pyfarm.agent Documentation
Release 0.8.2

Oliver Palmer, Guido Winkelmann

February 17, 2015

Contents

1 Commands
1.1 Standard Commands
1.2 Development Commands
2 Environment Variables
3 Configuration Files
4 pyfarm.agent package
5 pyfarm.jobtypes package
6 Indices and tables
HTTP Routing Table
Python Module Index

3.1 Agent
32 JobTypes

4.1 Subpackages L.
42 Submodules
43 Modulecontents o

5.1 Subpackages
52 Submodules
53 Modulecontents,

11

13

....................... 13
....................... 16

19

....................... 19
....................... 31
....................... 39

41

....................... 41
....................... 52
....................... 52

53

55

57

pyfarm.agent Documentation, Release 0.8.2

This package contains PyFarm’s agent and job types which are responsible for the execution of tasks allocated to a
host by the master.

Contents

Contents 1

pyfarm.agent Documentation, Release 0.8.2

2 Contents

CHAPTER 1

Commands

Note: The default values provided are based on the configuration at the time this page was generated. They may not
be the same defaults you will see.

1.1 Standard Commands

1.1.1 pyfarm-agent

usage: pyfarm—agent [status|start]|stop]

positional arguments:
{start, stop, status}
start
stop
status

optional arguments:
-h, —-help

Agent Network Service:

individual operations pyfarm-agent can run
starts the agent

stops the agent

query the ’running’ state of the agent

show this help message and exit

Main flags which control the network services running on the agent.

——port PORT

—--host HOST

The port number which the agent is either running on
or will run on when started. This port is also
reported the master when an agent starts. [default:
None]

The host to communicate with or hostname to present to
the master when starting. Defaults to the fully
qualified hostname.

—-—agent-api-username AGENT_API_USERNAME

The username required to access or manipulate the
agent using REST. [default: agent]

—-—agent-api-password AGENT_API_PASSWORD

—-—agent-id AGENT_ID

The password required to access manipulate the agent
using REST. [default: agent]

The UUID used to identify this agent to the master. By
default the agent will attempt to load a cached value
however a specific UUID could be provided with this
flag.

pyfarm.agent Documentation, Release 0.8.2

—-—agent-id-file AGENT_ID_FILE
The location to store the agent’s id. By default the
path is platform specific and defined by the
‘agent_id_file_platform defaults' key in the
configuration. [default: /etc/pyfarm/agent/uuid.dat]

Network Resources:
Resources which the agent will be communicating with.

—--master MASTER This is a convenience flag which will allow you to set
the hostname for the master. By default this value
will be substituted in —--master-api

—--master-api MASTER_API
The location where the master’s REST api is located.
[default: None]

—--master-api-version MASTER_API_VERSION
Sets the version of the master’s REST api the agent
shoulduse [default: None]

Process Control:
These settings apply to the parent process of the agent and contribute to
allowing the process to run as other users or remain isolated in an
environment. They also assist in maintaining the ’'running state’ via a
process id file.

—--pidfile PIDFILE The file to store the process id in. [default: None]

-n, ——no—daemon If provided then do not run the process in the
background.

——chdir CHDIR The working directory to change the agent into upon
launch

--uid UID The user id to run the agent as. *This setting is
ignored on Windows.*

--gid GID The group id to run the agent as. *This setting is
ignored on Windows. *

—--pdb-on-unhandled When set pdb.set_trace() will be called if an

unhandled error is caught in the logger

pyfarm-agent is a command line client for working with a local agent. You can
use it to stop, start, and report the general status of a running agent
process.

usage: pyfarm—agent [status|start|stop] status [—-h]

optional arguments:
-h, —--help show this help message and exit

,h]

——-projects PROJECTS [PROJECTS ...]]
——-state STATE]

—-—time-offset TIME_OFFSET]

——ntp-server NTP_SERVER]
—-—-ntp-server-version NTP_SERVER_VERSION]
—-—-no-pretty-json]

—--shutdown-timeout SHUTDOWN_TIMEOUT]
—-—-updates-drop-dir UPDATES_DROP_DIR]
——run—-control-file RUN_CONTROL_FILE]
——cpus CPUS] [--ram RAM]
——ram-check-interval RAM_CHECK_INTERVAL]

usage: pyfarm—agent [status|start]|stop] start

[
[
(
[
[
(
[
[
(
[
[
(

4 Chapter 1. Commands

pyfarm.agent Documentation, Release 0.8.2

——ram-max-report-frequency RAM_MAX_REPORT_FREQUENCY]

[
[-—ram-report—-delta RAM_REPORT_DELTA]
[--master-reannounce MASTER_REANNOUNCE]
[-—log LOG]
[-—capture-process—-output]
[-—task-log-dir TASK_LOG_DIR]
[-—ip-remote IP_REMOTE]
[-—enable-manhole]

[-—manhole-port MANHOLE_PORT]
[-—manhole—-username MANHOLE_USERNAME]
[-—manhole-password MANHOLE_PASSWORD]
[-—html-templates-reload]
[-—static—-files STATIC_FILES]
[--http-retry-delay HTTP_RETRY_DELAY]
[-—jobtype—-no-cache]

optional arguments:
-h, --help show this help message and exit

General Configuration:
These flags configure parts of the agent related to hardware, state, and
certain timing and scheduling attributes.

—--projects PROJECTS [PROJECTS ...]
The project or projects this agent is dedicated to. By
default the agent will service any project however
specific projects may be specified. For example if you
wish this agent to service ’'Foo Part I’ and ’'Foo Part
II’ only just specify it as ‘--projects "Foo Part I"
"Foo Part II"®
—-—state STATE The current agent state, valid values are [’disabled’,
"offline’, ’running’, ’‘online’]. [default: online]
——time-offset TIME_OFFSET
If provided then don’t talk to the NTP server at all
to calculate the time offset. If you know for a fact
that this host’s time is always up to date then
setting this to 0 is probably a safe bet.
—-—ntp-server NTP_SERVER
The default network time server this agent should
query to retrieve the real time. This will be used to
help determine the agent’s clock skew if any. Setting
this value to '’ will effectively disable this query.
[default: None]
—-—-ntp-server-version NTP_SERVER_VERSION
The version of the NTP server in case it’s running an
olderor newer version. [default: None]
——no-pretty-json If provided do not dump human readable json via the
agent’s REST api
—--shutdown-timeout SHUTDOWN_TIMEOUT
How many seconds the agent should spend attempting to
inform the master that it’s shutting down.
——updates-drop-dir UPDATES_DROP_DIR
The directory to drop downloaded updates in. This
should be the same directory pyfarm-supervisor will
look for updates in. [default: None]
——run—-control-file RUN_CONTROL_FILE
The path to a file that will signal to the supervisor
that agent is supposed to be restarted if it stops for

1.1. Standard Commands 5

pyfarm.agent Documentation, Release 0.8.2

whatever reason. [default:
/tmp/pyfarm/agent/should_be_running]

Physical Hardware:
Command line flags which describe the hardware of the agent.

—-—cpus CPUS The total amount of cpus installed on the system.
Defaults to the number of cpus installed on the
system.

—-—ram RAM The total amount of ram installed on the system in

megabytes. Defaults to the amount of ram the system
has installed.

Interval Controls:
Controls which dictate when certain internal intervals should occur.

——-ram-check-interval RAM_CHECK_INTERVAL
How often ram resources should be checked for changes.
The amount of memory currently being consumed on the
system is checked after certain events occur such as a
process but this flag specifically controls how often
we should check when no such events are occurring.
[default: None]
——ram-max-report-frequency RAM_MAX_REPORT_FREQUENCY
This is a limiter that prevents the agent from
reporting memory changes to the master more often than
a specific time interval. This is done in order to
ensure that when 100s of events fire in a short period
of time cause changes in ram usage only one or two
will be reported to the master. [default: None]
——ram-report-delta RAM_REPORT_DELTA
Only report a change in ram if the value has changed
at least this many megabytes. [default: None]
——master—-reannounce MASTER_REANNOUNCE
Controls how often the agent should reannounce itself
to the master. The agent may be in contact with the
master more often than this however during long period
of inactivity this is how often the agent will
"inform’” the master the agent is still online.

Logging Options:
Settings which control logging of the agent’s parent process and/or any
subprocess it runs.

--log LOG If provided log all output from the agent to this
path. This will append to any existing log data.
[default: None]

——capture-process—-output
If provided then all log output from each process
launched by the agent will be sent through agent’s
loggers.

—-—task-log-dir TASK_LOG_DIR
The directory tasks should log to.

Network Service:
Controls how the agent is seen or interacted with by external services
such as the master.

6 Chapter 1. Commands

pyfarm.agent Documentation, Release 0.8.2

—-—ip-remote IP_REMOTE
The remote IPv4 address to report. In situation where
the agent is behind a firewall this value will
typically be different.

Manhole Service:
Controls the manhole service which allows a telnet connection to be made

directly into the agent as it’s running.

——enable-manhole When provided the manhole service will be started once
the reactor is running.
—-manhole-port MANHOLE_PORT
The port the manhole service should run on if enabled.
—-—-manhole-username MANHOLE_USERNAME
The telnet username that’s allowed to connect to the
manhole service running on the agent.
——-manhole-password MANHOLE_PASSWORD
The telnet password to use when connecting to the
manhole service running on the agent.

HTTP Configuration:
Options for how the agent will interact with the master’s REST api and how

it should run it’s own REST api.

——html-templates—-reload
If provided then force Jinja2, the html template
system, to check the file system for changes with
every request. This flag should not be used in
production but is useful for development and debugging
purposes.

——static—-files STATIC_FILES
The default location where the agent’s http server
should find static files to serve.

—-http-retry-delay HTTP_RETRY_DELAY
If a http request to the master has failed, wait this
amount of time before trying again

Job Types:

—-—jobtype-no-cache If provided then do not cache job types, always
directly retrieve them. This is beneficial if you’re
testing the agent or a new job type class.

usage: pyfarm-agent [status|start|stop] stop [-h] [-—-no-wait]

optional arguments:
-h, —--help show this help message and exit

optional flags:
Flags that control how the agent is stopped

—-—-no-wait If provided then don’t wait on the agent to shut itself down. By
default we would want to wait on each task to stop so we can
catch any errors and then finally wait on the agent to shutdown
too. If you’re in a hurry or stopping a bunch of agents at once
then setting this flag will let the agent continue to stop
itself without waiting for each agent

1.1. Standard Commands 7

pyfarm.agent Documentation, Release 0.8.2

usage: pyfarm-supervisor [-h] [--updates-drop-dir UPDATES_DROP_DIR]
[-—agent-package-dir AGENT_PACKAGE_DIR]

[-—pidfile PIDFILE] [-n] [--chdir CHDIR] [--uid UID]
[-—gid GID]

Start and monitor the agent process

optional arguments:
-h, —--help show this help message and exit
—--updates-drop-dir UPDATES_DROP_DIR
Where to look for agent updates
——agent-package—-dir AGENT_PACKAGE_DIR
Path to the actual agent code

--pidfile PIDFILE The file to store the process id in. [default: None]

-n, —-no—-daemon If provided then do not run the process in the
background.

——chdir CHDIR The directory to chdir to upon launch.

—--uid UID The user id to run the supervisor as. xThis setting is
ignored on Windows.*

-—-gid GID The group 1d to run the supervisor as. *This setting

is ignored on Windows.x

1.2 Development Commands

1.2.1 pyfarm-dev-fakerender

usage: pyfarm-dev-fakerender [-h] [--ram RAM] [--duration DURATION]
[-—return-code RETURN_CODE]
[-—duration-jitter DURATION_JITTER]
[--ram-jitter RAM_JITTER] -s START [-e END]
[-b BY] [—--spew] [-—-segfault]

Very basic command line tool which vaguely simulates a render.

optional arguments:

-h, —--help show this help message and exit
——ram RAM How much ram in megabytes the fake command should
consume

——duration DURATION How many seconds it should take to run this command
——return—-code RETURN_CODE
The return code to return, declaring this flag
multiple times will result in a random return code.
[default: [0]]
—-—duration-jitter DURATION_JITTER
Randomly add or subtract this amount to the total
duration
—-—ram-jitter RAM_JITTER
Randomly add or subtract this amount to the ram
—-s START, —--start START
The start frame. If no other flags are provided this
will also be the end frame.

—-e END, --end END The end frame
-b BY, —--by BY The by frame
—-—spew Spews lots of random output to stdout which is

generally a decent stress test for log processing

8 Chapter 1. Commands

pyfarm.agent Documentation, Release 0.8.2

issues. Do note however that this will disable the
code which is consuming extra CPU cycles. Also, use
this option with care as it can generate several
gigabytes of data per frame.

--segfault If provided then there’s a 25% chance of causing a
segmentation fault.

1.2.2 pyfarm-dev-fakework

usage: pyfarm-dev-fakework [-h] [--master—-api MASTER_API]
[-—agent-api AGENT_API] [--jobtype JOBTYPE]
[-—job JOB]

Quick and dirty script to create a job type, a job, and some tasks which are
then posted directly to the agent. The primary purpose of this script is to
test the internal of the job types

optional arguments:

-h, —--help show this help message and exit

—--master-api MASTER_API
The url to the master’s api [default:
http://127.0.0.1/api/v1]

—-—agent-api AGENT_API
The url to the agent’s api [default:
http://127.0.0.1:50000/api/vl]

—-—jobtype JOBTYPE The job type to use [default: FakeRender]

—-—job JOB If provided then this will be the Jjob we pull tasks
from and assign to the agent. Please note we’ll only
be pulling tasks that aren’t running or assigned.

1.2. Development Commands 9

pyfarm.agent Documentation, Release 0.8.2

10 Chapter 1. Commands

CHAPTER 2

Environment Variables

PyFarm’s agent has several environment variables which can be used to change the operation at runtime. For more
information see the individual sections below.

PYFARM JOBTYPE_ ALLOW_CODE_EXECUTION_IN_ MODULE_ROOT
If True, then function calls in the root of a job types’s source code will result in an error when the work is
assigned. By default, this value is set to True.

PYFARM JOBTYPE_SUBCLASSES_BASE_CLASS
If True then job types which do not subclass from pyfarm. jobtypes.core. jobtype.JobType will
raise an exception when work is assigned. By default, this value is set to True.

11

pyfarm.agent Documentation, Release 0.8.2

12 Chapter 2. Environment Variables

20

21

22

23

24

25

26

27

28

29

30

31

CHAPTER 3

Configuration Files

Below are the configuration files for this subproject. These files are installed along side the source code when the pack-
age is installed. These are only the defaults however, you can always override these values in your own environment.
See the Configuration object documentation for more detailed information.

3.1 Agent

The below is the current configuration file for the agent. This file lives at pyfarm/agent/etc/agent.yml in
the source tree.

The platform specific locations where the agent uuid
file is default. This can be overridden with —--agent-id-file flag.
agent_id_file_platform_defaults:

linux: /etc/pyfarm/agent/uuid.dat

mac: /Library/pyfarm/agent/uuid.dat

bsd: /etc/pyfarm/agent/uuid.dat

windows: S$LOCALAPPDATA/pyfarm/agent/uuid.dat

The platform specific locations where the run control file is looked for
run_control_file_by_platform:

linux: /tmp/pyfarm/agent/should_be_running

mac: /tmp/pyfarm/agent/should_be_running

bsd: /tmp/pyfarm/agent/should_be_running

windows: $TEMP/pyfarm/agent/should_be_running

The default location to store data. Stemp will expand to
whatever pyfarm’s data root is plus the application

name (agent). For example on Linux this would expand to
/tmp/pyfarm/agent

agent_data_root: S$temp

Defines the number of seconds between iterations of pyfarm-supervisor’s
agent status check.
supervisor_interval: 5

The location where the agent should change directories
into upon starting. If this value is not set then no
changes will be made.

agent_chdir:

The location where static web files should be served from. This

13

https://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.config.html#pyfarm.core.config.Configuration

32

34

35

37

38

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

pyfarm.agent Documentation, Release 0.8.2

will default to using PyFarm’s installation root.
agent_static_root: auto

The default location where lock files should be stored. By
default these will be stored alone side other data

inside the ‘agent_data_root ' value above.

lock_file_root: $agent_data_root/lock

Locations of specific lock files
agent_lock_file: $lock_file_root/agent.pid
supervisor_lock_file: $lock_file_root/supervisor.pid

Where user data for the agent is stored. ~ will be expanded
to the current users’s home directory.
agent_user_data: ~/.pyfarm/agent

The default location where the agent should save logs to. This
includes both logs from processes and the agent log itself.
agent_logs_root: $agent_data_root/logs

The location where agent updates should be stored.
agent_updates_dir: $agent_data_root/updates

The default port which the agent should use to serve the
REST api.
agent_api_port: 50000

The location where the the agent should save its own
logging output to.

agent_log: $agent_logs_root/agent.log

supervisor_log: $agent_logs_root/supervisor.log

The user agent the master will use when connecting to the agent’s

REST api. This value should only be changed if the master’s code

is updated with a new user agent. Change this value has not effect
on the master.

master_user_agent: PyFarm/1.0 (master)

Configuration values which control how the url

for the master is constructed. If ’‘master’ 1s not set
the —--master flag will be required to start the agent.
master:

master_api_version: 1

master_api: http://S$Smaster/api/vSmaster_api_version

The user agent the master uses to talke to the agent’s
REST api. This value should not be modified unless

there’s a specific reason to do so.

master_user_agent: PyFarm/1.0 (master)

Controls how often the agent should reannounce itself

to the master. The agent may be in contact with the master
more often than this however during long period of
inactivity this is how often the agent will ’“inform’ the
master the agent is still online.

agent_master_reannounce: 120

HH W W HH H

How many seconds the agent should spend attempting to inform

14 Chapter 3. Configuration Files

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

pyfarm.agent Documentation, Release 0.8.2

the master that it’s shutting down.
agent_shutdown_timeout: 15

If an http request fails, use this as the base value
to help determine how long we should wait before retrying
agent_http_retry_delay: 5

Controls 1if the http client connection should be persistent or
not. Generally this should always be True because the connection
self-terminates after a short period of time anyway. For higher
latency situations or with larger deployments this value should
be False.

agent_http_persistent_connections: True

HH W R HR W

If True then html templates will be reloaded with
every request instead of cached.
agent_html_template_reload: False

If True then reformat json output to be more human
readable.
agent_pretty_json: True

How often the agent should check for changes in ram. This value
1s used to ensure ram usage is checked at least this often though
it may be checked more often due to other events (such as jobs

running)

agent_ram_check_interval: 30

If the ram has changed this may megabytes since the last
check then report the change to the master.
agent_ram_report_delta: 100

How much the agent should wait, in seconds, between
each report about a change in ram.
agent_ram_max_report_frequency: 10

The default network time server and version the agent
should use to calcuate its clock skew.
agent_ntp_server: pool.ntp.org
agent_ntp_server_version: 2

The amount of time this agent is offset from what
would be considered correct based on an atomic

clock. If this value is set to auto the time will
be calculated using NTP.

agent_time_offset: auto

Physical and network information about the host the agent
1s running on. Setting these values to ’‘auto’ will cause
them to be initilized to the system’s current

configuration values.

agent_ram: auto

agent_cpus: auto

agent_hostname: auto

When True this will enable a telnet connection
to the agent which will present a Python interpreter
upon connection. This is mainly used for debugging

3.1. Agent

15

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

pyfarm.agent Documentation, Release 0.8.2

and direct manipulation of the agent. You can use
the show() function once connected to see what

objects are available.

agent_manhole: False

agent_manhole_port: 50001

agent_manhole_username: admin
agent_manhole_password: admin

NOTE: The following values are used by the unittests and should be
generally ignored for anything other than development.
agent_unittest:
dns_test_hostname: example.com
client_redirect_target: http://example.com
client_api_test_url_https: https://httpbin.pyfarm.net
client_api_test_url_http: http://httpbin.pyfarm.net

\

A list of paths or names where the ‘lspci' command can
be called from on Linux. This 1is used to retrieve information
about graphics cards installed on the system in
‘pyfarm.agent.sysinfo.graphics.graphics_cards"'.
If you need run the command with sudo you may also specify an entry
like this:
— sudo lspci
sysinfo_command_lspci:
- lspci
- /bin/lspci
- /sbin/lspci
- /usr/sbin/lspci
- /usr/bin/lspci

3.2 Job Types

The below is the current configuration file for job types. This file lives
pyfarm/jobtypes/etc/jobtypes.yml in the source tree.

When set to True caching of job types will be enabled. When set to
False caching is disabled and every job type will retrieved from

the master directly.

jobtype_enable_cache: True

If True then output from all processes will be sent directly to
the agent’s logger(s) instead of to the log file assoicated

with each process.

jobtype_capture_process_output: False

The location where tasks should be logged
Jjobtype_task_logs: S$agent_logs_root/tasks

The filename to an individual log file. This filename supports several
internal variables:

#

SYEAR - The current year

SMONTH - The current month

SDAY — The current day

SHOUR - The current hour

SMINUTE - The current hour

at

16 Chapter 3. Configuration Files

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

pyfarm.agent Documentation, Release 0.8.2

SJOB — The id of the job this log is for

SPROCESS - The uuid of the process object responsible for creating the log

also use environment variables in the filename.
Path separators ("/" and "\") are not allowed.
obtype_task_log_filename:

SYEAR-$SMONTH-$DAY_SHOUR-$MINUTE-$SECOND_$JOB_SPROCESS.

store cached source code from the master. Note

that Stemp will be expanded to the local system’s
temp directory. If this directory does not exist
it will be created. Leaving this value blank will
disable job type caching.

Jjobtype_cache_directory: S$temp/jobtype_cache

The root directory that the default implementation of JobType.tempdir ()

will create a path using tempfile.mkdtemp.
jobtype_tempdir_root: S$temp/tempdir/$JOBTYPE_UUID

If True then expand environment variables in file paths.

jobtype_expandvars: True

If True, then ignore any errors produced when tring
to map users and groups to IDs. This will cause the
underlying methods in the job type to instead run

as the job type’s owner instead, ignoring what the

incoming job requests.

NOTE: This value is not used on Windows.
jobtype_ignore_id_mapping_errors: False

Any additional key/value pairs to include
in the environment of a process launched
by a job type.
jobtype_default_environment: {}

Configures the thread pool used by job types
for logging.
jobtype_logging_threadpool:
Setting this value to something smaller than ‘1"' will

in an exception being raised. This value also cannot be larger

than ‘max_threads' below.
min_threads: 3

This value must be greater than or equal to 'min_threads

#
#
#
In addition to the above you can, as with any configuration variable,
#
#
J

Csv

result

above. You may also set this value to ’auto’ meaning the
number of processors times 1.5 or 20 (whichever is lower).

max_threads: auto

As log messages are sent from processes they are stored

in an in memory queue. When the number of messages 1s higher

than this number a thread will be spawned to consume the

data and flush it into a file object.
max_queue_size: 10

Most often the operating system will control how often data

1s written to disk from a file object. This value overrides

3.2. Job Types

17

pyfarm.agent Documentation, Release 0.8.2

that behavior and forces the file object to flush to disk
after this many messages have been processed.
flush_lines: 100

18 Chapter 3. Configuration Files

CHAPTER 4

pyfarm.agent package

4.1 Subpackages

4.1.1 pyfarm.agent.entrypoints package
Submodules

pyfarm.agent.entrypoints.development module

Development Contains entry points which constructs the command line tools used for development such as
pyfarm-dev-fakerender and pyfarm-dev-fakework.

pyfarm.agent.entrypoints.development.fake_ render ()
pyfarm.agent.entrypoints.development .fake_work ()

pyfarm.agent.entrypoints.development.random () — X in the interval [0, 1).

pyfarm.agent.entrypoints.main module

Main The main module which constructs the entrypoint for the py farm—agent command line tool.

class pyfarm.agent.entrypoints.main.AgentEntryPoint
Bases: object

Main object for parsing command line options
agent_api

start ()

stop ()

status ()

pyfarm.agent.entrypoints.parser module

Parser Module which forms the basis of a custom argparse based command line parser which handles setting
configuration values automatically.

pyfarm.agent.entrypoints.parser.assert_parser (func)
ensures that the instance argument passed along to the validation function contains data we expect

19

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/argparse.html#module-argparse

pyfarm.agent Documentation, Release 0.8.2

pyfarm.agent.entrypoints.parser.ip (*args, **kwargs)
make sure the ip address provided is valid

pyfarm.agent.entrypoints.parser.port (*args, **kwargs)
convert and check to make sure the provided port is valid

pyfarm.agent.entrypoints.parser.uuid_type (*args, **kwargs)
validates that a string is a valid UUID type

pyfarm.agent.entrypoints.parser.uidgid (*args, **kwargs)
Retrieves and validates the user or group id for a command line flag

pyfarm.agent.entrypoints.parser.direxists (*args, **kwargs)
checks to make sure the directory exists

pyfarm.agent.entrypoints.parser.fileexists (*args, **kwargs)
checks to make sure the provided file exists

pyfarm.agent.entrypoints.parser.number (*args, **kwargs)
convert the given value to a number

pyfarm.agent.entrypoints.parser.enum (*args, **kwargs)
ensures that value is a valid entry in enum

class pyfarm.agent.entrypoints.parser.ActionMixin (*args, **kwargs)
Bases: object

A mixin which overridesthe __init__ and ___call__ methods on an action so we can:
Setup attributes to manipulate the config object when the arguments are parsed
*Ensure we all required arguments are present

*Convert the t ype keyword into an internal representation so we don’t require as much work when we add
arguments to the parser

TYPE_MAPPING = {<function isdir at 0x7f9f1fSeb050>: <function direxists at 0x7f9f18393¢c80>, <type ‘int’>: <functools.]
pyfarm.agent.entrypoints.parser.mix_action (class_)

pyfarm.agent.entrypoints.parser.StoreAction
alias of _StoreAction

pyfarm.agent.entrypoints.parser.SubParsersAction
alias of _SubParsersAction

pyfarm.agent.entrypoints.parser.StoreConstAction
alias of _StoreConstAction

pyfarm.agent.entrypoints.parser.StoreTrueAction
alias of _StoreTrueAction

pyfarm.agent.entrypoints.parser.StoreFalseAction
alias of _StoreFalseAction

pyfarm.agent.entrypoints.parser.AppendAction
alias of _AppendAction

pyfarm.agent.entrypoints.parser.AppendConstAction
alias of _AppendConstAction

class pyfarm.agent.entrypoints.parser.AgentArgumentParser (*args, **kwargs)
Bases: argparse.ArgumentParser

A modified ArgumentParser which interfaces with the agent’s configuration.

20 Chapter 4. pyfarm.agent package

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/argparse.html#argparse.ArgumentParser

pyfarm.agent Documentation, Release 0.8.2

pyfarm.agent.entrypoints.supervisor module

pyfarm.agent.entrypoints.supervisor.supervisor ()

pyfarm.agent.entrypoints.utility module

Utility Small objects and functions which facilitate operations on the main entry point class.

pyfarm.agent.entrypoints.utility.start_daemon_posix (log, chdir, uid, gid)
Runs the agent process via a double fork. This basically a duplicate of Marcechal’s original code with some
adjustments:

http://www.jejik.com/articles/2007/02/ a_simple_unix_linux_daemon_in_python/

Source files from his post are here: http://www.jejik.com/files/examples/daemon.py
http://www.jejik.com/files/examples/daemon3x.py

Module contents

Entry Points

This module contains several subpackages which serve as the basis for the command line tools for the agent.

4.1.2 pyfarm.agent.http package

Subpackages

pyfarm.agent.http.api package

Submodules

pyfarm.agent.http.api.assign module
class pyfarm.agent .http.api.assign.Assign (agent)
Bases: pyfarm.agent.http.api.base.APIResource

isLeaf = False
SCHEMAS = {‘POST’: <voluptuous.Schema object at 0x7f9f17ba7110>}
post (**kwargs)

pyfarm.agent.http.api.base module

Base Contains the base resources used for building up the root of the agent’s api.

class pyfarm.agent.http.api.base.APIResource
Bases: pyfarm.agent.http.core.resource.Resource

Base class for all api resources
isLeaf = True

CONTENT_TYPES = set([’application/json’])

4.1. Subpackages 21

http://www.jejik.com/articles/2007/02/
http://www.jejik.com/files/examples/daemon.py
http://www.jejik.com/files/examples/daemon3x.py

pyfarm.agent Documentation, Release 0.8.2

class pyfarm.agent.http.api.base.APIRoot
Bases: pyfarm.agent.http.api.base.APIResource

isLeaf = False

class pyfarm.agent.http.api.base.Versions
Bases: pyfarm.agent .http.api.base.APIResource

Returns a list of api versions which this agent will support

GET /api/vl/versions/ HTTP/1.1
Request

GET /api/vl/versions/HTTP/1.1
Accept: application/Jjson
Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"wversions": [1]

}

isLeaf = True

get (**kwargs)

pyfarm.agent.http.api.config module

Config Contains the endpoint for viewing and working with the configuration on the agent.

class pyfarm.agent .http.api.config.Config
Bases: pyfarm.agent .http.api.base.APIResource

isLeaf = False

get (**kwargs)

pyfarm.agent.http.api.state module
class pyfarm.agent .http.api.state.Stop
Bases: pyfarm.agent.http.api.base.APIResource

isLeaf = False
SCHEMAS = {‘POST’: <voluptuous.Schema object at 0x7f9f17935ad0>}

post (**kwargs)
class pyfarm.agent.http.api.state.Restart
Bases: pyfarm.agent .http.api.base.APIResource

isLeaf = False
post (**kwargs)

class pyfarm.agent . .http.api.state.Status
Bases: pyfarm.agent .http.api.base.APIResource

isLeaf = False

get (**)

22 Chapter 4. pyfarm.agent package

pyfarm.agent Documentation, Release 0.8.2

pyfarm.agent.http.api.tasklogs module
class pyfarm.agent .http.api.tasklogs.TaskLogs
Bases: pyfarm.agent.http.api.base.APIResource

get (**kwargs)
Get the contents of the specified task log

pyfarm.agent.http.api.tasks module
class pyfarm.agent.http.api.tasks.Tasks
Bases: pyfarm.agent.http.api.base.APIResource

get (**kwargs)

delete (**kwargs)
HTTP endpoint for stopping and deleting an individual task from this agent. ... warning:: If the specified
task is part of a multi-task assignment, all tasks in this assignment will be stopped, not just the specified
one.

This will try to asynchronously stop the assignment by killing all its child processes. If that isn’t successful,
this will have no effect.

pyfarm.agent.http.api.update module

Update Endpoint This endpoint is used to instruct the agent to download and apply an update.

class pyfarm.agent .http.api.update.Update
Bases: pyfarm.agent .http.api.base.APIResource

Requests the agent to download and apply the specified version of itself. Will make the agent restart at the next
opportunity.

POST /api/vl1l/update HTTP/1.1
Request

POST /api/vl/update HTTP/1.1
Accept: application/json

{

"version": 1.2.3

}

Response

HTTP/1.1 200 ACCEPTED
Content-Type: application/Jjson

SCHEMAS = {‘POST’: <voluptuous.Schema object at 0x7f9f17824950>}
isLeaf = False

post (**kwargs)

Module contents

API This package contains the components that form the agent’s api. The objects contained in this section act as an
interface layer between an incoming http request and the agent’s internals.

4.1. Subpackages 23

pyfarm.agent Documentation, Release 0.8.2

pyfarm.agent.http.core package

Submodules

pyfarm.agent.http.core.client module

HTTP Client The client library the manager uses to communicate with the master server.

class pyfarm.agent .http.core.client .HTTPLog
Bases: object

Provides a wrapper around the http logger so requests and responses can be logged in a standardized fashion.

static queue (method, url, uid=None)
Logs the request we’re asking treq to queue

static response (response, uid=None)
Logs the return code of a request that treq completed

static error (failure, uid=None, method=None, url=None)
Called when the treq request experiences an error and calls the errback method.

pyfarm.agent.http.core.client .build_url (url, params=None)
Builds the full url when provided the base url and some url parameters:

>>> build_url ("/foobar", {"first": "foo", "second": "bar"})
" /foobar?first=foo&second=bar’

>>> build_url ("/foobar bar/")

'’ /foobar%20bar/’

Parameters
e url (str) — The url to build off of.

* params (dict) — A dictionary of parameters that should be added on to url. If this value
is not provided url will be returned by itself. Arguments to a url are unordered by default
however they will be sorted alphabetically so the results are repeatable from call to call.

pyfarm.agent.http.core.client.http_retry delay (initial=None, uniform=False,
get_delay=<built-in ~ method ran-
dom of Random object at Ox17f8060>,

minimum=1)
Returns a floating point value that can be used to delay an http request. The main purpose of this is to ensure

that not all requests are run with the same interval between then. This helps to ensure that if the same request,
such as agents coming online, is being run on multiple systems they should be staggered a little more than they
would be without the non-uniform delay.

Parameters

* initial (in7) — The initial delay value to start off with before any extra calculations are done.
If this value is not provided the value provided to ——http-retry-delay at startup will
be used.

* uniform (bool) — If True then use the value produced by get_delay as a multiplier.

» get_delay (callable) — A function which should produce a number to multiply delay by.
By default this uses random. random ()

24 Chapter 4. pyfarm.agent package

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#callable
https://docs.python.org/3.4/library/random.html#random.random

pyfarm.agent Documentation, Release 0.8.2

* minimum — Ensures that the value returned from this function is greater than or equal to a
minimum value.

class pyfarm.agent.http.core.client.Request
Bases: pyfarm.agent .http.core.client .Request

Contains all the information used to perform a request such as the method, url, and original keyword ar-
guments (kwargs). These values contain the basic information necessary in order to retry () a request.

retry (**kwargs)
When called this will rerun the original request with all of the original arguments to request ()

Parameters kwargs — Additional keyword arguments which should override the original key-
word argument(s).

class pyfarm.agent.http.core.client .Response (deferred, response, request)
Bases: twisted.internet.protocol.Protocol

This class receives the incoming response body from a request constructs some convenience methods and at-
tributes around the data.

Parameters
* deferred (Deferred) — The deferred object which contains the target callback and errback.
* response — The initial response object which will be passed along to the target deferred.
* request (Request) — Named tuple object containing the method name, url, headers, and data.

data ()
Returns the data currently contained in the buffer.

Raises RuntimeError Raised if this method id called before all data has been received.

json (loader=<function loads at Ox7f9f1bf3a9b0>)
Returns the json data from the incoming request

Raises
¢ RuntimeError — Raised if this method id called before all data has been received.
» ValueError — Raised if the content type for this request is not application/json.

dataReceived (data)
Overrides Protocol .dataReceived () and appends data to _body.

connectionLost (reason=<twisted.python.failure. Failure <class ‘twisted.internet.error. ConnectionDone’>>)
Overrides Protocol.connectionLost () and sets the _done when complete. When called with
ResponseDone for reason this method will call the callback on _deferred

pyfarm.agent.http.core.client.request (method, url, **kwargs)
Wrapper around treqg. request () with some added arguments and validation.

Parameters
* method (s7r) — The HTTP method to use when making the request.
* url (s7r) — The url this request will be made to.

* data (str, list, tuple, set, dict) — The data to send along with some types of requests such as
POST or PUT

* headers (dict) — The headers to send along with the request to url. Currently only single
values per header are supported.

4.1. Subpackages 25

https://docs.python.org/3.4/library/exceptions.html#RuntimeError
https://docs.python.org/3.4/library/exceptions.html#RuntimeError
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#dict

pyfarm.agent Documentation, Release 0.8.2

* callback (function) — The function to deliver an instance of Response once we receive
and unpack a response.

* errback (function) — The function to deliver an error message to. By default this will use
log.err ().

* response_class (class) — The class to use to unpack the internal response. This is mainly
used by the unittests but could be used elsewhere to add some custom behavior to the unpack
process for the incoming response.

Raises NotImplementedError Raised whenever a request is made of this function that we can’t
implement such as an invalid http scheme, request method or a problem constructing data to an

api.

pyfarm.agent .http.core.client.random() — X in the interval [0, 1).
pyfarm.agent.http.core.resource module

Resource Base resources which can be used to build top leve documents, pages, or other types of data for the web.

class pyfarm.agent.http.core.resource.Resource
Bases: twisted.web.resource.Resource

Basic subclass of _Resource for passing requests to specific methods. Unlike _Resource however this will
will also handle:

erewriting of request objects

stemplating

econtent type discovery and validation

eunpacking of request data

ererouting of request to specific internal methods
TEMPLATE = NotImplemented
CONTENT_TYPES = set([’application/json’, ‘text/html’])
LOAD_DATA_FOR_METHODS = set([’PUT’, ‘POST’])
SCHEMAS = {}

template
Loads the template provided but the partial path in TEMPLATE on the class.

methods
A set containing all the methods this resource implements.

content_types (request, default=None)
Returns the content type(s) present in the request

putChild (path, child)
Overrides the builtin putChild() so we can return the results for each call and use them externally

error (request, code, message)
Writes the proper out an error response message depending on the content type in the request

render (request)

pyfarm.agent.http.core.server module

26 Chapter 4. pyfarm.agent package

https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

pyfarm.agent Documentation, Release 0.8.2

HTTP Server HTTP server responsible for serving requests that control or query the running agent. This file
produces a service that the pyfarm. agent .manager. service.ManagerServiceMaker class can consume
on start.

class pyfarm.agent.http.core.server.RewriteRequest (*args, *¥kw)
Bases: twisted.web.server.Request

A custom implementation of _Request that will allow us to modify an incoming request before it reaches the
HTTP server..

REPLACE_REPEATED_ DELIMITER = <_sre.SRE_Pattern object at 0x7f9f17ac3420>

requestReceived (command, path, version)
Override the builtin _Request . requestReceived () so we can rewrite portions of the request, such
as the url, before it’s passed along to the internal server.

write (data)
Override the built in _Request.write () so that any data that’s not a string will be dumped to json
using dumps ()

class pyfarm.agent .http.core.server.Site (resource, *args, **kwargs)
Bases: twisted.web.server.Site

Site object similar to Twisted’s except it also carries along some of the internal agent data.
displayTracebacks = True

requestFactory
alias of RewriteRequest

class pyfarm.agent .http.core.server.StaticPath (*args, **kwargs)
Bases: twisted.web.static.File

More secure version of File that does not list directories. In addition this will also sending along a response
header asking clients to cache to data.

EXPIRES = 604800
ALLOW_DIRECTORY_LISTING = False

render (request)
Overrides File.render () and sets the expires header

directoryListing ()
Override which ensures directories cannot be listed

pyfarm.agent.http.core.template module

Template Interface methods for working with the Jinja template engine.

class pyfarm.agent .http.core.template.InMemoryCache
Bases: jinja2.bccache.BytecodeCache

Caches Jinja templates into memory after they have been loaded and compiled.
cache ={}

clear ()

load_bytecode (bucket)

dump_bytecode (bucket)

4.1. Subpackages 27

pyfarm.agent Documentation, Release 0.8.2

class pyfarm.agent .http.core.template.DeferredTemplate
Bases: jinja2.environment.Template

Overrides the default PackageLoader so we can produced the rendered result as a deferred call.
render (*args, **kwargs)

class pyfarm.agent .http.core.template.Environment (**kwargs)
Bases: jinja2.environment.Environment

Implementation of Jinja’s _Environment class which reads from our configuration object and establishes the
default functions we can use in a template.

template_class
alias of DeferredTemplate

class pyfarm.agent.http.core.template.Loader
Bases: object

Namespace class used to simply keep track of the global environment and load templates.

>>> from pyfarm.agent.http.core import template
>>> template.load("index.html")

environment = None

classmethod load (name)

Module contents

Core This module contains the core libraries necessary for working with HTTP requests and responses.

Submodules

pyfarm.agent.http.system module

pyfarm.agent.http.system.mb (value)
pyfarm.agent.http.system.seconds (value)

class pyfarm.agent . .http.system.Index
Bases: pyfarm.agent .http.core.resource.Resource

serves request for the root, ‘/°, target
TEMPLATE = ‘index.html’
get (**kwargs)

class pyfarm.agent .http.system.Configuration
Bases: pyfarm.agent.http.core.resource.Resource

TEMPLATE = ‘configuration.html’
HIDDEN_FIELDS = (‘agent’, ‘agent_pretty_json’)
EDITABLE_FIELDS = (‘agent_cpus’, ‘agent_hostname’, ‘agent_http_retry_delay’, ‘master_api’, ‘master’, ‘agent_ram_cl

get (**kwargs)

28 Chapter 4. pyfarm.agent package

https://docs.python.org/3.4/library/functions.html#object

pyfarm.agent Documentation, Release 0.8.2

Module contents

HTTP Components

This sub-module contains all the code necessary to interact via HTTP from both a client and a server perspective.

4.1.3 pyfarm.agent.sysinfo package
Submodules

pyfarm.agent.sysinfo.cpu module

CPU Contains information about the cpu and its relation to the operating system such as load, processing times, etc.

pyfarm.agent.sysinfo.cpu.cpu_name ()
Returns the full name of the CPU installed in the system.

pyfarm.agent.sysinfo.cpu.total_cpus (logical=True)
Returns the total number of cpus installed on the system.

Parameters logical (bool) — If True the return the number of cores the system has. Setting this value
to False will instead return the number of physical cpus present on the system.

pyfarm.agent.sysinfo.cpu.load (interval=1)
Returns the load across all cpus value from zero to one. A value of 1.0 means the average load across all cpus is
100%.

pyfarm.agent.sysinfo.cpu.user_time ()
Returns the amount of time spent by the cpu in user space

pyfarm.agent.sysinfo.cpu.system time ()
Returns the amount of time spent by the cpu in system space

pyfarm.agent.sysinfo.cpu.idle_time ()
Returns the amount of time spent by the cpu in idle space

pyfarm.agent.sysinfo.cpu.iowait ()
Returns the amount of time spent by the cpu waiting on io

Note: on platforms other than linux this will return None

pyfarm.agent.sysinfo.graphics module

Graphics Contains information about the installed graphics cards

exception pyfarm.agent.sysinfo.graphics.GPULookupError (value)
Bases: exceptions.Exception

pyfarm.agent.sysinfo.graphics.graphics_cards ()
Returns a list of the full names of GPUs installed in this system

4.1. Subpackages 29

https://docs.python.org/3.4/library/functions.html#bool

pyfarm.agent Documentation, Release 0.8.2

pyfarm.agent.sysinfo.memory module

Memory Provides information about memory including swap usage, system memory usage, and general capacity
information.

pyfarm.agent.sysinfo.memory.used_ram/()
Amount of physical memory currently in use by applications

pyfarm.agent.sysinfo.memory.free_ram/()
Amount of physical memory free for application use

pyfarm.agent.sysinfo.memory.total_ram/()
Total physical memory installed on the system

pyfarm.agent.sysinfo.memory.process_memory ()
Total amount of memory in use by this process

pyfarm.agent.sysinfo.memory.total_consumption ()
Total amount of memory consumed by this process and any child process spawned by the parent process. This
includes any grandchild processes.

pyfarm.agent.sysinfo.network module

Network Returns information about the network including ip address, dns, data sent/received, and some error infor-
mation.

const IP_PRIVATE set of private class A, B, and C network ranges
See also:
RFC 1918

const IP_ NONNETWORK set of non-network address ranges including all of the above constants ex-
cept the ITP_PRIVATE

pyfarm.agent.sysinfo.network.mac_addresses (long_addresses=False, as_integers=False)
Returns a tuple of all mac addresses on the system.

Parameters

* long_addresses (bool) — Some adapters will specify a mac address which is longer than the
standard value of six pairs. Setting this value to True will allow these to be displayed.

* as_integers (bool) — When True convert all mac addresses to integers.

pyfarm.agent.sysinfo.network.hostname (trust_name_from_ips=True)
Returns the hostname which the agent should send to the master.

Parameters trust_resolved_name (bool) — If True and all addresses provided by addresses ()
resolve to a single hostname then just return that name as it’s the most likely hostname to be
accessible by the rest of the network.

pyfarm.agent.sysinfo.network.addresses (private_only=True)
Returns a tuple of all non-local ip addresses.

pyfarm.agent.sysinfo.network.interfaces ()
Returns the names of all valid network interface names

30 Chapter 4. pyfarm.agent package

http://tools.ietf.org/html/rfc1918.html
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

pyfarm.agent Documentation, Release 0.8.2

pyfarm.agent.sysinfo.system module

System Information about the operating system including type, filesystem information, and other relevant informa-
tion. This module may also contain os specific information such as the Linux distribution, Windows version, bitness,
etc.

pyfarm.agent.sysinfo.system.filesystem_is_case_sensitive()
returns True if the file system is case sensitive

pyfarm.agent.sysinfo.system.environment_is_case_sensitive ()
returns True if the environment is case sensitive

pyfarm.agent.sysinfo.system.machine_architecture (arch="x86_64")
returns the architecture of the host itself

pyfarm.agent.sysinfo.system.interpreter_architecture ()
returns the architecture of the interpreter itself (32 or 64)

pyfarm.agent.sysinfo.system.uptime ()
Returns the amount of time the system has been running in seconds.

pyfarm.agent.sysinfo.system.operating system (plat="linux2’)
Returns the operating system for the given platform. Please note that while you can call this function directly
you’re more likely better off using values in pyfarm. core.enums instead.

pyfarm.agent.sysinfo.user module

User Returns information about the current user such as the user name, admin access, or other related information.

pyfarm.agent.sysinfo.user.username ()
Returns the current user name using the most native api we can import. On Linux for example this will use the
pwd module but on Windows we try to use win32api.

pyfarm.agent.sysinfo.user.is_administrator ()
Return True if the current user is root (Linux) or running as an Administrator (Windows).

Module contents

Top level module which provides information about the operating system, system memory, network, and processor
related information

4.2 Submodules

4.2.1 pyfarm.agent.config module

Configuration

Central module for storing and working with a live configuration objects. This module instances
ConfigurationWithCallbacks onto config. Attempting to reload this module will not reinstance the
config object.

The config object should be directly imported from this module to be used:

>>> from pyfarm.agent.config import config

4.2. Submodules 31

http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.enums.html#module-pyfarm.core.enums
https://docs.python.org/3.4/library/pwd.html#module-pwd

pyfarm.agent Documentation, Release 0.8.2

class pyfarm.agent.config.LoggingConfiguration (data=None, environment=None,

load=True)
Bases: pyfarm.core.config.Configuration

Special configuration object which logs when a key is changed in a dictionary. If the reactor is not running then
log messages will be queued until they can be emitted so they are not lost.

_expandvars (value)
Performs variable expansion for value. This method is run when a string value is returned from get ()
or__getitem__ (). The default behavior of this method is to recursively expand variables using sources
in the following order:

*The environment, os .environ
*The environment (from the configuration), env
*Other values in the configuration
*~ to the user’s home directory
For example, the following configuration:

foo: foo

bar: bar

foobar: foo/Sbar
path: ~/$foobar/S$TEST

Would result in the following assuming $TEST is an environment variable set to somevalue and the
current user’s name is user:

{

"fOO": "fOO",

"bar": "bar",

"foobar": "foo/bar",

"path": "/home/user/foo/bar/somevalue"

}

MODIFIED = ‘modified’
CREATED = ‘created’

DELETED = ‘deleted’

pop (key, *args)
Deletes the provided key and triggers a delete event using changed ().

clear ()
Deletes all keys in this object and triggers a delete event using changed () for each one.

update (data=None, **kwargs)
Updates the data held within this object and triggers the appropriate events with changed ().

changed (change_type, key, new_value=<object object at Ox7f9f1f579480>, old_value=<object object

at Ox7f9f1f579480>)
This method is run whenever one of the keys in this object changes.

master_contacted (update=True, announcement=False)
Simple method that will update the 1ast_master_contact and then return the result.

Parameters update (bool) — Setting this value to False will just return the current value instead
of updating the value too.

class pyfarm.agent.config.ConfigurationWithCallbacks (data=None, environment=None,

load=True)
Bases: pyfarm.agent.config.LoggingConfiguration

32 Chapter 4. pyfarm.agent package

http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.config.html#pyfarm.core.config.Configuration
https://docs.python.org/3.4/library/functions.html#bool

pyfarm.agent Documentation, Release 0.8.2

Subclass of LoggingDictionary that provides the ability to run a function when a value is changed.
callbacks ={}

classmethod register_callback (key, callback, append=False)
Register a function as a callback for key. When key is set the given callback will be run by
changed ()

Parameters
* key (string) — the key which when changed in any way will execute callback
¢ callback (callable) — the function or method to register

 append (boolean) — by default attempting to register a callback which has already been
registered will do nothing, setting this to True overrides this behavior.

classmethod deregister_callback (key, callback)
Removes any callback(s) that are registered with the provided key

clear (callbacks=False)
Performs the same operations as dict .clear () except this method can also clear any registered call-
backs if requested.

changed (change_type, key, new_value=<object object at Ox7f9f1f579480>, old_value=<object object

at Ox7f9f1f579480>)
This method is called internally whenever a given key changes which in turn will pass off the change to

any registered callback(s).

4.2.2 pyfarm.agent.manhole module
Manhole

Provides a way to access the internals of the agent via the telnet protocol.

class pyfarm.agent .manhole.LoggingManhole (namespace=None)
Bases: twisted.conch.manhole.ColoredManhole

A slightly modified implementation of ColoredManhole which logs information to the logger so we can
track activity in the agent’s log.

connectionMade ()
connectionLost (reason)
lineReceived (line)

class pyfarm.agent .manhole.TransportProtocolFactory (portal)
Bases: object

Glues together a portal along with the TelnetTransport and AuthenticatingTelnetProtocol
objects. This class is instanced onto the protocol attribute of the ServerFactory class in
build_manhole ().

class pyfarm.agent .manhole.TelnetRealm
Bases: object

Wraps together ITelnetProtocol, TelnetBootstrapProtocol, ServerProtocol and
ColoredManhole in requestAvatar () which will provide the interface to the manhole.

NAMESPACE = None

requestAvatar (_, *interfaces)

4.2. Submodules 33

https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/functions.html#callable
https://docs.python.org/3.4/library/stdtypes.html#dict.clear
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object

pyfarm.agent Documentation, Release 0.8.2

pyfarm.agent .manhole.show (x=<object object at Ox7f9f1f579480>)
Display the data attributes of an object in a readable format

pyfarm.agent .manhole.manhole_factory (namespace, username, password)
Produces a factory object which can be used to listen for telnet connections to the manhole.

4.2.3 pyfarm.agent.service module

Manager Service
Sends and receives information from the master and performs systems level tasks such as log reading, system infor-
mation gathering, and management of processes.

class pyfarm.agent.service.Agent
Bases: object

Main class associated with getting getting the internals of the agent’s operations up and running including adding
or updating itself with the master, starting the periodic task manager, and handling shutdown conditions.

classmethod agent_api ()
Return the API url for this agent or None if agent_id has not been set

classmethod agents_endpoint ()
Returns the API endpoint for used for updating or creating agents on the master

shutting down

repeating_call (delay, function, function_args=None, function_kwargs=None, now=True, re-
peat_max=None, function_id=None)
Causes function to be called repeatedly up until repeat_max or until stopped.

Parameters

* delay (inf) — Number of seconds to delay between calls of function.

Note: delay is an approximate interval between when one call ends and the next one
begins. The exact time can vary due to how the Twisted reactor runs, how long it takes

function to run and what else may be going on in the agent at the time.

* function — A callable function to run

* function_args (tuple, list) — Arguments to pass into function

¢ function_kwargs (dict) — Keywords to pass into function

* now (bool) — If True then run function right now in addition to scheduling it.

* repeat_max (inf) — Repeat calling function this may times. If not provided then we’ll
continue to repeat calling function until the agent shuts down.

* function_id (uuid. UUID) — Used internally to track a function’s execution count. This
keyword exists so if you call repeating_call () multiple times on the same function
or method it will handle repeat_max properly.

should_reannounce ()
Small method which acts as a trigger for reannounce ()

reannounce ()
Method which is used to periodically contact the master. This method is generally called as part of a
scheduled task.

34 Chapter 4. pyfarm.agent package

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/uuid.html#uuid.UUID

pyfarm.agent Documentation, Release 0.8.2

system_data (requery_timeoffset=False)
Returns a dictionary of data containing information about the agent. This is the information that is also
passed along to the master.

build_http_resource ()

start (shutdown_events=True, http_server=True)
Internal code which starts the agent, registers it with the master, and performs the other steps necessary to
get things running.

Parameters

 shutdown_events (bool) — If True register all shutdown events so certain actions, such as
information the master we’re going offline, can take place.

* http_server (bool) — If True then construct and serve the externally facing http server.

stop ()
Internal code which stops the agent. This will terminate any running processes, inform the master of the
terminated tasks, update the state of the agent on the master.

sigint_handler (*_)

post_shutdown_to_master (stop_reactor=True)
This method is called before the reactor shuts down and lets the master know that the agent’s state is now
offline

post_agent_to_master (*args, **kwargs)
Runs the POST request to contact the master. Running this method multiple times should be considered
safe but is generally something that should be avoided.

callback_post_free_ram (response)
Called when we get a response back from the master after POSTing a change for free_ram

errback_post_free_ram (failure)
Error handler which is called if we fail to post a ram update to the master for some reason

post_free_ram()
Posts the current nu

callback_free_ram_changed (change_type, key, new_value, old_value)
Callback used to decide and act on changes to the config [’ ram’] value.

errback_post_cpu_count_change (failure)
Error handler which is called if we fail to post a cpu count update to an existing agent for some reason.

callback_post_cpu_count_change (response)
Called when we received a response from the master after

post_cpu_count (run=True)
POSTs CPU count changes to the master

callback_cpu_count_changed (change_type, key, new_value, old_value)
Callback used to decide and act on changes to the config [’ cpus’] value.

callback_agent_id_set (change_type, key, new_value, old_value, shutdown_events=True)
When agent_id is created we need to:

*Register a shutdown event so that when the agent is told to shutdown it will notify the master of a
state change.

«Star the scheduled task manager

4.2,

Submodules 35

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

pyfarm.agent Documentation, Release 0.8.2

4.2.4 pyfarm.agent.tasks module

4.2.5 pyfarm.agent.testutil module
class pyfarm.agent.testutil.skipIf (should_skip, reason)
Bases: object
Wrapping a test with this class will allow the test to be skipped if should_skip evals as True.

pyfarm.agent.testutil.random port (bind=‘127.0.0.1")
Returns a random port which is not in use

pyfarm.agent.testutil.requires_master (function)
Any test decorated with this function will fail if the master could not be contacted or returned a response other
than 200 OK for “/”

pyfarm.agent.testutil.create_jobtype (classname=None, sourcecode=None)
Creates a job type on the master and fires a deferred when finished

class pyfarm.agent.testutil .FakeRequestHeaders (fest, headers)
Bases: object

getRawHeaders (header)

class pyfarm.agent.testutil .FakeRequest (fest, method, uri, headers=None, data=None)
Bases: object

getHeader (header)
setResponseCode (code)
write (data)

finish()

response ()

class pyfarm.agent.testutil .FakeAgent (stopped=None)
Bases: object

stop ()

class pyfarm.agent.testutil .ErrorCapturingParser (*args, **kwargs)
Bases: pyfarm.agent.entrypoints.parser.AgentArgumentParser

error (message)

class pyfarm.agent.testutil.TestCase (methodName="runTest’)
Bases: twisted.trial._asynctest.TestCase

longMessage = True

POP_CONFIG_KEYS =[]

RAND_LENGTH =8

timeout =15

assertRaises (excClass, callableObj=None, *args, **kwargs)

assertRaisesRegexp (expected_exception, expected_regexp, callable_obj=None, *args, **kwargs)
assertDateAlmostEqual (datel, date2, second_deviation=0, microsecond_deviation=500000)
setUp ()

prepare_config ()

36 Chapter 4. pyfarm.agent package

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object

pyfarm.agent Documentation, Release 0.8.2

create_file (content=None, dir=None, suffix="")
Creates a test file on disk using tempfile.mkstemp () and uses the lower level file interfaces to man-
age it. This is done to ensure we have more control of the file descriptor itself so on platforms such as
Windows we don’t have to worry about running out of file handles.

create_directory (count=10)

class pyfarm.agent.testutil .BaseRequestTestCase (methodName="runTest’)
Bases: pyfarm.agent.testutil.TestCase

HTTP_SCHEME = ‘http’

DNS_HOSTNAME = ‘example.com’
TEST_URL = ‘http://httpbin.pyfarm.net’
REDIRECT_TARGET = ‘http://example.com’
RESOLVED_DNS_NAME = True
HTTP_REQUEST_SUCCESS = True

setUp ()

class pyfarm.agent.testutil.BaseHTTPTestCase (methodName="runTest’)
Bases: pyfarm.agent.testutil.TestCase

URI = NotImplemented

CLASS = NotImplemented
CLASS_FACTORY = NotImplemented
CONTENT_TYPES = NotImplemented
setUp ()

instance_class ()
test_instance()

test_leaf ()
test_implements_methods ()
test_content_types ()
test_methods_exist_ for schema ()
test_missing_ schemas ()

class pyfarm.agent.testutil .BaseAPITestCase (methodName="runTest’)
Bases: pyfarm.agent .testutil.BaseHTTPTestCase

CONTENT_TYPES = [’application/json’]
setUp ()
test_parent ()

class pyfarm.agent.testutil .BaseHTMLTestCase (methodName="runTest’)
Bases: pyfarm.agent.testutil.BaseHTTPTestCase

CONTENT_TYPES = ["text/html’, ‘application/json’]
setUp ()

test_template_set ()

4.2. Submodules 37

https://docs.python.org/3.4/library/tempfile.html#tempfile.mkstemp

pyfarm.agent Documentation, Release 0.8.2

test_template_loaded()

4.2.6 pyfarm.agent.utility module
Utilities
Top level utilities for the agent to use internally. Many of these are copied over from the master (which we can’t import

here).

pyfarm.agent.utility.validate_environment (values)
Ensures that values is a dictionary and that it only contains string keys and values.

pyfarm.agent.utility.validate_uuid (value)
Ensures that value can be converted to or is a UUID object.

pyfarm.agent.utility.TASKS_SCHEMA (values)
pyfarm.agent.utility.default_json_encoder (0bj, return_obj=False)

pyfarm.agent.utility. json_safe (source)
Recursively converts source into something that should be safe for json.dumps () to handle. This is used
in conjunction with default_json_encoder () to also convert keys to something the json encoder can
understand.

pyfarm.agent.utility.quote_url (source_url)
This function serves as a wrapper around urlsplit () and quote () and a url that has the path quoted.

pyfarm.agent.utility.dumps (*args, **kwargs)
Agent’s implementation of json.dumps () orpyfarm.master.utility. jsonify ()

pyfarm.agent.utility.request_from master (request)
Returns True if the request appears to be coming from the master

class pyfarm.agent.utility.UTF8Recoder (f, encoding)
Bases: object

Iterator that reads an encoded stream and reencodes the input to UTF-8
next ()

class pyfarm.agent .utility.UnicodeCSVReader (f, dialect=<class csv.excel at Ox7f9f19a28050>,
encoding="utf-8’, **kwds)
Bases: object

A CSV reader which will iterate over lines in the CSV file “f”, which is encoded in the given encoding.
next ()

class pyfarm.agent .utility.UnicodeCSVWriter (f, dialect=<class csv.excel at Ox7f9f19a28050>,
encoding="utf-8’, **kwds)
Bases: object

A CSV writer which will write rows to CSV file “f”, which is encoded in the given encoding.
writerow (row)
writerows (rows)

pyfarm.agent.utility.total_seconds (td)
Returns the total number of seconds in the time delta object. This function is provided for backwards compara-
bility with Python 2.6.

38 Chapter 4. pyfarm.agent package

https://docs.python.org/3.4/library/json.html#json.dumps
https://docs.python.org/3.4/library/json.html#json.dumps
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object

pyfarm.agent Documentation, Release 0.8.2

class pyfarm.agent .utility.AgentUUID
Bases: object

This class wraps all the functionality required to load, cache and retrieve an Agent’s UUID.
log = <pyfarm.agent.logger.python.Logger object at 0x7f9f197fba10>

classmethod load (path)
A classmethod to load a UUID object from a path. If the provided path does not exist or does not contain
data which can be converted into a UUID object None will be returned.

classmethod save (agent_uuid, path)
Saves agent_uuid to path. This classmethod will also create the necessary parent directories and
handle conversion from the input type uuid.UUID.

classmethod generate ()
Generates a UUID object. This simply wraps uuid.uuid4 () and logs a warning.

4.3 Module contents

4.3.1 PyFarm Agent

Core module containing code to run PyFarm’s agent.

4.3. Module contents 39

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/uuid.html#uuid.UUID
https://docs.python.org/3.4/library/uuid.html#uuid.uuid4

pyfarm.agent Documentation, Release 0.8.2

40 Chapter 4. pyfarm.agent package

CHAPTER 5

pyfarm.jobtypes package

5.1 Subpackages

5.1.1 pyfarm.jobtypes.core package
Submodules

pyfarm.jobtypes.core.internals module

Job Type Internals Contains classes which contain internal methods for the
pyfarm. jobtypes.core. jobtype.JobType class.

class pyfarm. jobtypes.core.internals.ProcessData
Bases: tuple

ProcessData(protocol, started, stopped, log_identifier)

log_identifier
Alias for field number 3

protocol
Alias for field number 0

started
Alias for field number 1

stopped
Alias for field number 2

exception pyfarm. jobtypes.core.internals.InsufficientSpaceError
Bases: exceptions.Exception

class pyfarm. jobtypes.core.internals.Cache
Bases: object

Internal methods for caching job types

cache ={}

JOBTYPE_VERSION_URL = ‘% (master_api)s/jobtypes/ % (name)s/versions/ % (version)s’
CACHE_DIRECTORY = ‘/tmp/pyfarm/agent/jobtype_cache’

e = OSError(17, ‘File exists’)

41

https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#object

pyfarm.agent Documentation, Release 0.8.2

class pyfarm. jobtypes.core.internals.Process
Bases: object

Methods related to process control and management

logging ={}

stopped_deferred

start_deferred

class pyfarm. jobtypes.core.internals.System
Bases: object

class pyfarm. jobtypes.core.internals.TypeChecks
Bases: object

pyfarm.jobtypes.core.jobtype module

Job Type Core This module contains the core job type from which all other job types are built. All other job types

must inherit from the JobType class in this modle.

class pyfarm. jobtypes.core. jobtype.CommandData (command, *arguments, **kwargs)
Bases: object

Stores data to be returned by JobType.get_command_data (). Instances of this class are alosed used by

JobType.spawn_process_inputs () atexecution time.

Note: This class does not perform any key of path resolution by default. It is assumed this has already been

done using something like JobType .map_path ()

Parameters

validate ()
Validates that the attributes on an instance of this class contain values we expect. This method is called

command (string) — The command that will be executed when the process runs.
arguments — Any additional arguments to be passed along to the command being launched.

env (dict) — If provided, this will be the environment to launch the com-
mand with. If this value is not provided then a default environment will be
setup using set_default_environment () when JobType.start () is called.
JobType.start () itself will use JobType.set_default_environment () to
generate the default environment.

cwd (string) — The working directory the process should execute in. If not provided the
process will execute in whatever the directory the agent is running inside of.

user (string or integer) — The username or user id that the process should run as. On Win-
dows this keyword is ignored and on Linux this requires the agent to be executing as root.
The value provided here will be run through JobType.get_uid_gid () to map the in-
coming value to an integer.

group (string or integer) — Same as user above except this sets the group the process will
execute.

id — An arbitrary id to associate with the resulting process protocol. This can help identify

externally by the job type in JobType.start () and may correct some instance attributes.

42

Chapter 5. pyfarm.jobtypes package

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/string.html#module-string

pyfarm.agent Documentation, Release 0.8.2

set_default_environment (value)
Sets the environment to va lue if the internal env attribute is None. By default this method is called by the
job type and passed in the results from pyfarm. jobtype.core.JobType.get_environment ()

class pyfarm. jobtypes.core. jobtype.JobType (assignment)
Bases: pyfarm. jobtypes.core.internals.Cache,pyfarm. jobtypes.core.internals.System,
pyfarm. jobtypes.core.internals.Process,pyfarm. jobtypes.core.internals.TypeChecks

Base class for all other job types. This class is intended to abstract away many of the asynchronous necessary
to run a job type on an agent.

Variables

* PERSISTENT_JOB_DATA (ser) — A dictionary of job ids and data that
prepare_for_job () has produced. This is used during __init__ () to set
persistent_job_data.

* COMMAND_DATA_CLASS (CommandData) — If you need to provide your own class
to represent command data you should override this attribute. This attribute is used by by
methods within this class to do type checking.

* PROCESS_PROTOCOL (ProcessProtocol) — The protocol object used to communicate
with each process spawned

* ASSIGNMENT_SCHEMA (voluptuous.Schema) — The schema of an assignment. This
object helps to validate the incoming assignment to ensure it’s not missing any data.

* uuid (UUID) - This is the unique identifier for the job type instance and is automatically
set when the class is instanced. This is used by the agent to track assignments and job type
instances.

* finished_tasks (ser) — A set of tasks that have had their state changed to finished through
set_task_state (). At the start of the assignment, this list is empty.

* failed_tasks (ser) — This is analogous to finished_tasks except it contains failed tasks
only.

Parameters assignment (dict) — This attribute is a dictionary the keys “job”, “jobtype” and “tasks”.
self.assignment[”’job”] is itself a dict with keys “id”, “title”, “data”, “environ” and “by”. The
most important of those is usually “data”, which is the dict specified when submitting the job
and contains jobtype specific data. self.assignment[’tasks”] is a list of dicts representing the
tasks in the current assignment. Each of these dicts has the keys “id” and “frame”. The list is
ordered by frame number.

PERSISTENT_JOB_DATA = {}

COMMAND_DATA
alias of CommandData

PROCESS_PROTOCOL
alias of ProcessProtocol

ASSIGNMENT_SCHEMA = <voluptuous.Schema object at 0x7f9f17b9acd(>

classmethod load (assignment)
Given an assignment this class method will load the job type either from cache or from the master.

Parameters assignment (dict) — The dictionary containing the assignment. This will be passed
into an instance of ASSIGNMENT__SCHEMA to validate that the internal data is correct.

classmethod prepare_for_job (job)

5.1. Subpackages 43

https://docs.python.org/3.4/library/stdtypes.html#set
https://docs.python.org/3.4/library/uuid.html#module-uuid
https://docs.python.org/3.4/library/stdtypes.html#set
https://docs.python.org/3.4/library/stdtypes.html#set
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/stdtypes.html#dict

pyfarm.agent Documentation, Release 0.8.2

Note: This method is not yet implemented

Called before a job executes on the agent first the first time. Whatever this classmethod returns will be
available as persistent_job_data on the job type instance.

Parameters job (int) — The job id which prepare_for_job is being run for
By default this method does nothing.

classmethod cleanup_after_job (persistent_data)

Note: This method is not yet implemented

This classmethod will be called after the last assignment from a given job has finished on this node.

Parameters persistent_data — The persistent data that prepare_for_Jjob () produced. The
value for this data may be None if prepare_for_-job () returned None or was not im-
plemented.

classmethod spawn_persistent_process (job, command_data)

Note: This method is not yet implemented

Starts one child process using an instance of CommandData or similiar input. This process is in-
tended to keep running until the last task from this job has been processed, potentially spanning more
than one assignment. If the spawned process is still running then we’ll cleanup the process after
cleanup_after_job ()

node ()
Returns live information about this host, the operating system, hardware, and several other pieces of global
data which is useful inside of the job type. Currently data from this method includes:

*master_api - The base url the agent is using to communicate with the master.
*hostname - The hostname as reported to the master.

eagent_id - The unique identifier used to identify. this agent to the master.

«id - The database id of the agent as given to us by the master on startup of the agent.
ecpus - The number of CPUs reported to the master

eram - The amount of ram reported to the master.

total_ram - The amount of ram, in megabytes, that’s installed on the system regardless of what was
reported to the master.

free_ram - How much ram, in megabytes, is free for the entire system.

econsumed_ram - How much ram, in megabytes, is being consumed by the agent and any processes
it has launched.

eadmin - Set to True if the current user is an administrator or ‘root’.
euser - The username of the current user.
scase_sensitive_files - True if the file system is case sensitive.

ecase_sensitive_env - True if environment variables are case sensitive.

44

Chapter 5. pyfarm.jobtypes package

https://docs.python.org/3.4/library/functions.html#int

pyfarm.agent Documentation, Release 0.8.2

*machine_architecture - The architecture of the machine the agent is running on. This will return 32
or 64.

eoperating_system - The operating system the agent is executing on. This value will be ‘linux’, ‘mac’
or ‘windows’. In rare circumstances this could also be ‘other’.

Raises KeyError
Raised if one or more keys are not present in the global configuration object.

This should rarely if ever be a problem under normal circumstances. The exception to this
rule is in unittests or standalone libraries with the global config object may not be populated.

assignments ()
Short cut method to access tasks

tempdir (new=False, remove_on_finish=True)
Returns a temporary directory to be used within a job type. By default once called the directory will be
created on disk and returned from this method.

Calling this method multiple times will return the same directory instead of creating a new directory unless
new is set to True.

Parameters

* new (bool) — If set to True then return a new directory when called. This however will
not replace the ‘default’ temp directory.

e remove_on_finish (bool) — If True then keep track of the directory returned so it can be
removed when the job type finishes.

get_uid_gid (user, group)
Overridable. This method to convert a named user and group into their respective user and group ids.

get_environment ()
Constructs an environment dictionary that can be used when a process is spawned by a job type.

get_command_1list (cmdlist)
Return a list of command to be used when running the process as a read-only tuple.

get_csvlog_path (protocol_uuid, create_time=None)
Returns the path to the comma separated value (csv) log file. The agent stores logs from processes in a csv
format so we can store additional information such as a timestamp, line number, stdout/stderr identification
and the the log message itself.

Note: This method should not attempt to create the parent directories of the resulting path. This is already
handled by the logger pool in a non-blocking fashion.

get_command_data ()
Overridable. This method returns the arguments necessary for executing a command. For job types which
execute a single process per assignment, this is the most important method to implement.

Warning: This method should not be used when this jobtype requires more than one process for one
assignment and may not get called at all if start () was overridden.

The default implementation does nothing. When overriding this method you should return an instance of
COMMAND_DATA_CLASS:

5.1.

Subpackages 45

https://docs.python.org/3.4/library/exceptions.html#KeyError
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

pyfarm.agent Documentation, Release 0.8.2

return self.COMMAND_DATA (
"/usr/bin/python", "-c", "print ’"hello world’",
env={"FOO": "bar"}, user="bob")

See CommandData‘s class documentation for a full description of possible arguments.

Please note however the default command data class, CommandData does not perform path expansion.
So instead you have to handle this yourself with map_path ().

map_path (path)
Takes a string argument. Translates a given path for any OS to what it should be on this particular node.
This does not communicate with the master.

expandvars (value, environment=None, expand=None)
Expands variables inside of a string using an environment. Exp

Parameters
* value (string) — The path to expand

* environment (dict) — The environment to use for expanding value. If this value is None
(the default) then we’ll use get_environment () to build this value.

¢ expand (bool) — When not provided we use the jobtype_expandvars configuration
value to set the default. When this value is True we’ll perform environment variable ex-
pansion otherwise we return value untouched.

start ()
This method is called when the job type should start working. Depending on the job type’s implementation
this will prepare and start one more more processes.

stop (assignment_failed=False, error=None, signal="KILL’)
This method is called when the job type should stop running. This will terminate any processes associated
with this job type and also inform the master of any state changes to an associated task or tasks.

Parameters

« assignment_failed (boolean) — Whether this means the assignment has genuinely failed.
By default, we assume that stopping this assignment was the result of deliberate user action
(like stopping the job or shutting down the agent), and won’t treat it as a failed assignment.

* error (string) — If the assignment has failed, this string is upload as last_error for the failed
tasks.

* signal (s7ring) — The signal to send the any running processes. Valid options are KILL,
TERM or INT.

format_error (error)
Takes some kind of object, typically an instance of Exception or :class‘.Failure* and produces a human
readable string. If we don’t know how to format the request object an error will be logged and nothing will
be returned

set_states (tasks, state, error=None)
Wrapper around set_state () that that allows you to the state on the master for multiple tasks at once.

set_task_state (task, state, error=None, dissociate_agent=False)
Sets the state of the given task

Parameters
* task (dict) — The dictionary containing the task we’re changing the state for.

* state (string) — The state to change task to

46 Chapter 5. pyfarm.jobtypes package

https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/exceptions.html#Exception
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/string.html#module-string

pyfarm.agent Documentation, Release 0.8.2

e error (string, Exception) — If the state is changing to ‘error’ then also set the
last_error column. Any exception instance that is passed to this keyword will be
passed through format_exception () first to format it.

get_local_task_state (fask_id)
Returns None if the state of this task has not been changed locally since this assignment has started. This
method does not communicate with the master.

is_successful (reason)
Overridable. This method that determines whether the process referred to by a protocol instance has
exited successfully.

The default implementation returns True if the process’s return code was O and
False' in all other cases. If you need to modify this behavior

please be aware that ‘‘reason may be an integer or an instance of
twisted.internet.error.ProcessTerminated if the process terminated without errors
or an instance of twisted.python.failure.Failure if there were problems.

Raises NotImplementedError Raised if we encounter a condition that the base implementation
is unable to handle.

before_start ()
Overridable. This method called directly before start () itself is called.

The default implementation does nothing and values returned from this method are ignored.

before_spawn_process (command, protocol)
Overridable. This method called directly before a process is spawned.

By default this method does nothing except log information about the command we’re about to launch
both the the agent’s log and to the log file on disk.

Parameters

e command (CommandData) — An instance of CommandData which contains the envi-
ronment to use, command and arguments. Modifications to this object will be applied to
the process being spawned.

¢ protocol (ProcessProtocol) — Aninstance of py farm. jobtypes.core.process.ProcessProtocol
which contains the protocol used to communicate between the process and this job type.

process_stopped (protocol, reason)
Overridable. This method called when a child process stopped running.

The default implementation will mark all tasks in the current assignment as done or failed of there was at
least one failed process.

process_started (protocol)
Overridable. This method is called when a child process started running.

The default implementation will mark all tasks in the current assignment as running.

process_output (protocol, output, line_fragments, line_handler)
This is a mid-level method which takes output from a process protocol then splits and processes it to ensure
we pass complete output lines to the other methods.

Implementors who wish to process the output line by line should over-
ride preprocess_stdout_line(), preprocess_stdout_line(),
process_stdout_line () or process_stderr_line () instead. This method is a glue
method between other parts of the job type and should only be overridden if there’s a problem or you want
to change how lines are split.

Parameters

. Subpackages a7

https://docs.python.org/3.4/library/exceptions.html#Exception
https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

pyfarm.agent Documentation, Release 0.8.2

e protocol (ProcessProtocol)— The protocol instance which produced output
* output (s7ring) — The blob of text or line produced

* line_fragments (dicr) — The line fragment dictionary containing individual
line fragments. This will be either self._stdout_line_fragments or
self._stderr_line_fragments.

¢ line_handler (callable) — The function to handle any lines produced. This will be either
handle_stdout_1line () orhandle_stderr_line()

Returns This method returns nothing by default and any return value produced by this method
will not be consumed by other methods.

handle_stdout_line (protocol, stdout)
Takes a ProcessProtocol instance and stdout line produced by process_output () and runs
it through all the steps necessary to preprocess, format, log and handle the line.

The default implementation will run stdout through several methods in order:
*preprocess_stdout_line ()
eformat_stdout_line ()
*log_stdout_1line ()

sprocess_stdout_line ()

Warning: This method is not private however it’s advisable to override the methods above instead of
this one. Unlike this method, which is more generalized and invokes several other methods, the above
provide more targeted functionality.

Parameters
* protocol (ProcessProtocol)— The protocol instance which produced stdout
* stderr (string) — A complete line to stderr being emitted by the process

Returns This method returns nothing by default and any return value produced by this method
will not be consumed by other methods.

handle_stderr_line (protocol, stderr)
Overridable. Takes a ProcessProtocol instance and stderr produced by process_output ()
and runs it through all the steps necessary to preprocess, format, log and handle the line.

The default implementation will run st derr through several methods in order:
spreprocess_stderr_line ()
eformat_stderr_line ()
*log_stderr_line()

sprocess_stderr_line ()

Warning: This method is overridable however it’s advisable to override the methods above instead.
Unlike this method, which is more generalized and invokes several other methods, the above provide
more targeted functionality.

Parameters
* protocol (ProcessProtocol)— The protocol instance which produced stdout

* stderr (string) — A complete line to st derr being emitted by the process

48 Chapter 5. pyfarm.jobtypes package

https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#callable
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string

pyfarm.agent Documentation, Release 0.8.2

Returns This method returns nothing by default and any return value produced by this method
will not be consumed by other methods.

preprocess_stdout_1line (protocol, stdout)

Overridable. Provides the ability to manipulate stdout or protocol before it’s passed into any other
line handling methods.

The default implementation does nothing.

Parameters

* protocol (ProcessProtocol)— The protocol instance which produced stdout

* stderr (string) — A complete line to stdout before any formatting or logging has oc-
curred.

Return type string

Returns This method returns nothing by default but when overridden should return a string
which will be used in line handling methods such as format_stdout_line (),
log_stdout_line () and process_stdout_line ().

preprocess_stderr_line (protocol, stderr)
Overridable. Formats a line from stdout before it’'s passed onto methods such as
log_stdout_line () and process_stdout_line ().

The default implementation does nothing.

Parameters

 protocol (ProcessProtocol) — The protocol instance which produced stderr

o stderr (string) — A complete line to stderr before any formatting or logging has oc-
curred.

Return type string

Returns This method returns nothing by default but when overridden should return a string
which will be used in line handling methods such as format_stderr_line(),
log_stderr_line () and process_stderr_line ().

format_stdout_line (protocol, stdout)

Overridable. Formats a line from stdout before it’s passed onto methods such as
log_stdout_line () and process_stdout_line ().

The default implementation does nothing.
Parameters
* protocol (ProcessProtocol) — The protocol instance which produced stdout
* stdout (sfring) — A complete line from process to format and return.
Return type string

Returns This method returns nothing by default but when overridden should return a string
which will be used in 1og_stdout_1line () and process_stdout_line ()

format_stderr line (protocol, stderr)

Overridable. Formats a line from stderr before it’s passed onto methods such as
log_stderr_line () and process_stderr_line ().

The default implementation does nothing.

Parameters

5.1.

Subpackages 49

https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string

pyfarm.agent Documentation, Release 0.8.2

* protocol (ProcessProtocol) — The protocol instance which produced stderr
o stderr (string) — A complete line from the process to format and return.
Return type string

Returns This method returns nothing by default but when overridden should return a string
which will be used in 1og_stderr_line () and process_stderr_line ()

log_stdout_1line (protocol, stdout)
Overridable. Called when we receive a complete line on stdout from the process.

The default implementation will use the global logging pool to log stdout to a file.
Parameters
* protocol (ProcessProtocol)— The protocol instance which produced stdout

* stderr (string) — A complete line to st dout that has been formatted and is ready to log
to a file.

Returns This method returns nothing by default and any return value produced by this method
will not be consumed by other methods.

log_stderr_1line (protocol, stderr)
Overridable. Called when we receive a complete line on stderr from the process.

The default implementation will use the global logging pool to log stderr to a file.
Parameters
 protocol (ProcessProtocol) — The protocol instance which produced stderr

* stderr (string) — A complete line to stderr that has been formatted and is ready to log
to a file.

Returns This method returns nothing by default and any return value produced by this method
will not be consumed by other methods.

process_stderr_line (protocol, stderr)
Overridable. This method is called when we receive a complete line to stderr. The line will be
preformatted and will already have been sent for logging.

The default implementation sends “‘stderr‘‘ and ‘‘protocol‘* to :meth: ‘process_stdout_line".
Parameters
e protocol (ProcessProtocol)— The protocol instance which produced stderr
* stderr (string) — A complete line to stderr after it has been formatted and logged.

Returns This method returns nothing by default and any return value produced by this method
will not be consumed by other methods.

process_stdout_line (protocol, stdout)
Overridable. This method is called when we receive a complete line to stdout. The line will be
preformatted and will already have been sent for logging.

The default implementation does nothing.
Parameters
* protocol (ProcessProtocol)— The protocol instance which produced stderr

* stdout (string) — A complete line to st dout after it has been formatted and logged.

50 Chapter 5. pyfarm.jobtypes package

https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string

pyfarm.agent Documentation, Release 0.8.2

Returns This method returns nothing by default and any return value produced by this method
will not be consumed by other methods.

pyfarm.jobtypes.core.process module

Process Module responsible for connecting a Twisted process object and a job type. Additionally this module
contains other classes which are useful in starting or managing a process.

class pyfarm. jobtypes.core.process.ReplaceEnvironment (frozen_environment, environ-
ment=None)
Bases: object
A context manager which will replace os.environ's, or dictionary of your choosing, for a short period of
time. After exiting the context manager the original environment will be restored.

This is useful if you have something like a process that’s using global environment and you want to ensure that
global environment is always consistent.

Parameters environment (dict) — If provided, use this as the environment dictionary instead of
os.environ

class pyfarm. jobtypes.core.process.ProcessProtocol (jobtype)
Bases: twisted.internet.protocol.ProcessProtocol

Subclass of Protocol which hooks into the various systems necessary to run and manage a process. More
specifically, this helps to act as plumbing between the process being run and the job type.

uuid

pid

process

The underlying Twisted process object

psutil_process
Returns a psutil.Process object for the running process

connectionMade ()
Called when the process first starts and the file descriptors have opened.

processEnded (reason)
Called when the process has terminated and all file descriptors have been closed. processExited () is
called, too, however we only want to notify the parent job type once the process has freed up the last bit of
resources.

outReceived (data)
Called when the process emits on stdout

errReceived (data)
Called when the process emits on stderr

kill ()
Kills the underlying process, if running.

terminate ()
Terminates the underlying process, if running.

interrupt ()
Interrupts the underlying process, if running.

running ()
Method to determine whether the child process is currently running

5.1. Subpackages 51

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#dict

pyfarm.agent Documentation, Release 0.8.2

Module contents

5.2 Submodules

5.2.1 pyfarm.jobtypes.examples module

class pyfarm. jobtypes.examples.PythonHelloWorld (assignment)
Bases: pyfarm. jobtypes.core. jobtype.JobType

get_command_data ()

5.3 Module contents

5.3.1 Job Types

This package, pyfarm. jobtypes, contains the code which executes a task on an agent.

52 Chapter 5. pyfarm.jobtypes package

CHAPTER 6

Indices and tables

* genindex
* modindex

e search

53

pyfarm.agent Documentation, Release 0.8.2

54 Chapter 6. Indices and tables

HTTP Routing Table

/api
GET /api/vl/versions/ HTTP/1.1,22
POST /api/vl/update HTTP/1.1,23

55

pyfarm.agent Documentation, Release 0.8.2

56 HTTP Routing Table

Python Module Index

P

pyfarm.
pyfarm.
pyfarm.
pyfarm.

pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.
pyfarm.

pyfarm
pyfarm
pyfarm
pyfarm

agent,
agent.
agent.
agent.
19

agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.
agent.

39

config, 31
entrypoints,
entrypoints.

entrypoints.
entrypoints.
entrypoints.
entrypoints.
http, 29
http.api, 23

21

development,

main, 19
parser, 19
supervisor, 21
utility, 21

http.api.assign, 21
http.api.base, 21
http.api.config, 22
http.api.state, 22
http.api.tasklogs,23
http.api.tasks, 23
http.api.update, 23

http.core, 28

http.core.client, 24
http.core.resource, 26
http.core.server, 26
http.core.template, 27

http.system,
manhole, 33
service, 34
sysinfo, 31

28

sysinfo.cpu, 29

agent.sysinfo.
agent.sysinfo.
agent.sysinfo
agent.sysinfo.
agent.sysinfo.
agent.testutil
agent.utility,
. Jjobtypes, 52

graphics, 29
memory, 30

.network, 30

system, 31
user, 31

, 36

38

. jobtypes.core, 52

. jobtypes.core.
. jobtypes.core.

internals, 41
jobtype, 42

pyfarm. jobtypes.core.process, 51
pyfarm. jobtypes.examples, 52

57

pyfarm.agent Documentation, Release 0.8.2

58 Python Module Index

Index

Symbols

_expandvars() (pyfarm.agent.config.LoggingConfiguration

method), 32

A

ActionMixin (class in pyfarm.agent.entrypoints.parser),
20

addresses() (in module pyfarm.agent.sysinfo.network), 30

Agent (class in pyfarm.agent.service), 34

agent_api (pyfarm.agent.entrypoints.main.AgentEntryPoint

attribute), 19

agent_api() (pyfarm.agent.service.Agent class method),
34

AgentArgumentParser (class in py-
farm.agent.entrypoints.parser), 20

AgentEntryPoint (class in py-
farm.agent.entrypoints.main), 19

agents_endpoint() (pyfarm.agent.service.Agent
method), 34

AgentUUID (class in pyfarm.agent.utility), 38

ALLOW_DIRECTORY_LISTING (py-
farm.agent.http.core.server.StaticPath at-
tribute), 27

APIResource (class in pyfarm.agent.http.api.base), 21

APIRoot (class in pyfarm.agent.http.api.base), 21

class

AppendAction (in module py-
farm.agent.entrypoints.parser), 20

AppendConstAction (in module py-
farm.agent.entrypoints.parser), 20

assert_parser() (in module py-

farm.agent.entrypoints.parser), 19
assertDateAlmostEqual() (pyfarm.agent.testutil. TestCase

method), 36

assertRaises() (pyfarm.agent.testutil.TestCase method),
36

assertRaisesRegexp() (pyfarm.agent.testutil. TestCase

method), 36
Assign (class in pyfarm.agent.http.api.assign), 21
ASSIGNMENT_SCHEMA (py-
farm.jobtypes.core.jobtype.JobType attribute),

43
assignments() (pyfarm.jobtypes.core.jobtype.JobType
method), 45

B

BaseAPITestCase (class in pyfarm.agent.testutil), 37
BaseHTMLTestCase (class in pyfarm.agent.testutil), 37
BaseHTTPTestCase (class in pyfarm.agent.testutil), 37
BaseRequestTestCase (class in pyfarm.agent.testutil), 37

before_spawn_process() (py-
farm.jobtypes.core.jobtype.JobType method),
47

before_start() (pyfarm.jobtypes.core.jobtype.JobType
method), 47

build_http_resource() (pyfarm.agent.service.Agent
method), 35

build_url() (in module pyfarm.agent.http.core.client), 24

C

Cache (class in pyfarm.jobtypes.core.internals), 41

cache (pyfarm.agent.http.core.template.InMemoryCache
attribute), 27

cache (pyfarm.jobtypes.core.internals.Cache attribute),
41

CACHE_DIRECTORY (py-
farm.jobtypes.core.internals.Cache attribute),
41

callback_agent_id_set() (pyfarm.agent.service.Agent
method), 35

callback_cpu_count_changed() (py-
farm.agent.service.Agent method), 35

callback_free_ram_changed() (py-
farm.agent.service.Agent method), 35

callback_post_cpu_count_change() (py-

farm.agent.service.Agent method), 35

callback_post_free_ram() (pyfarm.agent.service.Agent
method), 35

callbacks (pyfarm.agent.config.ConfigurationWithCallbacks
attribute), 33

changed() (pyfarm.agent.config.ConfigurationWithCallbacks
method), 33

59

pyfarm.agent Documentation, Release 0.8.2

changed() (pyfarm.agent.config.LoggingConfiguration

method), 32

CLASS (pyfarm.agent.testutil. BaseHTTPTestCase
attribute), 37

CLASS_FACTORY (py-
farm.agent.testutil. BaseHT TPTestCase at-
tribute), 37

cleanup_after_job() (py-
farm.jobtypes.core.jobtype.JobType class
method), 44

clear() (pyfarm.agent.config.ConfigurationWithCallbacks
method), 33

clear() (pyfarm.agent.config.LoggingConfiguration
method), 32

clear() (pyfarm.agent.http.core.template.InMemoryCache
method), 27

COMMAND_DATA (py-

farm.jobtypes.core.jobtype.JobType attribute),
43

CommandData (class in pyfarm.jobtypes.core.jobtype),
42

Config (class in pyfarm.agent.http.api.config), 22

Configuration (class in pyfarm.agent.http.system), 28

ConfigurationWithCallbacks (class in
farm.agent.config), 32

connectionLost() (pyfarm.agent.http.core.client.Response
method), 25

connectionLost() (pyfarm.agent.manhole.LoggingManhole
method), 33

Py-

connectionMade() (pyfarm.agent.manhole.LoggingManhole

create_jobtype() (in module pyfarm.agent.testutil), 36
CREATED (pyfarm.agent.config.LoggingConfiguration
attribute), 32

D

data() (pyfarm.agent.http.core.client.Response method),
25

dataReceived() (pyfarm.agent.http.core.client.Response
method), 25

default_json_encoder() (in module pyfarm.agent.utility),
38

DeferredTemplate (class in py-

farm.agent.http.core.template), 27

delete() (pyfarm.agent.http.api.tasks.Tasks method), 23

DELETED (pyfarm.agent.config.LoggingConfiguration
attribute), 32

deregister_callback() (py-
farm.agent.config.ConfigurationWithCallbacks
class method), 33

directoryListing() (pyfarm.agent.http.core.server.StaticPath
method), 27

direxists() (in module pyfarm.agent.entrypoints.parser),
20

displayTracebacks (pyfarm.agent.http.core.server.Site at-
tribute), 27

DNS_HOSTNAME
farm.agent.testutil. BaseRequestTestCase
attribute), 37

dump_bytecode() (pyfarm.agent.http.core.template.InMemoryCache
method), 27

dumps() (in module pyfarm.agent.utility), 38

E

e (pyfarm.jobtypes.core.internals.Cache attribute), 41

(py-

EDITABLE_FIELDS
farm.agent.http.system.Configuration
tribute), 28

enum() (in module pyfarm.agent.entrypoints.parser), 20

Environment (class in pyfarm.agent.http.core.template),

(py-
at-

method), 33

connectionMade() (pyfarm.jobtypes.core.process.ProcessProtocol
method), 51

CONTENT_TYPES (py-
farm.agent.http.api.base. APIResource at-
tribute), 21

CONTENT_TYPES (py-
farm.agent.http.core.resource.Resource at-
tribute), 26

CONTENT_TYPES (py-

farm.agent.testutil. BaseAPITestCase attribute),
37

CONTENT_TYPES (py-
farm.agent.testutil. BaseHTMLTestCase at-
tribute), 37

CONTENT_TYPES (py-
farm.agent.testutil. BaseHT TPTestCase at-

tribute), 37

content_types() (pyfarm.agent.http.core.resource.Resource
method), 26

cpu_name() (in module pyfarm.agent.sysinfo.cpu), 29

create_directory() (pyfarm.agent.testutil. TestCase
method), 37

create_file() (pyfarm.agent.testutil. TestCase method), 36

28
environment (pyfarm.agent.http.core.template.Loader at-
tribute), 28
environment variable
PYFARM_JOBTYPE_ALLOW_CODE_EXECUTION_IN_MODULI
11
PYFARM_JOBTYPE_SUBCLASSES_BASE_CLASS,
11

environment_is_case_sensitive() (in module py-
farm.agent.sysinfo.system), 31
errback_post_cpu_count_change() (py-

farm.agent.service.Agent method), 35
errback_post_free_ram() (pyfarm.agent.service.Agent
method), 35

60

Index

pyfarm.agent Documentation, Release 0.8.2

error() (pyfarm.agent.http.core.client HTTPLog static
method), 24

error() (pyfarm.agent.http.core.resource.Resource
method), 26

error() (pyfarm.agent.testutil. ErrorCapturingParser
method), 36

ErrorCapturingParser (class in pyfarm.agent.testutil), 36

errReceived() (pyfarm.jobtypes.core.process.ProcessProtocol

method), 51

expandvars() (pyfarm.jobtypes.core.jobtype.JobType
method), 46

EXPIRES (pyfarm.agent.http.core.server.StaticPath at-
tribute), 27

F

fake_render() (in module py-
farm.agent.entrypoints.development), 19

fake_work() (in module py-

farm.agent.entrypoints.development), 19
FakeAgent (class in pyfarm.agent.testutil), 36
FakeRequest (class in pyfarm.agent.testutil), 36
FakeRequestHeaders (class in pyfarm.agent.testutil), 36
fileexists() (in module pyfarm.agent.entrypoints.parser),

20
filesystem_is_case_sensitive() (in

farm.agent.sysinfo.system), 31
finish() (pyfarm.agent.testutil. FakeRequest method), 36
format_error() (pyfarm.jobtypes.core.jobtype.JobType

method), 46

module py-

format_stderr_line() (py-
farm.jobtypes.core.jobtype.JobType method),
49

format_stdout_line() (py-

farm.jobtypes.core.jobtype.JobType method),

49
free_ram() (in module pyfarm.agent.sysinfo.memory), 30
G
generate() (pyfarm.agent.utility. AgentUUID class

method), 39
get() (pyfarm.agent.http.api.base.Versions method), 22
get() (pyfarm.agent.http.api.config.Config method), 22
get() (pyfarm.agent.http.api.state.Status method), 22
get() (pyfarm.agent.http.api.tasklogs.TaskLogs method),
23
get() (pyfarm.agent.http.api.tasks.Tasks method), 23
get() (pyfarm.agent.http.system.Configuration method),
28
get() (pyfarm.agent.http.system.Index method), 28
get_command_data() (py-
farm.jobtypes.core.jobtype.JobType method),

method), 52

get_command_list() (py-
farm.jobtypes.core.jobtype.JobType method),
45

get_csvlog_path() (pyfarm.jobtypes.core.jobtype.JobType
method), 45

get_environment() (py-
farm.jobtypes.core.jobtype.JobType method),
45

get_local_task_state() (py-
farm.jobtypes.core.jobtype.JobType method),

47

get_uid_gid() (pyfarm.jobtypes.core.jobtype.JobType
method), 45

getHeader() (pyfarm.agent.testutil. FakeRequest method),
36

getRawHeaders() (pyfarm.agent.testutil. FakeRequestHeaders
method), 36

GPULookupError, 29

graphics_cards() (in module py-
farm.agent.sysinfo.graphics), 29

H

handle_stderr_line() (py-

farm.jobtypes.core.jobtype.JobType method),
48

handle_stdout_line() (py-
farm.jobtypes.core.jobtype.JobType method),
48

HIDDEN_FIELDS (py-
farm.agent.http.system.Configuration at-

tribute), 28
hostname() (in module pyfarm.agent.sysinfo.network), 30

HTTP_REQUEST _SUCCESS (py-
farm.agent.testutil. BaseRequestTestCase
attribute), 37

http_retry_delay() (in module py-

farm.agent.http.core.client), 24

HTTP_SCHEME (pyfarm.agent.testutil. BaseRequestTestCase
attribute), 37

HTTPLog (class in pyfarm.agent.http.core.client), 24

idle_time() (in module pyfarm.agent.sysinfo.cpu), 29

Index (class in pyfarm.agent.http.system), 28

InMemoryCache (class in
farm.agent.http.core.template), 27

instance_class() (pyfarm.agent.testutil. BaseHTTPTestCase
method), 37

InsufficientSpaceError, 41

interfaces() (in module pyfarm.agent.sysinfo.network), 30

pPy-

45 interpreter_architecture() (in module py-
get_command_data() (py- farm.agent.sysinfo.system), 31
farm.jobtypes.examples.PythonHelloWorld
Index 61

pyfarm.agent Documentation, Release 0.8.2

interrupt() (pyfarm.jobtypes.core.process.ProcessProtocol
method), 51

iowait() (in module pyfarm.agent.sysinfo.cpu), 29

ip() (in module pyfarm.agent.entrypoints.parser), 19

is_administrator() (in module pyfarm.agent.sysinfo.user),

31
is_successful() (pyfarm.jobtypes.core.jobtype.JobType
method), 47

isLeaf (pyfarm.agent.http.api.assign.Assign attribute), 21
isLeaf (pyfarm.agent.http.api.base.APIResource at-
tribute), 21
isLeaf (pyfarm.agent.http.api.base. APIRoot attribute), 22
isLeaf (pyfarm.agent.http.api.base.Versions attribute), 22
isLeaf (pyfarm.agent.http.api.config.Config attribute), 22
isLeaf (pyfarm.agent.http.api.state.Restart attribute), 22
isLeaf (pyfarm.agent.http.api.state.Status attribute), 22
isLeaf (pyfarm.agent.http.api.state.Stop attribute), 22
isLeaf (pyfarm.agent.http.api.update.Update attribute), 23

J

JobType (class in pyfarm.jobtypes.core.jobtype), 43

JOBTYPE_VERSION_URL (py-
farm.jobtypes.core.internals.Cache attribute),
41

json() (pyfarm.agent.http.core.client.Response method),
25

json_safe() (in module pyfarm.agent.utility), 38

K

kill() (pyfarm.jobtypes.core.process.ProcessProtocol
method), 51

L

lineReceived() (pyfarm.agent.manhole.L.oggingManhole
method), 33

load() (in module pyfarm.agent.sysinfo.cpu), 29

load() (pyfarm.agent.http.core.template.Loader class
method), 28

load() (pyfarm.agent.utility.AgentUUID class method),
39

load() (pyfarm.jobtypes.core.jobtype.JobType class
method), 43

load_bytecode() (pyfarm.agent.http.core.template.InMemoryCache
method), 27

LOAD_DATA_FOR_METHODS (py-

farm.agent.http.core.resource.Resource at-
tribute), 26
Loader (class in pyfarm.agent.http.core.template), 28

log (pyfarm.agent.utility. AgentUUID attribute), 39

log_identifier (pyfarm.jobtypes.core.internals.ProcessData

attribute), 41
log_stderr_line() (pyfarm.jobtypes.core.jobtype.JobType
method), 50

log_stdout_line() (pyfarm.jobtypes.core.jobtype.JobType

method), 50
(pyfarm.jobtypes.core.internals.Process

tribute), 42

LoggingConfiguration (class in pyfarm.agent.config), 31

LoggingManhole (class in pyfarm.agent.manhole), 33

longMessage (pyfarm.agent.testutil. TestCase attribute),

logging at-

36
M
mac_addresses() (in module py-
farm.agent.sysinfo.network), 30
machine_architecture() (in module py-

farm.agent.sysinfo.system), 31
manhole_factory() (in module pyfarm.agent.manhole), 34
map_path() (pyfarm.jobtypes.core.jobtype.JobType

method), 46
master_contacted()

farm.agent.config.LoggingConfiguration

method), 32
mb() (in module pyfarm.agent.http.system), 28
methods (pyfarm.agent.http.core.resource.Resource at-

tribute), 26
mix_action() (in module

farm.agent.entrypoints.parser), 20
MODIFIED (pyfarm.agent.config.LoggingConfiguration

attribute), 32

(py-

py-

N

NAMESPACE (pyfarm.agent.manhole.TelnetRealm at-
tribute), 33

next() (pyfarm.agent.utility.UnicodeCSVReader method),
38

next() (pyfarm.agent.utility. UTF8Recoder method), 38

node() (pyfarm.jobtypes.core.jobtype.JobType method),
44

number() (in module pyfarm.agent.entrypoints.parser), 20

O

operating_system() (in module

farm.agent.sysinfo.system), 31
outReceived() (pyfarm.jobtypes.core.process.ProcessProtocol
method), 51

py-

P

PERSISTENT_JOB_DATA (py-
farm.jobtypes.core.jobtype.JobType attribute),
43

pid (pyfarm.jobtypes.core.process.ProcessProtocol
attribute), 51
pop() (pyfarm.agent.config.LoggingConfiguration

method), 32
POP_CONFIG_KEYS
attribute), 36

(pyfarm.agent.testutil. TestCase

62

Index

pyfarm.agent Documentation, Release 0.8.2

port() (in module pyfarm.agent.entrypoints.parser), 20

post() (pyfarm.agent.http.api.assign.Assign method), 21

post() (pyfarm.agent.http.api.state.Restart method), 22

post() (pyfarm.agent.http.api.state.Stop method), 22

post() (pyfarm.agent.http.api.update.Update method), 23

post_agent_to_master() (pyfarm.agent.service.Agent
method), 35

post_cpu_count() (pyfarm.agent.service.Agent method),
35

post_free_ram() (pyfarm.agent.service.Agent method),
35

post_shutdown_to_master() (pyfarm.agent.service.Agent
method), 35

prepare_config()
method), 36

prepare_for_job() (pyfarm.jobtypes.core.jobtype.JobType
class method), 43

preprocess_stderr_line() (py-
farm.jobtypes.core.jobtype.JobType method),
49

preprocess_stdout_line() (py-
farm.jobtypes.core.jobtype.JobType method),
49

Process (class in pyfarm.jobtypes.core.internals), 4 1

process (pyfarm.jobtypes.core.process.ProcessProtocol
attribute), 51

process_memory() (in module
farm.agent.sysinfo.memory), 30

process_output() (pyfarm.jobtypes.core.jobtype.JobType
method), 47

PROCESS_PROTOCOL (py-
farm.jobtypes.core.jobtype.JobType attribute),

(pyfarm.agent.testutil. TestCase

Py-

43

process_started() (pyfarm.jobtypes.core.jobtype.JobType
method), 47

process_stderr_line() (py-
farm.jobtypes.core.jobtype.JobType method),
50

process_stdout_line() (py-

farm.jobtypes.core.jobtype.JobType method),
50

process_stopped() (pyfarm.jobtypes.core.jobtype.JobType
method), 47

ProcessData (class in pyfarm.jobtypes.core.internals), 41

pyfarm.agent (module), 39
pyfarm.agent.config (module), 31
pyfarm.agent.entrypoints (module), 21
pyfarm.agent.entrypoints.development (module), 19
pyfarm.agent.entrypoints.main (module), 19
pyfarm.agent.entrypoints.parser (module), 19
pyfarm.agent.entrypoints.supervisor (module), 21
pyfarm.agent.entrypoints.utility (module), 21
pyfarm.agent.http (module), 29
pyfarm.agent.http.api (module), 23
pyfarm.agent.http.api.assign (module), 21
pyfarm.agent.http.api.base (module), 21
pyfarm.agent.http.api.config (module), 22
pyfarm.agent.http.api.state (module), 22
pyfarm.agent.http.api.tasklogs (module), 23
pyfarm.agent.http.api.tasks (module), 23
pyfarm.agent.http.api.update (module), 23
pyfarm.agent.http.core (module), 28
pyfarm.agent.http.core.client (module), 24
pyfarm.agent.http.core.resource (module), 26
pyfarm.agent.http.core.server (module), 26
pyfarm.agent.http.core.template (module), 27
pyfarm.agent.http.system (module), 28
pyfarm.agent.manhole (module), 33
pyfarm.agent.service (module), 34
pyfarm.agent.sysinfo (module), 31
pyfarm.agent.sysinfo.cpu (module), 29
pyfarm.agent.sysinfo.graphics (module), 29
pyfarm.agent.sysinfo.memory (module), 30
pyfarm.agent.sysinfo.network (module), 30
pyfarm.agent.sysinfo.system (module), 31
pyfarm.agent.sysinfo.user (module), 31
pyfarm.agent.testutil (module), 36
pyfarm.agent.utility (module), 38
pyfarm.jobtypes (module), 52
pyfarm.jobtypes.core (module), 52
pyfarm.jobtypes.core.internals (module), 41
pyfarm.jobtypes.core.jobtype (module), 42
pyfarm.jobtypes.core.process (module), 51
pyfarm.jobtypes.examples (module), 52
PythonHelloWorld (class in pyfarm.jobtypes.examples),
52

Q

processEnded() (pyfarm.jobtypes.core.process.ProcessProtogakue() (pyfarm.agent.http.core.client HTTPLog static

method), 51

ProcessProtocol (class in pyfarm.jobtypes.core.process),
51

protocol (pyfarm.jobtypes.core.internals.ProcessData at-
tribute), 41

psutil_process (pyfarm.jobtypes.core.process.ProcessProtocol

attribute), 51

putChild() (pyfarm.agent.http.core.resource.Resource
method), 26

method), 24
quote_url() (in module pyfarm.agent.utility), 38

R

RAND_LENGTH
tribute), 36
(in module
farm.agent.entrypoints.development), 19
random() (in module pyfarm.agent.http.core.client), 26

(pyfarm.agent.testutil. TestCase —at-

random() py-

Index

63

pyfarm.agent Documentation, Release 0.8.2

random_port() (in module pyfarm.agent.testutil), 36
reannounce() (pyfarm.agent.service.Agent method), 34

REDIRECT_TARGET (py-
farm.agent.testutil. BaseRequestTestCase
attribute), 37

register_callback() (py-

farm.agent.config.ConfigurationWithCallbacks
class method), 33
(pyfarm.agent.http.core.resource.Resource
method), 26
(pyfarm.agent.http.core.server.StaticPath
method), 27

render()

render()

render() (pyfarm.agent.http.core.template.DeferredTemplateset_states()

method), 28
repeating_call() (pyfarm.agent.service.Agent method), 34
REPLACE_REPEATED_DELIMITER (py-
farm.agent.http.core.server.RewriteRequest
attribute), 27
ReplaceEnvironment (class in
farm.jobtypes.core.process), 51
Request (class in pyfarm.agent.http.core.client), 25
request() (in module pyfarm.agent.http.core.client), 25
request_from_master() (in module pyfarm.agent.utility),

Py-

38
requestAvatar() (pyfarm.agent.manhole.TelnetRealm
method), 33

requestFactory (pyfarm.agent.http.core.server.Site — at-
tribute), 27

requestReceived() (pyfarm.agent.http.core.server.RewriteRequest

method), 27

requires_master() (in module pyfarm.agent.testutil), 36

RESOLVED_DNS_NAME (py-
farm.agent.testutil. BaseRequestTestCase
attribute), 37

Resource (class in pyfarm.agent.http.core.resource), 26

Response (class in pyfarm.agent.http.core.client), 25

response() (pyfarm.agent.http.core.client. HTTPLog static
method), 24

response() (pyfarm.agent.testutil. FakeRequest method),
36

Restart (class in pyfarm.agent.http.api.state), 22

retry() (pyfarm.agent.http.core.client.Request method),
25

RewriteRequest (class in pyfarm.agent.http.core.server),
27

RFC

RFC 1918, 30

running() (pyfarm.jobtypes.core.process.ProcessProtocol

method), 51

S

save() (pyfarm.agent.utility.AgentUUID class method),
39

SCHEMAS (pyfarm.agent.http.api.assign.Assign at-
tribute), 21

SCHEMAS (pyfarm.agent.http.api.state.Stop attribute),
22

SCHEMAS (pyfarm.agent.http.api.update.Update at-
tribute), 23

SCHEMAS (pyfarm.agent.http.core.resource.Resource
attribute), 26

seconds() (in module pyfarm.agent.http.system), 28

set_default_environment() (py-
farm.jobtypes.core.jobtype.CommandData
method), 42

(pyfarm.jobtypes.core.jobtype.JobType

method), 46

set_task_state() (pyfarm.jobtypes.core.jobtype.JobType
method), 46

setResponseCode() (pyfarm.agent.testutil. FakeRequest
method), 36

setUp() (pyfarm.agent.testutil. Base APITestCase method),
37

setUp() (pyfarm.agent.testutil. BaseHTMLTestCase
method), 37

setUp() (pyfarm.agent.testutil. BaseHTTPTestCase
method), 37

setUp() (pyfarm.agent.testutil. BaseRequestTestCase
method), 37

setUp() (pyfarm.agent.testutil. TestCase method), 36
should_reannounce() (pyfarm.agent.service.Agent
method), 34

show() (in module pyfarm.agent.manhole), 33
shutting_down (pyfarm.agent.service.Agent attribute), 34
sigint_handler() (pyfarm.agent.service. Agent method), 35
Site (class in pyfarm.agent.http.core.server), 27

skiplf (class in pyfarm.agent.testutil), 36

spawn_persistent_process() (py-
farm.jobtypes.core.jobtype.JobType class
method), 44

start() (pyfarm.agent.entrypoints.main.AgentEntryPoint
method), 19

start() (pyfarm.agent.service.Agent method), 35

start() (pyfarm.jobtypes.core.jobtype.JobType method),
46

start_daemon_posix() (in module
farm.agent.entrypoints.utility), 21

start_deferred (pyfarm.jobtypes.core.internals.Process at-
tribute), 42

started (pyfarm.jobtypes.core.internals.ProcessData at-
tribute), 41

StaticPath (class in pyfarm.agent.http.core.server), 27

Status (class in pyfarm.agent.http.api.state), 22

status() (pyfarm.agent.entrypoints.main.AgentEntryPoint
method), 19

Stop (class in pyfarm.agent.http.api.state), 22

Py-

64

Index

pyfarm.agent Documentation, Release 0.8.2

stop() (pyfarm.agent.entrypoints.main.AgentEntryPoint
method), 19

stop() (pyfarm.agent.service.Agent method), 35

stop() (pyfarm.agent.testutil. Fake Agent method), 36

stop() (pyfarm.jobtypes.core.jobtype.JobType method),
46

stopped (pyfarm.jobtypes.core.internals.ProcessData at-
tribute), 41

stopped_deferred (pyfarm.jobtypes.core.internals.Process
attribute), 42

StoreAction (in module pyfarm.agent.entrypoints.parser),

20
StoreConstAction (in module py-
farm.agent.entrypoints.parser), 20
StoreFalseAction (in module py-
farm.agent.entrypoints.parser), 20
StoreTrueAction (in module py-
farm.agent.entrypoints.parser), 20
SubParsersAction (in module py-
farm.agent.entrypoints.parser), 20
supervisor() (in module py-

farm.agent.entrypoints.supervisor), 21
System (class in pyfarm.jobtypes.core.internals), 42
system_data() (pyfarm.agent.service.Agent method), 34
system_time() (in module pyfarm.agent.sysinfo.cpu), 29

T

TaskLogs (class in pyfarm.agent.http.api.tasklogs), 23

Tasks (class in pyfarm.agent.http.api.tasks), 23

TASKS_SCHEMA() (in module pyfarm.agent.utility), 38

TelnetRealm (class in pyfarm.agent.manhole), 33

tempdir() (pyfarm.jobtypes.core.jobtype.JobType
method), 45

TEMPLATE (pyfarm.agent.http.core.resource.Resource
attribute), 26

template (pyfarm.agent.http.core.resource.Resource at-
tribute), 26

TEMPLATE (pyfarm.agent.http.system.Configuration at-
tribute), 28

TEMPLATE (pyfarm.agent.http.system.Index attribute),
28

test_leaf() (pyfarm.agent.testutil. BaseHTTPTestCase

method), 37

test_methods_exist_for_schema()
farm.agent.testutil. BaseHT TPTestCase
method), 37

test_missing_schemas()
farm.agent.testutil. BaseHT TPTestCase
method), 37

test_parent() (pyfarm.agent.testutil. Base APITestCase
method), 37

test_template_loaded()
farm.agent.testutil. BaseHTMLTestCase
method), 37

test_template_set()
farm.agent.testutil. BaseHTMLTestCase
method), 37

TEST_URL (pyfarm.agent.testutil. BaseRequestTestCase
attribute), 37

TestCase (class in pyfarm.agent.testutil), 36

timeout (pyfarm.agent.testutil. TestCase attribute), 36

total_consumption() (in module
farm.agent.sysinfo.memory), 30

total_cpus() (in module pyfarm.agent.sysinfo.cpu), 29

total_ram() (in module pyfarm.agent.sysinfo.memory), 30

total_seconds() (in module pyfarm.agent.utility), 38

(py-

(py-

(py-

(py-

Py-

TransportProtocolFactory (class in py-
farm.agent.manhole), 33
TYPE_MAPPING (py-

farm.agent.entrypoints.parser. ActionMixin
attribute), 20
TypeChecks (class in pyfarm.jobtypes.core.internals), 42

U

uidgid() (in module pyfarm.agent.entrypoints.parser), 20
UnicodeCSVReader (class in pyfarm.agent.utility), 38
UnicodeCSVWriter (class in pyfarm.agent.utility), 38
Update (class in pyfarm.agent.http.api.update), 23
update() (pyfarm.agent.config.LoggingConfiguration
method), 32
uptime() (in module pyfarm.agent.sysinfo.system), 31
URI (pyfarm.agent.testutil. BaseHT TPTestCase attribute),

template_class (pyfarm.agent.http.core.template.Environment 37

attribute), 28

terminate() (pyfarm.jobtypes.core.process.ProcessProtocol

method), 51

test_content_types()
farm.agent.testutil. BaseHT TPTestCase
method), 37

test_implements_methods()
farm.agent.testutil. BaseHT TPTestCase
method), 37

test_instance() (pyfarm.agent.testutil. BaseHTTPTestCase
method), 37

(py-

(py-

used_ram() (in module pyfarm.agent.sysinfo.memory),
30

user_time() (in module pyfarm.agent.sysinfo.cpu), 29

username() (in module pyfarm.agent.sysinfo.user), 31

UTF8Recoder (class in pyfarm.agent.utility), 38

uuid (pyfarm.jobtypes.core.process.ProcessProtocol at-
tribute), 51

uuid_type() (in module pyfarm.agent.entrypoints.parser),
20

Index

65

pyfarm.agent Documentation, Release 0.8.2

V

validate() (pyfarm.jobtypes.core.jobtype.CommandData
method), 42

validate_environment() (in module pyfarm.agent.utility),
38

validate_uuid() (in module pyfarm.agent.utility), 38

Versions (class in pyfarm.agent.http.api.base), 22

W

write() (pyfarm.agent.http.core.server.RewriteRequest
method), 27

write() (pyfarm.agent.testutil. FakeRequest method), 36

writerow() (pyfarm.agent.utility.UnicodeCSV Writer
method), 38

writerows() (pyfarm.agent.utility.UnicodeCSV Writer
method), 38

66

Index

	Commands
	Standard Commands
	Development Commands

	Environment Variables
	Configuration Files
	Agent
	Job Types

	pyfarm.agent package
	Subpackages
	Submodules
	Module contents

	pyfarm.jobtypes package
	Subpackages
	Submodules
	Module contents

	Indices and tables
	HTTP Routing Table
	Python Module Index

