pyexperiment Documentation
Release 0.6.0

Peter Duerr

August 14, 2015

Contents

1 Motivating Example 3
L1 CLI .o e e e e e 3
L2 State e e e 4
1.3 0 LoggIng o o i e e e e e e e e e e e 4
1.4 Configuration L e 5
1.5 TIMING . . . o oo o e e e e e 6
1.6 Loading State o e e e e e e 6
L7 Plothing o o o e e e e e e e e e e e e e e e 6
2 Code 9
2.1 PYEXPETIMENL . . . v o v v o e 9
2.2 pyexperiment.Config L L e e e e e e e e e e e 9
2.3 pyexperiment.Logger. L e e e e e e 10
24 pyexperiment.State L. e e e e 11
2.5 pyexperiment.eXperiment i et e e e e e e e e e e e e 12
2.6 pyexperiment.utils.HierarchicalMapping e 13
2.7 pyexperiment.utils.DelegateCall e e 14
2.8 pyexperiment.utils.Singleton L L. oL e e e e 15
2.9 pyexperiment.utils.interactiveo oL e 15
2.10 pyexperimentutils.plot Lo e 16
2.11 pyexperiment.utils.printers oL e e e e e e e e 16
2.12 pyexperiment.utils.stdout_redirector e e e e e e e e e 17
2.13 pyexperiment.utils L e e e e e e e e e e e 17
3 Indices and tables 19
Python Module Index 21

pyexperiment Documentation, Release 0.6.0

For a brief introduction and installation instructions, check the README on github.

The main idea behind pyexperiment is to make starting a short experiment as simple as possible without sacrificing the
comfort of some basic facilities like a reasonable CLI, logging, persistent state, configuration management, plotting
and timing.

Contents 1

https://github.com/duerrp/pyexperiment

pyexperiment Documentation, Release 0.6.0

2 Contents

CHAPTER 1

Motivating Example

Let’s assume we need to write a quick and clean script that reads a couple of files with time series data and computes

the average value. We also want to generate a plot of the data.

1.1 CLI

To be efficient, we split our script into three functions. read should read one or multiple raw data files, average should
compute the average of the data in the read files and plot should plot the data over time. Moreover, we want to add a
test for the average function to make sure it’s working correctly. In pyexperiment, we can achieve a CLI with these
functions very easily. Let’s write the basic structure of our script to a file, say ‘analyzer.py’

#!/usr/bin/env python
from pyexperiment import experiment

def read(xfilenames) :
pass

def average():
pass

def plot():
pass

class AverageTest (unittest.TestCase):

"""Tests the average function

mon

pass

if name == 'main':
experiment .main (commands=[load,

tests=[AverageTest])

Without any further code, the call to pyexperiment .experiment .main () will set up acommand line interface
for our application that allows executing the three functions read, average, and plot by calling analyzer read
./datafilel ./datafile?2, analyzer average, and analyzer plot respectively. A call to analyzer test

will run our (yet unimplemented) unittests.

pyexperiment Documentation, Release 0.6.0

1.2 State

Next, let’s write the read function and save the loaded data to a persistent state file. To this end, we can use pyexper-
iment’s pyexperiment . State which we get by adding from pyexperiment import state and from
pyexperiment.experiment import save_state tothe top of ‘analyzer.py’. Then, assuming the data files
consist of comma separated values, we can achieve this by defining load as

def read(xfilenames) :
"""Reads data files and stores their content
mmwn
Initialize the state with an empty list for the data
state['data'] = []
for filename in filenames:
with open(filename) as f:
state['data'] += [float (data)
for data in f.readlines{()]
save_state ()

Note that internally, the implementation of pyexperiment.State uses a
pyexperiment.utils.Singleton.Singleton wrapped by pyexperiment.utils.Singleton.delegate_single
so that wherever you access the state you are accessing the same underlying data structure (in a thread safe way).

1.3 Logging

In order to better understand our results, it would be nice to have a logger to print some debug output, e.g.,
printing the names of the files we load and how many data points they contain. A few calls to pyexperiment’s
pyexperiment .log will do the job - simply add from pyexperiment import log and add logging calls
at the desired level:

def read(xfilenames) :
"""Reads data files and stores their content
mmn
Initialize the state with an empty list for the data
state['data'] = []
for filename in filenames:
log.info ("Reading file ", filename)
with open(filename) as f:
data = [float (data)
for data in f.readlines()]

if len(data) == O0:
log.warning ("Datafile does not contain any data",
filename)
log.debug ("Read datapoints", len(data))

state['data'] += data
save_state ()

At this point, let’s factor out a method that reads a single file to make our code more readable

def read_file(filenam) :
"""Read a file and return the data

mmn

log.info ("Reading file ", filename)
with open(filename) as f:

data = [float (data)

for data in f.readlines()]

if len(data) == 0:

4 Chapter 1. Motivating Example

pyexperiment Documentation, Release 0.6.0

log.warning ("Datafile does not contain any data",
filename)
log.debug ("Read datapoints", len(data))

return data

def read(xfilenames) :
"""Reads data files and stores their content

Initialize the state with an empty list for the data
state['data']l = []
for filename in filenames:
state['data'] += read_file(filename)
save_state ()

1.4 Configuration

You will notice that by default, pyexperiment does not log to a file and it will only print messages at, or above the
‘WARNING?’ level. If you would like to see more (or less) messages, you can change the logging level by running the
analyzer with an additional argument e.g., ——verbosity DEBUG. In general, any configuration option can be set
from the command line with —o [level[.level2.[...]]].key value.

The verbosity configuration value is predefined by pyexperiment, but we can use the same configuration mecha-
nism for our own parameters. This is achieved by defining a specification for the configuration and passing it as the
config_spec argument to the pyexperiment .experiment .main () call. For example, we may want to add
an option to ignore data files longer than a certain length:

CONFIG_SPEC = ("[read]\n"
"max_length = integer (min=1, default=100)\n")
if _ name_ == '_ _main__
experiment (commands=[load, average, plot],
tests=[AverageTest],
config_spec=CONFIG_SPEC)

We can then access the parameters by adding from pyexperiment import conf at the top of ‘analyzer.py’
and calling pyexperiment . conf like a dictionary with the levels of the configuration separated by dots:

def read(xfilenames) :
"""Reads data files and stores their content
mmwmn
Initialize the state with an empty list for the data
state['data'] = []

Get the max length from the configuration
max_length = conf['read.max_length']

for filename in filenames:
data = read_file(filename)
if len(data < max_length):
state['data'] += data
save_state ()

By default, pyexperiment will try to load a file called ‘config.ini’ (if necessary, one can of course override this default
filename). To generate an initial configuration file with the default options, simply run analyzer save_config
./config.ini. Any options set in the resulting file will be used in future runs.

1.4. Configuration 5

pyexperiment Documentation, Release 0.6.0

1.5 Timing

If we are loading big data files, we may also be interested to learn how much time it takes to load an individual file -
there may be some room for optimization. To measure the time it takes to load a file and compute statistics, we can
use pyexperiment’s timing function from the pyexperiment . Logger.

def read(xfilenames) :
"""Reads data files and stores their content

mon

Initialize the state with an empty list for the data
state['data'] = []

Get the max length from the configuration
max_length = conf['read.max_length']

for filename in filenames:
with log.timed("read_ file"):
data = read_file(filename)
if len(data < max_length):
state['data'] += data
save_state ()
log.print_timings ()

1.6 Loading State

To average over our data, we will need the state from when we called our script with the read command. By
default, pyexperiment does not load the state saved in previous runs, but we can load it manually with the
pyexperiment.State.load () function.

def average () :
"""Returns the average of the data stored in state

mmn

state.load (conf['pyexperiment.state_filename'])
data = state['data']
return sum(data)/len(data)

Wecannow call analyzer.py load filel file2followedby analyzer.py average to getthe average
of the data points in our files. If you add timing calls you will notice that pyexperiment .state.load () returns
almost immediately. By default, pyexperiment loads entries in the pyexperiment .State only when they are
needed.

1.7 Plotting

Finally, let’s add the setup_figure function with from pyexperiment.utils.plot import
setup_figure as well as pyplot (with from matplotlib import pyplot as plt) and write the
plotter:

def plot():
"""plots the data saved in the state
mmwmn
state.load (conf['pyexperiment.state_filename'])
data = state['data']

6 Chapter 1. Motivating Example

pyexperiment Documentation, Release 0.6.0

fig = setup_figure('Time Series Data')
plt.plot (data)

With this code in place, we can now call analyze.py plot which will open an window with the plotted data. To make
the window fullscreen, press the ‘f” key on your keyboard, to close the window press ‘q’.

1.7. Plotting 7

pyexperiment Documentation, Release 0.6.0

8 Chapter 1. Motivating Example

CHAPTER 2

Code

pyexperiment
pyexperiment
pyexperiment

pyexperiment.
.experiment
.utils
.utils
.utils

pyexperiment
pyexperiment
pyexperiment
pyexperiment

pyexperiment.
.utils

pyexperiment
pyexperiment
pyexperiment
pyexperiment

The pyexperiment module - quick and clean experiments with Python.

. Config([filename, spec, ...]) Represents a singleton configuration object.
.Logger

State([filename]) Represents persistent state of an experiment.

utils

.utils
.utils.
.utils

.HierarchicalMapping
.DelegateCall
.Singleton
.interactive

.plot

.printers

stdout_redirector

2.1 pyexperiment

The pyexperiment module - quick and clean experiments with Python.

2.2 pyexperiment.Config

class pyexperiment .Config (filename=None, spec=u’configspec.ini’, options=None, de-

fault_spec=None)

Represents a singleton configuration object.

__init__ (filename=None, spec=u’configspec.ini’, options=None, default_spec=None)
Initializer

Methods

__init__ ([filename, spec, options, default_spec]) Initializer

base_keys()

Returns the keys of the first level of the mapping

clear(() -> None. Remove all items from D.)

get(key[, default])

get_instance()

Get the key or return the default value if provided
Get the singleton instance if its initialized.

Continued on next page \

pyexperiment Documentation, Release 0.6.0

Table 2.2 — continued from previous page
get_or_set(key, value) Either gets the value associated with key or set it
initialize(*args, **kwargs) Initializes the singleton.
items(() -> list of D’s (key, value) pairs, ...)
iteritems(() -> an iterator over the (key, ...)
iterkeys(() -> an iterator over the keys of D)
itervalues(...)
keys(() -> list of D’s keys)

load(filenamel, spec, options]) Loads a configuration from filename (or string).

merge(other) Merge in another mapping, giving precedence to self
override_with_args(options) Override configuration with option dictionary

pop(k[,d]) ->v, ...) If key is not found, d is returned if given, otherwise KeyError is raised.
popitem(() -> (k, v),...) as a 2-tuple; but raise KeyError if D is empty.
reset_instance() Overloads reset_instance to reset the DEFAULT_CONFIG
save(filename) Write configuration to file

section_keys() Returns the keys of the sections (and subsections) of the mapping
setdefault((k[,d]) -> D.get(k,d), ...)

show() Pretty-prints the content of the mapping

update(([E, ...) If E present and has a .keys() method, does: for k in E: D[k] = E[k]
validate_config(config) Validate configuration

values(() -> list of D’s values)

Attributes

CONFIG_SPEC_PATH Path of the file with the specification for configurations.
DEFAULT_CONFIG Default configuration, later used by initialize
SECTION_SEPARATOR

2.3 pyexperiment.Logger

Provides a multiprocessing-safe logger with colored console output, rotating log files, and easy block-timing based on
the logging module.

Logging made easy. Just use the module level functions debug, warning, info etc. to log messages. At some point,
preferably at the start of your program, call init_main to initialize the logger and choose at which level you want to
log to the console and or rotating log files.

Timing made easy. Just use the module level function timed in a ‘with’ block to log timing of the code in the block.
You can also get a summary with statistics of all your timed blocks by calling print_timings.

Written by Peter Duerr, inspired by zzzeek’s and airmind’s examples on Stackoverflow
(http://stackoverflow.com/a/894284/2481888, http://stackoverflow.com/a/384125/2481888).

pyexperiment .Logger.CONSOLE_FORMAT = u’[% (levelname)-19s] [% (relativeCreated)s] $BOLD % (message)s$SRESET’
The format used for logging to the console

pyexperiment .Logger.CONSOLE_STREAM HANDLER = <logging.StreamHandler object at 0x7fdbcalf3d50>
The stream handler for the console (can be mocked for testing)

class pyexperiment .Logger.ColorFormatter (msg, use_color=True)
Formats logged messages with optional added color for the log level

format (record)
Format the log

10 Chapter 2. Code

http://stackoverflow.com/a/894284/2481888
http://stackoverflow.com/a/384125/2481888

pyexperiment Documentation, Release 0.6.0

pyexperiment .Logger .FILE_FORMAT = u’[% (relativeCreated)10.5fs] [% (levelname)-1s] % (message)-50s (% (filename)s:
The format used for logging to file

pyexperiment.Logger.FILE _FORMAT_STD_MSG_LEN = 50
How much space should be reserved for a normal message in the log file.

class pyexperiment . Logger . Logger (console_level=20, filename=None, file_level=10,

no_backups=>5)
Implements a multiprocessing-safe logger with timing and colored console output.

close ()
Close the logger

class pyexperiment . Logger .MPRotLogHandler (filename, level=10, no_backups=0)
Multiprocessing-safe handler for rotating log files

emit (record)
Emits logged message by delegating it

setFormatter (formatter)
Overload the setFormatter method

class pyexperiment . Logger.PreInitLogHandler
Handles messages before the main logger is initialized.

emit (msg)
Catch logs and store them for later

class pyexperiment . Logger . TimingLogger (console_level=20, filename=None, file_level=10,
no_backups=5)
Provides a logger with a timed context.

Calling code in the timed context will collect execution timing statistics.

close ()
Make sure the delegated calls are all done...

print_timings ()
Prints a summary of the timings collected with ‘timed’.

timed (*args, **kwds)
Timer to be used in a with block. If the level is not None, logs the timing at the specified level. If
save_result is True, captures the result in the timings dictionary.

2.4 pyexperiment.State

class pyexperiment . State (filename=None)
Represents persistent state of an experiment.

__init__ (filename=None)

Initializer
Methods
__init__ ([filename]) Initializer
base_keys() Returns the keys of the first level of the mapping

clear(() -> None. Remove all items from D.)
\ Continued on next page |

2.4. pyexperiment.State 11

pyexperiment Documentation, Release 0.6.0

Table 2.4 — continued from previous page
do_rollover(filename[, rotate_n_state_files]) Rotate state files (as in logging module).
get(key[, default]) Get the key or return the default value if provided
get_instance() Get the singleton instance
get_or_set(key, value) Either gets the value associated with key or set it
items(() -> list of D’s (key, value) pairs, ...)
iteritems(() -> an iterator over the (key, ...)
iterkeys(() -> an iterator over the keys of D)

itervalues(...)

keys(() -> list of D’s keys)
load([filename, lazy, raise_error])
merge(other)

need_saving()

pop((kLd]) > v, ..

popitem(() -> (k, v),...)
reset_instance()
save(filename[, rotate_n_state_files, ...])
section_keys()
setdefault((k[,d]) -> D.get(k,d), ...)
show()

Loads state from a h5f file

Merge in another mapping, giving precedence to self

Checks if state needs to be saved

If key is not found, d is returned if given, otherwise KeyError is raised.
as a 2-tuple; but raise KeyError if D is empty.

Reset the singleton

Saves state to a h5f file, rotating if necessary

Returns the keys of the sections (and subsections) of the mapping

Shows the state

update(([E, ...)
values(() -> list of D’s values)

If E present and has a .keys() method, does: for k in E: D[k] = E[k]

Attributes

SECTION_SEPARATOR

2.5 pyexperiment.experiment

Framework for quick and clean experiments with python.
For a simple example to adapt to your own needs, check the example file.
Written by Peter Duerr.

pyexperiment .experiment . COMMANDS = []
List of all commands for the experiment. Filled by main.

pyexperiment .experiment .DEFAULT CONFIG_FILENAME = u’./config.ini’
Default name for the configuration file

pyexperiment .experiment .DEFAULT_CONFIG_SPECS = u”’[pyexperiment]\nverbosity = option(‘DEBUG’, INFO’,WAR
Default specification for the experiment’s configuration

pyexperiment .experiment . TESTS =[]
List of all tests for the experiment. Filled by main.

pyexperiment .experiment.activate_autocompletion ()
Activate auto completion for your experiment with zsh or bash.

Call with eval “$(script_name activate_autocompletion)”. In zsh you may need to call autoload bashcompinit
and bashcompinit first.

pyexperiment .experiment .collect_commands (commands)
Add default commands

12 Chapter 2. Code

pyexperiment Documentation, Release 0.6.0

pyexperiment .experiment .configure (commands, config_specs, description)
Load configuration from command line arguments and optionally, a configuration file. Possible command line
arguments depend on the list of supplied commands, the configuration depends on the supplied configuration
specification.

pyexperiment .experiment . format_command_help (commands)
Format the docstrings of the commands.

pyexperiment.experiment .help (*args)
Shows help for a specified command.

pyexperiment.experiment.init_log ()
Initialize the logger based on the configuration

pyexperiment .experiment .main (commands=None, config_spec=u’‘, tests=None, descrip-

tion=None)
Parses command line arguments and configuration, then runs the appropriate command.

pyexperiment .experiment .save_config (filename)
Save a configuration file to a filename

pyexperiment .experiment .setup_arg_parser (commands, description)
Setup the argument parser for the experiment

pyexperiment .experiment.show_config ()
Print the configuration

pyexperiment.experiment .show_state (*arguments)
Shows the contents of the state loaded by the configuration or from the file specified as an argument.

pyexperiment .experiment .show_tests (*args)
Show available tests for the experiment

pyexperiment.experiment .test (*args)
Run tests for the experiment

2.6 pyexperiment.utils.HierarchicalMapping

Provide flat, point separated interface to nested mappings

As the zen of python says, flat is better than nested. In many cases, however, it makes sense to store data in a nested
data structure. To bridge the gap, the HierarchicalMapping defines an abstract base class for data structures that can
be treated like an ordinary mapping from strings to values, but with the advantage that the values for keys containing
a level separator, e.g., “levell.level2.level3” are stored in a nested hierarchy of mappings.

Written by Peter Duerr

class pyexperiment.utils.HierarchicalMapping.HierarchicalDict
Instance of the HierarchicalMapping based on dict

class pyexperiment.utils.HierarchicalMapping.HierarchicalMapping
ABC for flat mutable mappings where all keys are strings.

Levels of hierarchy are indicated by a separator character and the storage is implemented as a hierarchy of nested
Mutable mappings.

SECTION_SEPARATOR=u’.
Separates the hierarchy levels

__delitem__ (key)
Delete an item

2.6. pyexperiment.utils.HierarchicalMapping 13

pyexperiment Documentation, Release 0.6.0

__getitem__ (key)
Get an item

__diter_ ()
Need to define __iter__ to make it a MutableMapping

__len__ ()
Returns the number of entries in the mapping

__repr_ ()
Get a representation of the mapping

__setitem__ (key, value)
Set an item

base_keys ()
Returns the keys of the first level of the mapping

get (key, default=None)
Get the key or return the default value if provided

get_or_set (key, value)
Either gets the value associated with key or set it This can be useful as an easy way of

merge (other)
Merge in another mapping, giving precedence to self

section_keys ()
Returns the keys of the sections (and subsections) of the mapping

show ()
Pretty-prints the content of the mapping

class pyexperiment .utils.HierarchicalMapping.HierarchicalOrderedDict
Instance of the HierarchicalMapping based on an OrderedDict.

2.7 pyexperiment.utils.DelegateCall

Provides a multiprocessing-safe way to aggregate results from multiple function calls.

In multi-process programs, it is oft often useful to delegate a function call - e.g., writing a log message to a file -
to another process to avoid conflicts. pyexperiment .utils.DelegateCall implements a functor that, when
called, passes the argument data to a function running in a thread of the process that created the DelegateCall object.
The callback itself must be thread-safe though.

Written by Peter Duerr

class pyexperiment .utils.DelegateCall.DelegateCall (callback)
Helper class that provides a multiprocessing-safe way to aggregate results from multiple function calls.

The arguments to the __call__ function are passed through a multiprocessing.Queue to the process where the
class was initialized (i.e., all arguments must be serializable).

__call_ (data)
Send data, can be called from any process

join ()
Returns true if there are currently no pending callbacks

14 Chapter 2. Code

pyexperiment Documentation, Release 0.6.0

2.8 pyexperiment.utils.Singleton

Provides data structures for unique objects.

The Singleton class whose implementation is inspired by Tornado’s singleton (tornado.ioloop.IOLoop.instance()),
can be inherited by classes which only need to be instantiated once (for example a global settings class such as

pyexperiment .Config). This design pattern is often criticized, but it is hard to beat in terms of simplicity.

A variant of the Singleton, the DefaultSingleton provides an abstract base class for classes that are only instantiated

once, but need to provide an instance before being properly initialized (such as pyexperiment.Logger.Logger).

The function delegate_singleton ‘thunks’ a Singleton so that calls to the singleton instance’s methods don’t need to be

ugly chain calls.
Written by Peter Duerr (Singleton inspired by Tornado’s implementation)

class pyexperiment .utils.Singleton.DefaultSingleton
ABC for singleton that does not automatically initialize

If get_instance is called on an uninitialized DefaultSingleton, a pseudo-instance is returned.

Sub-classes need to implement the function _get_pseudo_instance that returns a pseudo instance.

classmethod get_instance ()
Get the singleton instance if its initialized. Returns, the pseudo instance if not.

classmethod initialize (*args, **kwargs)
Initializes the singleton. After calling this function, the real instance will be used.

classmethod reset_instance ()
Reset the singleton instance if its initialized.

class pyexperiment .utils.Singleton.Singleton
Singleton base-class (or mixin)

classmethod get_instance ()
Get the singleton instance

classmethod reset_instance ()
Reset the singleton

pyexperiment .utils.Singleton.delegate_singleton (singleton)
Creates an object that delegates all calls to the singleton

pyexperiment .utils.Singleton.delegate_special_methods (singleton)
Decorator that delegates special methods to a singleton

2.9 pyexperiment.utils.interactive

Provides helper functions for interactive prompts
Written by Peter Duerr

pyexperiment.utils.interactive.embed interactive (**kwargs)
Embed an interactive terminal into a running python process

2.8. pyexperiment.utils.Singleton

15

pyexperiment Documentation, Release 0.6.0

2.10 pyexperiment.utils.plot

Provides setup utilities for matplotlib figures.

The setup_plotting function will configure basic plot options, such as font size, line width, etc. Calls after the first call
are ignored unless the override flag is set to True. The sefup_figure function will call setup_plotting without overriding
an existing setup, and then return the handle to a new figure, pre-configured with the ‘q’” key bound to close the figure.

The AsyncPlot class provides a simple way to plot some datapoints in a separate process without blocking the execution
of the main program. Just create an AsyncPlot object and use the plot method. By default, the window created by
the AsyncPlot will stay open until you close it. To close the window programatically, call the close method on the
AsyncPlot object.

Written by Peter Duerr.

class pyexperiment.utils.plot .AsyncPlot (name=u’pyexperiment’, labels=None,
x_scale=u’linear’, y_scale=u’linear’)
Plot asynchronously in a different process

close ()
Close the figure, join the process

plot (*args, **kwargs)
Plots the data in the separate process

static plot_process (queue, name, labels=None, x_scale=u’linear’, y_scale=u’linear’)
Grabs data from the queue and plots it in a named figure

pyexperiment .utils.plot.quit_figure_on_key (key, figure=None)
Add handler to figure (defaults to current figure) that closes it on a key press event.

pyexperiment.utils.plot.setup_figure (name=u’pyexperiment’)
Setup a figure that can be closed by pressing ‘q” and saved by pressing ‘s’.

pyexperiment.utils.plot.setup_plotting (options=None, override_setup=True)
Setup basic style for matplotlib figures

2.11 pyexperiment.utils.printers

Provides printing in color

Written by Peter Duerr, inspired by a stackoverflow comment by airmind
(http://stackoverflow.com/a/384125/2481888).

pyexperiment.utils.printers.COLOR_SEQ =u’\x1b[1;%dm’
Sequence used to set color for console formatting

pyexperiment.utils.printers.RESET_SEQ = u’\x1b[0m’
Sequence used to reset console formatting

pyexperiment.utils.printers.colorize (string, color_s)
Colorize a string

pyexperiment .utils.printers.create_printer (color)
Creates the printer for the corresponding color

pyexperiment.utils.printers.print_examples (message=None, *args)
Print an example message with every available printer

16 Chapter 2. Code

http://stackoverflow.com/a/384125/2481888

pyexperiment Documentation, Release 0.6.0

2.12 pyexperiment.utils.stdout_redirector

Context to redirect stdout (inspired by a tutorial by Eli Bendersky)
Adapted by Peter Duerr

pyexperiment .utils.stdout_redirector.stdout_err_ redirector (*args, **kwds)
Redirect standard out and err to a buffer

pyexperiment .utils.stdout_redirector.stdout_redirector (*args, **kwds)
Redirects standard out to a buffer

2.13 pyexperiment.utils

Some utility functions for pyexperiment

2.12. pyexperiment.utils.stdout_redirector 17

pyexperiment Documentation, Release 0.6.0

18 Chapter 2. Code

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

19

pyexperiment Documentation, Release 0.6.0

20 Chapter 3. Indices and tables

Python Module Index

P

pyexperiment, 9

pyexperiment.
pyexperiment.
pyexperiment.
pyexperiment.
pyexperiment.

13

pyexperiment.
pyexperiment.
pyexperiment.
pyexperiment.
pyexperiment.

17

experiment, 12

Logger, 10

utils, 17
utils.DelegateCall, 14
utils.HierarchicalMapping,

utils.interactive, I5
utils.plot, 16
utils.printers, 16
utils.Singleton, 15
utils.stdout_redirector,

21

pyexperiment Documentation, Release 0.6.0

22 Python Module Index

Index

Symbols

__call__() (pyexperiment.utils.DelegateCall.DelegateCall

method), 14
__delitem__() (pyexperi-
ment.utils.HierarchicalMapping.HierarchicalMappin
method), 13 C
__getitem__() (pyexperi-

ment.utils.HierarchicalMapping.HierarchicalMapSgéte

method), 13
__init__() (pyexperiment.Config method), 9
__init__() (pyexperiment.State method), 11

COMMANDS (in module pyexperiment.experiment), 12

Config (class in pyexperiment), 9

configure() (in module pyexperiment.experiment), 12

CONSOLE_FORMAT (in module pyexperi-
ment.Logger), 10

SOLE_STREAM_HANDLER (in module pyexper-
iment.Logger), 10

_printer() (in module pyexperiment.utils.printers),
16

D

__iter__() (pyexperiment.utils.HierarchicalMapping.HierachM%Eﬁ%ONFIG_F ILENAME (in module pyexperi-

method), 14

ment.experiment), 12

len () (pyexperiment.utils.HierarchicalMapping.Hierach%MJ%m%ONFIG_SPECS (in module pyexperi-

method), 14 ment.experiment), 12

__repr__() (pyexperiment.utils.HierarchicalMapping. Hierardh¢éamlgpjglggon (class in pyexperiment.utils.Singleton),
method), 14 15

__setitem__() (pyexperi- delegate_singleton() (in module pyexperi-
ment.utils.HierarchicalMapping.HierarchicalMapping ment.utils.Singleton), 15
method), 14 delegate_special_methods() (in module pyexperi-

A

activate_autocompletion() (in
ment.experiment), 12
AsyncPlot (class in pyexperiment.utils.plot), 16

B

module pyexperi-

base_keys() (pyexperiment.utils.HierarchicalMapping.Hieralerclzﬂlltc(glMaRP

method), 14

C

close() (pyexperiment.Logger.Logger method), 11

close() (pyexperiment.Logger. TimingLogger method), 11

close() (pyexperiment.utils.plot. AsyncPlot method), 16

collect_commands() (in module pyexperi-
ment.experiment), 12

COLOR_SEQ (in module pyexperiment.utils.printers),
16

ColorFormatter (class in pyexperiment.Logger), 10

colorize() (in module pyexperiment.utils.printers), 16

ment.utils.Singleton), 15
DelegateCall (class in pyexperiment.utils.DelegateCall),
14

E

embed_interactive() (in module
ment.utils.interactive), 15
. (pyexperiment.Logger.MPRotLogHandler

pyexperi-

etfod), 11
(pyexperiment.Logger.PrelnitLogHandler
method), 11

emit()

F

FILE_FORMAT (in module pyexperiment.Logger), 10

FILE_FORMAT_STD_MSG_LEN (in module pyexperi-
ment.Logger), 11

format() (pyexperiment.Logger.ColorFormatter method),
10

format_command_help() (in module
ment.experiment), 13

pyexperi-

23

pyexperiment Documentation, Release 0.6.0

G

get() (pyexperiment.utils.HierarchicalMapping. Hierarchical M¥p{HHd

method), 14

get_instance() (pyexperi-
ment.utils.Singleton.DefaultSingleton class
method), 15

get_instance() (pyexperiment.utils.Singleton.Singleton
class method), 15

pyexperiment.utils.interactive (module), 15
jment.utils.plot (module), 16
pyexperiment.utils.printers (module), 16
pyexperiment.utils.Singleton (module), 15
pyexperiment.utils.stdout_redirector (module), 17

Q

get_or_set() (pyexperiment.utils. HierarchicalMapping. HierarchicalMapgittgutils.plot), 16

method), 14

H

help() (in module pyexperiment.experiment), 13

HierarchicalDict (class in pyexperi-
ment.utils.HierarchicalMapping), 13
HierarchicalMapping (class in pyexperi-
ment.utils.HierarchicalMapping), 13
HierarchicalOrderedDict (class in pyexperi-

ment.utils.HierarchicalMapping), 14

init_log() (in module pyexperiment.experiment), 13
initialize() (pyexperiment.utils.Singleton.DefaultSingleton
class method), 15

J

join() (pyexperiment.utils.DelegateCall. DelegateCall

method), 14

L

Logger (class in pyexperiment.Logger), 11

M

main() (in module pyexperiment.experiment), 13

merge() (pyexperiment.utils.HierarchicalMapping.Hierarchi

method), 14
MPRotLogHandler (class in pyexperiment.Logger), 11

P

plot() (pyexperiment.utils.plot. AsyncPlot method), 16

plot_process() (pyexperiment.utils.plot.AsyncPlot static
method), 16

PrelnitLogHandler (class in pyexperiment.Logger), 11

print_examples() (in module pyexperiment.utils.printers),

16
print_timings() (pyexperiment.Logger. TimingLogger
method), 11

pyexperiment (module), 9

pyexperiment.experiment (module), 12
pyexperiment.Logger (module), 10
pyexperiment.utils (module), 17
pyexperiment.utils.DelegateCall (module), 14
pyexperiment.utils.HierarchicalMapping (module), 13

quit_figure_on_key() (in module pyexperi-
R
reset_instance() (pyexperi-

ment.utils.Singleton.DefaultSingleton class
method), 15

reset_instance() (pyexperiment.utils.Singleton.Singleton
class method), 15

RESET_SEQ (in module pyexperiment.utils.printers), 16

S

save_config() (in module pyexperiment.experiment), 13

section_keys() (pyexperi-
ment.utils.HierarchicalMapping.HierarchicalMapping
method), 14

SECTION_SEPARATOR (pyexperi-

ment.utils.HierarchicalMapping.HierarchicalMapping
attribute), 13
setFormatter() (pyexperiment.Logger.MPRotLogHandler
method), 11
setup_arg_parser() (in module pyexperiment.experiment),
13
setup_figure() (in module pyexperiment.utils.plot), 16
setup_plotting() (in module pyexperiment.utils.plot), 16
show() (pyexperiment.utils.HierarchicalMapping.HierarchicalMapping
method), 14
shaw config() (in module pyexperiment.experiment), 13
gﬁowiggi{l) (in module pyexperiment.experiment), 13
show_tests() (in module pyexperiment.experiment), 13
Singleton (class in pyexperiment.utils.Singleton), 15
State (class in pyexperiment), 11

stdout_err_redirector() (in module pyexperi-
ment.utils.stdout_redirector), 17
stdout_redirector() (in module pyexperi-

ment.utils.stdout_redirector), 17

T

test() (in module pyexperiment.experiment), 13

TESTS (in module pyexperiment.experiment), 12

timed() (pyexperiment.Logger.Timingl.ogger method),
11

TimingLogger (class in pyexperiment.Logger), 11

24

Index

	Motivating Example
	CLI
	State
	Logging
	Configuration
	Timing
	Loading State
	Plotting

	Code
	pyexperiment
	pyexperiment.Config
	pyexperiment.Logger
	pyexperiment.State
	pyexperiment.experiment
	pyexperiment.utils.HierarchicalMapping
	pyexperiment.utils.DelegateCall
	pyexperiment.utils.Singleton
	pyexperiment.utils.interactive
	pyexperiment.utils.plot
	pyexperiment.utils.printers
	pyexperiment.utils.stdout_redirector
	pyexperiment.utils

	Indices and tables
	Python Module Index

