

PyExchange

PyExchange is a library for Microsoft Exchange.

It’s incomplete at the moment - it only handles calendar events. We’ve open sourced it because we found it useful and hope others will, too.

If you’re interested in helping us extend it, please see the notes on contributing for hints on where to get started, or contact us.

Installation

PyExchange supports Python 2.6 and 2.7. Our code is compatible with 3.3+, but see the notes below on getting it working. Non CPython implementations may work but are not tested.

We support Exchange Server version 2010. Others will likely work but are not tested.

To install, use pip:

pip install pyexchange

PyExchange requires lxml [http://lxml.de] for XML handling. This will be installed by pip on most systems. If you run into problems, please see lxml’s installation instructions [http://lxml.de/installation.html].

To install from source, download the source code, then run:

python setup.py install

Python 3

We depend on the library python-ntlm [https://code.google.com/p/python-ntlm/] for authentication. As of July 2013, they have an experimental Python 3 port but it’s not in PyPI for easy download.

Help in this area would be appreciated.

Introduction

Once upon a time there was a beautiful princess, who wanted to connect her web application to the royal Microsoft Exchange server.

The princess first tried all manner of SOAP libraries, but found them broken, or slow, or not unicode compliant, or plain just didn’t work with Exchange.

“This totally bites,” said the princess. “I need like four commands and I don’t want to make my own SOAP library.”

She then discovered Microsoft had excellent documentation on its Exchange services with full XML samples.

“Bitchin,” said the princess, who had watched too many 80s movies recently. “I’ll just write XML instead.”

So she did, and it worked, and there was much feasting and celebration, followed by a royal battle with accounting over what constituted reasonable mead expenses.

And everybody lived happily ever after.

THE END

Quickstart

You can get, create, modify, and delete calendar events.

To work with any existing event, you must know its unique identifier in Exchange. For more information, see the MSDN Exchange Web Services documentation [http://msdn.microsoft.com/en-us/library/aa580234(v=exchg.140).aspx].

Setting up the connection

To do anything in Exchange, you first need to create the Exchange service object:

from pyexchange import Exchange2010Service, ExchangeNTLMAuthConnection

URL = u'https://your.email.server.com.here/EWS/Exchange.asmx'
USERNAME = u'YOURDOMAIN\\yourusername'
PASSWORD = u"12345? That's what I have on my luggage!"

Set up the connection to Exchange
connection = ExchangeNTLMAuthConnection(url=URL,
 username=USERNAME,
 password=PASSWORD)

service = Exchange2010Service(connection)

Creating an event

To create an event, use the new_event method:

from datetime import datetime
from pytz import timezone

You can set event properties when you instantiate the event...
event = service.calendar().new_event(
 subject=u"80s Movie Night",
 attendees=[u'your_friend@friendme.domain', u'your_other_friend@their.domain'],
 location = u"My house",
)

...or afterwards
event.start=timezone("US/Pacific").localize(datetime(2013,1,1,15,0,0))
event.end=timezone("US/Pacific").localize(datetime(2013,1,1,21,0,0))

event.html_body = u"""<html>
 <body>
 <h1>80s Movie night</h1>
 <p>We're watching Spaceballs, Wayne's World, and
 Bill and Ted's Excellent Adventure.</p>
 <p>PARTY ON DUDES!</p>
 </body>
</html>"""

Connect to Exchange and create the event
event.create()

For a full list of fields, see the Exchange2010CalendarEvent documentation.

When you create an event, Exchange creates a unique identifier for it. You need this to get the event later.

After you create the object, the id attribute is populated with this identifier:

print event.id # prints None

Create the event
event.create()

print event.id # prints Exchange key

If you save this key, be warned they’re quite long - easily 130+ characters.

If we could not create the event, a pyexchange.exceptions.FailedExchangeException exception is thrown.

Getting an event

To work with any existing event, you must know its unique identifier in Exchange. For more information, see the MSDN Exchange Web Services documentation [http://msdn.microsoft.com/en-us/library/aa580234(v=exchg.140).aspx].

Once you have the id, get the event using the get_event method:

EXCHANGE_ID = u'3123132131231231'

event = service.calendar().get_event(id=EXCHANGE_ID)

print event.id # the same as EXCHANGE_ID
print event.subject
print event.location

print event.start # datetime object
print event.end # datetime object

print event.body

for person in event.attendees:
 print person.name
 print person.email
 print person.response # Accepted/Declined

For a full list of fields, see the Exchange2010CalendarEvent documentation.

If the id doesn’t match anything in Exchange, a pyexchange.exceptions.ExchangeItemNotFoundException exception is thrown.

For all other errors, we throw a pyexchange.exceptions.FailedExchangeException.

Modifying an event

To modify an event, first get the event:

EXCHANGE_ID = u'3123132131231231'

event = service.calendar().get_event(id=EXCHANGE_ID)

Then simply assign to the properties you want to change and use update:

event.location = u'New location'
event.attendees = [u'thing1@dr.suess', u'thing2@dr.suess']

event.update()

If the id doesn’t match anything in Exchange, a pyexchange.exceptions.ExchangeItemNotFoundException exception is thrown.

For all other errors, we throw a pyexchange.exceptions.FailedExchangeException.

Listing events

To list events between two dates, simply do:

events = my_calendar.list_events(
 start=timezone("US/Eastern").localize(datetime(2014, 10, 1, 11, 0, 0)),
 end=timezone("US/Eastern").localize(datetime(2014, 10, 29, 11, 0, 0)),
 details=True
)

This will return a list of Event objects that are between start and end. If no results are found, it will return an empty list (it intentionally will not throw an Exception.):

for event in calendar_list.events:
 print "{start} {stop} - {subject}".format(
 start=event.start,
 stop=event.end,
 subject=event.subject
)

The third argument, ‘details’, is optional. By default (if details is not specified, or details=False), it will return most of the fields within an event. The full details for the Organizer or Attendees field are not populated by default by Exchange. If these fields are required in your usage, then pass details=True with the request to make a second lookup for these values. The further details can also be loaded after the fact using the load_all_details() function, as below:

events = my_calendar.list_events(start, end)
events.load_all_details()

Cancelling an event

To cancel an event, simply do:

event = my_calendar.get_event(id=EXCHANGE_ID)

event.cancel()

If the id doesn’t match anything in Exchange, a pyexchange.exceptions.ExchangeItemNotFoundException exception is thrown.

For all other errors, we throw a pyexchange.exceptions.FailedExchangeException.

Resending invitations

To resend invitations to all participants, do:

event = my_calendar.get_event(id=EXCHANGE_ID)

event.resend_invitations()

Creating a new calendar

To create a new exchange calendar, do:

calendar = service.folder().new_folder(
 display_name="New Name", # This will be the display name for the new calendar. Can be set to whatever you want.
 folder_type="CalendarFolder", # This MUST be set to the value "CalendarFolder". It tells exchange what type of folder to create.
 parent_id='calendar', # This does not have to be 'calendar' but is recommended. The value 'calendar' will resolve to the base Calendar folder.
)
calendar.create()

By creating a folder of the type “CalendarFolder”, you are creating a new calendar.

Other tips and tricks

You can pickle events if you need to serialize them. (We do this to send invites asynchronously.)

import pickle

create event
event = service.calendar().new_event()

event.subject = u"80s Movie Night"
event.start=timezone("US/Pacific").localize(datetime(2013,1,1,15,0,0))
event.end=timezone("US/Pacific").localize(datetime(2013,1,1,21,0,0))

Pickle event
pickled_event = pickle.dumps(event)

Unpickle
rehydrated_event = pickle.loads(pickled_event)
print rehydrated_event.subject # "80s Movie Night"

Changelog

	changelog

Support

To report bugs or get support, please use the Github issue tracker [https://github.com/linkedin/pyexchange/issues].

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyexchange	

 	
 	
 pyexchange.exchange2010	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_attendee() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	
 	add_resources() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	attendees (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

B

 	
 	body (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

C

 	
 	cancel() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	conference_room (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	conflicting_event_ids (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	
 	conflicting_events() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	create() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	(pyexchange.exchange2010.Exchange2010Folder method)

D

 	
 	delete() (pyexchange.exchange2010.Exchange2010Folder method)

 	
 	display_name (pyexchange.exchange2010.Exchange2010Folder attribute)

E

 	
 	email (ExchangeEventAttendee attribute)

 	(ExchangeEventOrganizer attribute)

 	(ExchangeEventResponse attribute)

 	end (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	Exchange2010CalendarEvent (class in pyexchange.exchange2010)

 	
 	Exchange2010Folder (class in pyexchange.exchange2010)

 	Exchange2010FolderService (class in pyexchange.exchange2010)

 	ExchangeEventAttendee (built-in class)

 	ExchangeEventOrganizer (built-in class)

 	ExchangeEventResponse (built-in class)

F

 	
 	find_folder() (pyexchange.exchange2010.Exchange2010FolderService method)

 	
 	folder_type (pyexchange.exchange2010.Exchange2010Folder attribute)

G

 	
 	get_folder() (pyexchange.exchange2010.Exchange2010FolderService method)

 	
 	get_master() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	get_occurrence() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

H

 	
 	html_body (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

I

 	
 	id (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	(pyexchange.exchange2010.Exchange2010Folder attribute)

L

 	
 	last_response (ExchangeEventResponse attribute)

 	
 	location (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

M

 	
 	move_to() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	(pyexchange.exchange2010.Exchange2010Folder method)

N

 	
 	name (ExchangeEventAttendee attribute)

 	(ExchangeEventOrganizer attribute)

 	(ExchangeEventResponse attribute)

 	
 	new_folder() (pyexchange.exchange2010.Exchange2010FolderService method)

O

 	
 	optional_attendees (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	
 	organizer (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

P

 	
 	parent_id (pyexchange.exchange2010.Exchange2010Folder attribute)

 	
 	pyexchange (module)

 	pyexchange.exchange2010 (module)

R

 	
 	recurrence (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	recurrence_days (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	recurrence_end_date (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	recurrence_interval (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	remove_attendees() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	remove_resources() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	
 	required (ExchangeEventAttendee attribute)

 	(ExchangeEventResponse attribute)

 	required_attendees (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	resend_invitations() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

 	resources (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	response (ExchangeEventResponse attribute)

S

 	
 	start (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

 	
 	subject (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

T

 	
 	text_body (pyexchange.exchange2010.Exchange2010CalendarEvent attribute)

U

 	
 	update() (pyexchange.exchange2010.Exchange2010CalendarEvent method)

Attendee

These are helper classes (named tuples [http://docs.python.org/library/collections.html], actually) to store data
about event organizers and attendee information.

	
class ExchangeEventAttendee

	When setting up attendees for an event, you can use this instead of an email address.

	
name

	The name of the person to invite.

	
email

	The email of the person to invite. Required.

	
required

	Boolean. True if this person is required, false if they are optional.

	
class ExchangeEventResponse

	This is returned when you iterate over attendees or resources of an event. It’s populated from Exchange’s information.

	
name

	The name of the person attending this event, if Exchange knows it.

	
email

	The attendee’s email address. This will always be populated.

	
response

	The person’s response. Will be one of:

RESPONSE_ACCEPTED = u'Accept'
RESPONSE_DECLINED = u'Decline'
RESPONSE_TENTATIVE = u'Tentative'
RESPONSE_UNKNOWN = u'Unknown' # they have not yet replied

The list of all possible values is in pyexchange.calendar.RESPONSES.

	
last_response

	The datetime (UTC) of when they last responded to the invitation.

	
required

	Boolean. True if this person is required, false if they are optional.

	
class ExchangeEventOrganizer

	This is returned when you request the organizer of the event. It’s populated from Exchange’s information.

	
name

	The name of the person who created this event, if Exchange knows it.

	
email

	The email of the event organizer.

 (c) 2013 LinkedIn Corp. All rights reserved.
Licensed under the Apache License, Version 2.0 (the “License”);?you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software?distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Exchange2010CalendarEvent

	
class pyexchange.exchange2010.Exchange2010CalendarEvent(service, id=None, calendar_id=u'calendar', xml=None, **kwargs)

	
	
id

	Read-only. The internal id Exchange uses to refer to this event.

	
subject

	The subject or title of the event.

	
start

	The start time and date of the event. Should be a non-naive (i.e. with timezone) datetime object.

	
end

	The end time and date of the event. Should be a non-naive (i.e. with timezone) datetime object.

	
location

	The location of the event. This is a string.

	
html_body

	The HTML version of the message. Either this or text_body must be set.

	
text_body

	The text version of the message. Either this or html_body must be set.

	
body

	Read-only. Returns either html_body or text_body, whichever is set. If both are set, html_body is returned.

	
organizer

	Read-only. The organizer of the event.

This returns a ExchangeEventOrganizer object.

	
attendees

	All attendees invited to this event.

Iterating over this property yields a list of ExchangeEventResponse objects:

for person in event.attendees:
 print person.name, person.response

You can set the attendee list by assigning to this property:

event.attendees = [u'somebody@company.foo',
 u'somebodyelse@company.foo']

If you add attendees this way, they will be required for the event.

To add optional attendees, either use optional_attendees or add people using the ExchangeEventAttendee object:

from pyexchange.base import ExchangeEventAttendee

attendee = ExchangeEventAttendee(name="Jane Doe",
 email="jane@her.email",
 required=False)

event.attendees = attendee

Attendees must have an email address defined.

	
required_attendees

	Required attendees for this event.

event.required_attendees = [u'important_person@company.foo',
 u'admin@company.foo']

for person in event.required_attendees:
 print person.email

This property otherwise behaves like attendees.

	
optional_attendees

	Optional attendees for this event.

event.optional_attendees = [u'maybe@company.foo',
 u'other_optional@company.foo']

for person in event.optional_attendees:
 print person.email

This property otherwise behaves like attendees.

	
resources

	Resources (aka conference rooms) for this event.

event.resources = [u'conferenceroom@company.foo']

for room in event.resources:
 print room.email

This property otherwise behaves like attendees.

	
conference_room

	Read-only. A property to return the first resource, since the most common use case is a meeting
with one resource (the conference room).

event.resources = [u'conferenceroom@company.foo']

print event.conference_room.email # u'conferenceroom@company.foo'

Returns a ExchangeEventAttendee object.

	
recurrence

	A property to set the recurrence type for the event. Possible values are: ‘daily’, ‘weekly’, ‘monthly’, ‘yearly’.

	
recurrence_interval

	A property to set the recurrence interval for the event. This should be an int and applies to the following types of recurring events: ‘daily’, ‘weekly’, ‘monthly’.
It should be a value between 1 and 999 for ‘daily’.
It should be a value between 1 and 99 for ‘weekly’ and ‘monthly’.

	
recurrence_end_date

	Should be a datetime.date() object which specifies the end of the recurrence.

	
recurrence_days

	Used in a weekly recurrence to specify which days of the week to schedule the event. This should be a
string of days separated by spaces. ex. “Monday Wednesday”

	
conflicting_event_ids

	Read-only. The internal id Exchange uses to refer to conflicting events.

	
add_attendee(attendees, required=True)

	Adds new attendees to the event.

attendees can be a list of email addresses or ExchangeEventAttendee objects.

event.attendees = [u'jane@company.foo',
 u'jack@company.foo']
event.add_attendee([u'chrissie@company.foo'])

print len(event.attendees) # prints 3

If required is true, attendees will be marked as required. Otherwise, they’ll be optional.

	
remove_attendees(attendees)

	Removes attendees from the event.

event.attendees = [u'jane@company.foo',
 u'jack@company.foo',
 u'chrissie@company.foo']
event.remove_attendees([u'jack@company.foo', u'chrissie@company.foo'])

print len(event.attendees) # prints 1

attendees can be a list of email addresses or ExchangeEventAttendee objects.

	
add_resources(resources)

	Adds new resources to the event.

event.resources = [u'room@company.foo']
event.add_resources([u'projector@company.foo'])

print len(event.attendees) # prints 2

resources can be a list of email addresses or ExchangeEventAttendee objects.

	
remove_resources(resources)

	Removes resources from the event.

event.resources = [u'room@company.foo',
 u'projector@company.foo']
event.remove_resources(u'projector@company.foo')

print len(event.attendees) # prints 1

resources can be a list of email addresses or ExchangeEventAttendee objects.

	
cancel()

	Cancels an event in Exchange.

event = service.calendar().get_event(id='KEY HERE')
event.cancel()

This will send notifications to anyone who has not declined the meeting.

	
conflicting_events()

	This will return a list of conflicting events.

Example:

event = service.calendar().get_event(id='<event_id>')
for conflict in event.conflicting_events():
 print conflict.subject

	
create()

	Creates an event in Exchange.

event = service.calendar().new_event(
 subject=u"80s Movie Night",
 location = u"My house",
)
event.create()

Invitations to attendees are sent out immediately.

	
get_master()

	

	Raises:	InvalidEventType – When this method is called on an event that is not a Occurrence type.

This will return the master event to the occurrence.

Examples:

event = service.calendar().get_event(id='<event_id>')
print event.type # If it prints out 'Occurrence' then that means we could get the master.

master = event.get_master()
print master.type # Will print out 'RecurringMaster'.

	
get_occurrence(instance_index)

	

	Parameters:	instance_index (iterable) – This should be tuple or list of integers which correspond to occurrences.

	Raises:	
	TypeError – When instance_index is not an iterable of ints.

	InvalidEventType – When this method is called on an event that is not a RecurringMaster type.

This will return a list of occurrence events.

Examples:

master = service.calendar().get_event(id='<event_id>')

The following will return the first 20 occurrences in the recurrence.
If there are not 20 occurrences, it will only return what it finds.
occurrences = master.get_occurrence(range(1,21))
for occurrence in occurrences:
 print occurrence.start

	
move_to(folder_id)

	

	Parameters:	folder_id (str) – The Calendar ID to where you want to move the event to.

Moves an event to a different folder (calendar).

event = service.calendar().get_event(id='KEY HERE')
event.move_to(folder_id='NEW CALENDAR KEY HERE')

	
resend_invitations()

	Resends invites for an event.

event = service.calendar().get_event(id='KEY HERE')
event.resend_invitations()

Anybody who has not declined this meeting will get a new invite.

	
update(calendar_item_update_operation_type=u'SendToAllAndSaveCopy', **kwargs)

	Updates an event in Exchange.

event = service.calendar().get_event(id='KEY HERE')
event.location = u'New location'
event.update()

If no changes to the event have been made, this method does nothing.

Notification of the change event is sent to all users. If you wish to just notify people who were
added, specify send_only_to_changed_attendees=True.

Exchange2010FolderService

	
class pyexchange.exchange2010.Exchange2010FolderService

	
	
find_folder(parent_id)

	

	Parameters:	parent_id (str) – The parent folder to list.

This method will return a list of sub-folders to a given parent folder.

Examples:

Iterate through folders within the default 'calendar' folder.
folders = service.folder().find_folder(parent_id='calendar')
for folder in folders:
 print(folder.display_name)

Delete all folders within the 'calendar' folder.
folders = service.folder().find_folder(parent_id='calendar')
for folder in folders:
 folder.delete()

	
get_folder(id)

	

	Parameters:	id (str) – The Exchange ID of the folder to retrieve from the Exchange store.

Retrieves the folder specified by the id, from the Exchange store.

Examples:

folder = service.folder().get_folder(id)

	
new_folder(display_name=display_name, folder_type=folder_type, parent_id=parent_id)

	

	Parameters:	
	display_name (str) – The display name given to the new folder.

	folder_type (str) – The type of folder to create. Possible values are ‘Folder’,
‘CalendarFolder’, ‘ContactsFolder’, ‘SearchFolder’, ‘TasksFolder’.

	parent_id (str) – The parent folder where the new folder will be created.

Creates a new folder with the given properties. Not saved until you call the create() method.

Examples:

folder = service.folder().new_folder(
 display_name=u"New Folder Name",
 folder_type="CalendarFolder",
 parent_id='calendar',
)
folder.create()

Exchange2010Folder

	
class pyexchange.exchange2010.Exchange2010Folder

	
	
id

	Read-only. The internal id Exchange uses to refer to this folder.

	
parent_id

	Read-only. The internal id Exchange uses to refer to the parent folder.

	
folder_type

	The type of folder this is. Can be one of the following:

'Folder', 'CalendarFolder', 'ContactsFolder', 'SearchFolder', 'TasksFolder'

	
display_name

	The name of the folder.

	
create()

	Creates a folder in Exchange.

calendar = service.folder().new_folder(
 display_name=u"New Folder Name",
 folder_type="CalendarFolder",
 parent_id='calendar',
)
calendar.create()

	
delete()

	Deletes a folder from the Exchange store.

folder = service.folder().get_folder(id)
print("Deleting folder: %s" % folder.display_name)
folder.delete()

	
move_to(folder_id)

	

	Parameters:	folder_id (str) – The Folder ID of what will be the new parent folder, of this folder.

Move folder to a different location, specified by folder_id:

folder = service.folder().get_folder(id)
folder.move_to(folder_id="ID of new location's folder")

Changes

0.1 (June 24, 2013)

Team release - shakin’ the bugs out.

0.2 (July 1, 2013)

Internal company release - RELEASE THE KRAKEN.

0.3 (July 17, 2013)

Initial public release.

0.3.1 (April 18, 2014)

Integrating some more granular exception handling.

0.4 (June 2, 2014)

We had some great contributions, so this is a release for that.

Alejandro Ramirez (got-root):

	Added functionality to create/delete/get/find/move folders of all types. (Creating a new CalendarFolder is creating a new calendar in exchange)

	Added ability to create events in specific folders.

	Added ability to move events between calendars (folders).

	Created tests for all new features.

Ben Le (kantas92)

	Fixed unicode vs bytecode encoding madness when sending unicode.

0.4.1 (June 15, 2014)

Turns out I actually didn’t release Ben Le’s code when I thought I did. Bad release engineer, no biscuit.

0.4.2 (October 3, 2014)

Alejandro Ramirez (got-root):

	Bug fixes around the new folder code.

	More documentation on how to use folders.

0.5 (October 15, 2014)

** This release has a potential backwards incompatible change, see below **

	Pyexchange uses requests under the hood now (@trustrachel)

Hey did you know that requests can do NTLM? I didn’t. The internal connection class now uses requests
instead of the clunky urllib2.

There’s a backwards incompatible change if you’re subclassing the connection object. Requests doesn’t
need nearly the crud that urllib2 did, so I changed some of the methods and properties.

Almost nobody should use this feature, but beware if you do.

	You can get a list of events between two dates. This was a big limitation of the library before, so a huge

thank you to Eric Matthews (@ematthews))

	Fixed bug causing retrieved events to not be in UTC. (Thanks to Alejandro Ramirez (@got-root))

	Integrated with travis (finally).

0.5.1 (Nov 17, 2014)

	Bugfix release because we broke stuff :(

0.6 (January 20, 2015)

	Python 3 conversion complete! yaaaaaaaaaay

Contributing

Hi! Thanks so much for wanting to contribute.

Setting up for development

There’s a few extra steps to set up for development.

Installing from source

To install in development mode from source, download the source code, then run this:

python setup.py develop

Installing libraries

To do development work, you’ll need a few more libraries:

pip install -r dev_requirements.txt

Running the tests

Make sure you have the development libraries installed, then run:

py.test tests

Building documentation

Make sure you have the development libraries installed, then do:

cd docs
make html

The generated documentation will be in docs/_build/html/.

Guidelines

Style guide

The code follows PEP8 [http://www.python.org/dev/peps/pep-0008/] with the following exceptions:

	Indentation is 2 spaces (no tabs)

	Line length: use your best judgment. (We all have big monitors now, no need to limit to 80 columns.)

Your code should pass flake8 [http://flake8.readthedocs.org/] unless readability is hurt. Configuration is in setup.cfg.

Python versions

Your code should work with all versions of Python 2.6 and 2.7. If possible, your code should be compatible with Python 3.3+.
Travis will check that for you automatically.

Tests

Submitted code should have tests covering the code submitted, and your code should pass the Travis build.

All fixture data should be unicode, following the guidelines in Ned Batchelder’s fantastic Pragmatic Unicode [http://nedbatchelder.com/text/unipain.html].

For example, instead of using the string "Test string", use u"tëst strïnġ". This will catch unicode
problems up front, saving a world of pain later.

Google “weirdmaker” for many, many obnoxious sites where you can do this conversion
automatically.

Ideas for how to contribute

If you don’t know where to start, documentation is always welcome.

Microsoft has fantastic documentation on Exchange Web Services (EWS) SOAP request/responses. To add new functionality,
you’ll need to find the action you want to add in their documentation.

Start here: Exchange Web Services Operations [http://msdn.microsoft.com/en-us/library/bb409286(v=exchg.140).aspx]

The existing codebase and that should get you started. Feel free to contact us for help.

General areas for improvement are:

	Python 3 support (updating python-ntlm would be great)

	Support for more versions of Exchange

	
	Extend calendar functionality

	
	More fields

	More actions

	Add the ability to output events as JSON

	Add mail functionality

	Add contacts functionality

 _static/down.png

nav.xhtml

 Table of Contents

 		PyExchange

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

