/_psutil_common.obj build\temp.win32-2.7\Release\psutil/arch/mswindows/process_info.obj bu
2-2.7\Release\psutil/arch/mswindows/process_handles.obj build\temp.win32-2.7\Release\psutil/arch/mswindows/security.obj /OUT:build\lib.win32-2.7_psutil_mswindows.pyd /IMPLIB:build\temp.win32-2.7\Release\psutil_psutil_mswindows.lib /MAN
ld\temp.win32-2.7\Release\psutil_psutil_mswindows.pyd.manifest
 Creating library build\temp.win32-2.7\Release\psutil_psutil_mswindows.lib and object build\temp.win32-2.7\Release\psutil_psutil_mswindows.exp

Successfully installed psutil
Cleaning up...

(test) C:\Users\dev>python -c "import psutil; print psutil"
<module 'psutil' from 'C:\Users\dev\test\lib\site-packages\psutil__init__.pyc'>

Linux

Linux generally won’t require very much to be done to get started and in most
cases is already setup for you. That said, it wouldn’t hurt to run the steps
below to be sure. The following commands will need to be executed either as
root or using the sudo command.

Debian Based Systems

aptitude -y install python python-setuptools python-virtualenv build-essential

Red Hat Based Systems

TODO instructions needed here

 Copyright 2014, Oliver Palmer, Ambient Entertainment GmbH & Co. KG.
 Created using Sphinx 1.3.5.

 License

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	pyfarm latest documentation

License

PyFarm is licensed under the terms and conditions of the Apache 2.0
license. The original text of this license may either be
downloaded or viewed
on the web [http://www.apache.org/licenses/LICENSE-2.0]. A formatted
version with the same text as the original is also available below.

1. Definitions

License shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

Licensor shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

Legal Entity shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

You (or Your) shall mean an individual or Legal Entity
exercising permissions granted by this License.

Source form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

Object form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

Work shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

Derivative Works shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

Contribution shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

Contributor shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License

Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute
the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License

Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license
to make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution

You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or

Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices

stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works

that You distribute, all copyright, patent, trademark, and

attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of

the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its

distribution, then any Derivative Works that You distribute must

include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not

pertain to any part of the Derivative Works, in at least one

of the following places: within a NOTICE text file distributed

as part of the Derivative Works; within the Source form or

documentation, if provided along with the Derivative Works; or,

within a display generated by the Derivative Works, if and

wherever such third-party notices normally appear. The contents

of the NOTICE file are for informational purposes only and

do not modify the License. You may add Your own attribution

notices within Derivative Works that You distribute, alongside

or as an addendum to the NOTICE text from the Work, provided

that such additional attribution notices cannot be construed

as modifying the License.

5. Submission of Contributions

Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms
or conditions. Notwithstanding the above, nothing herein shall supersede
or modify the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks

This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty

Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability

In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing,
shall any Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any character
arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage,
computer failure or malfunction, or any and all other commercial damages or
losses), even if such Contributor has been advised of the possibility of such
damages.

9. Accepting Warranty or Additional Liability

While redistributing the Work or Derivative Works thereof, You may choose
to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf
and on Your sole responsibility, not on behalf of any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional
liability.

 Copyright 2014, Oliver Palmer, Ambient Entertainment GmbH & Co. KG.
 Created using Sphinx 1.3.5.

 HTTP Routing Table

 Navigation

 	
 index

 	
 routing table |

 	pyfarm latest documentation

 HTTP Routing Table

 /api

 			

 		
 /api	

 	
 	
 POST /api/v1/foo/<str:item> HTTP/1.1	

 Copyright 2014, Oliver Palmer, Ambient Entertainment GmbH & Co. KG.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 routing table |

 	pyfarm latest documentation

Index

 P

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 8, [1], [2]

 Copyright 2014, Oliver Palmer, Ambient Entertainment GmbH & Co. KG.
 Created using Sphinx 1.3.5.

_static/down.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		pyfarm latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appe