pyexcel
Release 0.7.0

Feb 12, 2022

Contents

1 Introduction 3
2 Support the project 5
2.1 Installation L e e e e e e e e e e e e e e e e e e 5
2.2 Advanced usage :fire: L L e e e e e e e e e 7
2.3 Pluginshopping guide L e e e e e e e 8
24 USage e e 9
25 Design ... 9
2.6 Newtutorial o e e e e e e e e e e e e e e 17
2.7 Oldtutorial L e e e e e e e e e e e e e e 46
2.8 Cookbook 78
2.9 Realworld cases o i i e e e e e e e 86
2.10 APIdocumentation i i i e e e e e e e e e e e 89
2.11 Developer’sguide e e 169
2.12 Change log o o e e e e e e e e e e 173
3 Indices and tables 189
Index 191

pyexcel, Release 0.7.0

Author C.W.

Source code http://github.com/pyexcel/pyexcel.git
Issues http://github.com/pyexcel/pyexcel/issues
License New BSD License

Released 0.7.0

Generated Feb 12, 2022

Contents 1

http://github.com/pyexcel/pyexcel.git
http://github.com/pyexcel/pyexcel/issues

pyexcel, Release 0.7.0

2 Contents

CHAPTER 1

Introduction

pyexcel provides one application programming interface to read, manipulate and write data in various excel formats.
This library makes information processing involving excel files an enjoyable task. The data in excel files can be turned
into array or dict with minimal code and vice versa. This library focuses on data processing using excel files as storage
media hence fonts, colors and charts were not and will not be considered.

The idea originated from the common usability problem: when an excel file driven web application is delivered for
non-developer users (ie: team assistant, human resource administrator etc). The fact is that not everyone knows (or
cares) about the differences between various excel formats: csv, xls, xlsx are all the same to them. Instead of training
those users about file formats, this library helps web developers to handle most of the excel file formats by providing
a common programming interface. To add a specific excel file format type to you application, all you need is to install
an extra pyexcel plugin. Hence no code changes to your application and no issues with excel file formats any more.
Looking at the community, this library and its associated ones try to become a small and easy to install alternative to
Pandas.

pyexcel, Release 0.7.0

4 Chapter 1. Introduction

CHAPTER 2

Support the project

If your company has embedded pyexcel and its components into a revenue generating product, please support me on

github, patreon or bounty source to maintain the project and develop it further.

If you are an individual, you are welcome to support me too and for however long you feel like. As my backer, you

will receive early access to pyexcel related contents.

And your issues will get prioritized if you would like to become my patreon as pyexcel pro user.

With your financial support, I will be able to invest a little bit more time in coding, documentation and writing

interesting posts.

2.1 Installation

You can install pyexcel via pip:

’$ pip install pyexcel

or clone it and install it:

$ cd pyexcel
$ python setup.py install

$ git clone https://github.com/pyexcel/pyexcel.git

Suppose you have the following data in a dictionary:

Name Age
Adam 28
Beatrice | 29
Ceri 30
Dean 26

you can easily save it into an excel file using the following code:

https://www.patreon.com/bePatron?u=5537627
https://salt.bountysource.com/teams/chfw-pyexcel
https://www.patreon.com/pyexcel/posts

pyexcel, Release 0.7.0

>>> import pyexcel
>>> # make sure you had pyexcel-xls installed

>>> a_list_of_dictionaries = [

{
"Name": 'Adam',
"Age": 28

}I

{
"Name": 'Beatrice',
"Age": 29

}I

{
"Name": 'Ceri',
"Age": 30

}I

{
"Name": 'Dean',
"Age": 26

]

>>> pyexcel.save_as (records=a_list_of_dictionaries, dest_file_name="your_file.xls")

And here’s how to obtain the records:

>>> import pyexcel as p
>>> records = p.iget_records (file_name="your_ file.xls")
>>> for record in records:
print ("%s is aged at 2%d" % (record['Name'], record['Age']l))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26
>>> p.free_resources ()

Custom data rendering:

>>> # pip install pyexcel-text==0.2.7.1
>>> import pyexcel as p

>>> ccs_insight2 = p.Sheet ()
>>> ccs_insight2.name = "Worldwide Mobile Phone Shipments (Billions), 2017-2021"
>>> ccs_insight2.ndjson = """

{"year": ["2017", "2018", "2019", "2020", "2021"]}

{"smart phones": [1.53, 1.64, 1.74, 1.82, 1.90]}

{"feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]}

" ostrip ()

>>> ccs_insight2
pyexcel sheet:

o - - - +——— - +
| year | 2017 | 2018 | 2019 | 2020 | 2021 |
o - - - - o +
| smart phones | 1.53 | 1.64 | 1.74 | 1.82 | 1.9

e et e e e o e +
| feature phones | 0.46 | 0.38 | 0.3 | 0.23 | 0.17 |
o - - - - +——— +

6 Chapter 2. Support the project

pyexcel, Release 0.7.0

2.2 Advanced usage :fire:

If you are dealing with big data, please consider these usages:

>>> def increase_everyones_age (generator) :
for row in generator:
row['Age'] += 1
yield row
>>> def duplicate_each_record(generator) :
for row in generator:
yield row
yield row
>>> records = p.iget_records (file_name="your_ file.xls")
>>> jo=p.isave_as (records=duplicate_each_record(increase_everyones_age (records)),
dest_file_type='csv', dest_lineterminator='\n")
>>> print (io.getvalue())
Age, Name
29, Adamnm
29, Adam
30,Beatrice
30,Beatrice
31,Ceri
31,Ceri
27,Dean
27,Dean

Two advantages of above method:
1. Add as many wrapping functions as you want.
2. Constant memory consumption

For individual excel file formats, please install them as you wish:

Table 1: A list of file formats supported by external plugins

Package name | Supported file formats Dependencies
pyexcel-io CSV, CSVZ!, tsv, tsvz-

pyexcel-xls xls, xlsx(read only), xlsm(read only) | xIrd, xlwt
pyexcel-xIsx xlsx openpyxl
pyexcel-ods3 ods pyexcel-ezodf, Ixml
pyexcel-ods ods odfpy

Table 2: Dedicated file reader and writers

Package name | Supported file formats | Dependencies
pyexcel-xlsxw xIsx(write only) XlsxWriter
pyexcel-libxIsxw | xlsx(write only) libxIsxwriter
pyexcel-xlsxr xIsx(read only) Ixml
pyexcel-xlsbr xlsb(read only) pyxlsb
pyexcel-odsr read only for ods, fods Ixml
pyexcel-odsw write only for ods loxun
pyexcel-htmlr html(read only) Ixmlhtml5lib
pyexcel-pdfr pdf(read only) camelot

! zipped csv file
2 zipped tsv file

2.2. Advanced usage :fire: 7

https://github.com/pyexcel/pyexcel-io
https://github.com/pyexcel/pyexcel-xls
https://github.com/python-excel/xlrd
https://github.com/python-excel/xlwt
https://github.com/pyexcel/pyexcel-xlsx
https://bitbucket.org/openpyxl/openpyxl
https://github.com/pyexcel/pyexcel-ods3
https://github.com/pyexcel/pyexcel-ezodf
https://github.com/pyexcel/pyexcel-ods
https://github.com/eea/odfpy
https://github.com/pyexcel/pyexcel-xlsxw
https://github.com/jmcnamara/XlsxWriter
https://github.com/pyexcel/pyexcel-libxlsxw
http://libxlsxwriter.github.io/getting_started.html
https://github.com/pyexcel/pyexcel-xlsxr
https://github.com/pyexcel/pyexcel-xlsbr
https://github.com/pyexcel/pyexcel-odsr
https://github.com/pyexcel/pyexcel-odsw
https://github.com/pyexcel/pyexcel-htmlr
https://github.com/pyexcel/pyexcel-pdfr

pyexcel, Release 0.7.0

2.3 Plugin shopping guide

Since 2020, all pyexcel-io plugins have dropped the support for python versions which are lower than 3.6. If you want
to use any of those Python versions, please use pyexcel-io and its plugins versions that are lower than 0.6.0.

Except csv files, xls, xIsx and ods files are a zip of a folder containing a lot of xml files

The dedicated readers for excel files can stream read

In order to manage the list of plugins installed, you need to use pip to add or remove a plugin. When you use virtualenv,
you can have different plugins per virtual environment. In the situation where you have multiple plugins that does
the same thing in your environment, you need to tell pyexcel which plugin to use per function call. For example,
pyexcel-ods and pyexcel-odsr, and you want to get_array to use pyexcel-odsr. You need to append get_array(...,
library="pyexcel-odsr’).

Table 3: Other data renderers

Package Supported file formats Depen- Python versions

name dencies

pyexcel-text write only:rst, mediawiki, html, latex, grid, pipe, orgtbl, plain | tabulate 2.6, 27, 3.3, 34
simple read only: ndjson r/w: json 3.5, 3.6, pypy

pyexcel- handsontable in html hand- same as above

handsontable sontable

pyexcel- svg chart pygal 2.7, 3.3, 3.4, 35

pygal 3.6, pypy

pyexcel- sortable table in html csvtotable | same as above

sortable

pyexcel-gantt | gantt chart in html frappe- except pypy, same

gantt as above

For compatibility tables of pyexcel-io plugins, please click here

Table 4: Plugin compatibility table

pyexcel | pyexcel-io | pyexcel-text | pyexcel-handsontable | pyexcel-pygal | pyexcel-gantt
0.6.5+ 0.6.2+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1

0.5.15+ | 0.5.19+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1

0.5.14 0.5.18 0.2.6+ 0.0.1+ 0.0.1 0.0.1

0.5.10+ | 0.5.11+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1

0.59.1+ | 0.5.9.1+ 0.2.6+ 0.0.1 0.0.1 0.0.1

0.5.4+ 0.5.1+ 0.2.6+ 0.0.1 0.0.1 0.0.1

0.5.0+ 0.4.0+ 0.2.6+ 0.0.1 0.0.1 0.0.1

0.4.0+ 0.3.0+ 0.2.5

Chapter 2. Support the project

https://github.com/pyexcel/pyexcel-text
https://bitbucket.org/astanin/python-tabulate
https://github.com/pyexcel/pyexcel-handsontable
https://github.com/pyexcel/pyexcel-handsontable
https://cdnjs.com/libraries/handsontable
https://cdnjs.com/libraries/handsontable
https://github.com/pyexcel/pyexcel-chart
https://github.com/pyexcel/pyexcel-chart
https://github.com/Kozea/pygal
https://github.com/pyexcel/pyexcel-sortable
https://github.com/pyexcel/pyexcel-sortable
https://github.com/vividvilla/csvtotable
https://github.com/pyexcel/pyexcel-gantt
https://github.com/frappe/gantt
https://github.com/frappe/gantt
http://pyexcel-io.readthedocs.io/en/latest/#id5

pyexcel, Release 0.7.0

Table 5: A list of supported file formats

file format | definition

csv comma separated values

tsv tab separated values

csvz a zip file that contains one or many csv files

tsvz a zip file that contains one or many tsv files

xls a spreadsheet file format created by MS-Excel 97-2003
xlsx MS-Excel Extensions to the Office Open XML SpreadsheetML File Format.
xIsm an MS-Excel Macro-Enabled Workbook file

ods open document spreadsheet

fods flat open document spreadsheet

json java script object notation

html html table of the data structure

simple simple presentation

st rStructured Text presentation of the data

mediawiki | media wiki table

2.4 Usage

Suppose you want to process the following excel data :

Here are the example usages:

>>> import pyexcel as pe
>>> records = pe.iget_records (file_name="your_file.xls")
>>> for record in records:
print (" is aged at " % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26
>>> pe.free_resources()

2.5 Design

2.5.1 Introduction

This section introduces Excel data models, its representing data structures and provides an overview of formatting,
transformation, manipulation supported by pyexcel.

Data models and data structures

When dealing with excel files, pyexcel pay attention to three primary objects: cell, sheet and book.

A book contains one or more sheets and a sheet is consisted of a sheet name and a two dimensional array of cells.
Although a sheet can contain charts and a cell can have formula, styling properties, this library ignores them and only
pays attention to the data in the cell and its data type. So, in the context of this library, the definition of those three
concepts are:

2.4. Usage 9

pyexcel, Release 0.7.0

concept | definition pyexcel data model
acell is a data unit a Python data type

a sheet is a named two dimensional array of data units Sheet

a book is a dictionary of two dimensional array of data units. | Book

Data source

A data source is a storage format of structured data. The most popular data source is an excel file. Libre Of-
fice/Microsoft Excel can easily be used to generate an excel file of your desired format. Besides a physical file,
this library recognizes three additional types of source:

1. Excel files in computer memory. For example: when a file is uploaded to a Python server for information
processing. If it is relatively small, it can be stored in memory.

2. Database tables. For example: a client would like to have a snapshot of some database table in an excel file and
asks it to be sent to him.

3. Python structures. For example: a developer may have scraped a site and have stored data in Python array or
dictionary. He may want to save this information as a file.

Reading from - and writing to - a data source is modelled as parsers and renderers in pyexcel. Excel data sources and
database sources support read and write. Other data sources may only support read only, or write only methods.

Here is a list of data sources:

Data source Read and write properties
Array Read and write
Dictionary Same as above
Records Same as above
Excel files Same as above

Excel files in memory | Same as above
Excel files on the web | Read only

Django models Read and write
SQL models Read and write
Database querysets Read only
Textual sources Write only

Data format

This library and its plugins support most of the frequently used excel file formats.

10 Chapter 2. Support the project

pyexcel, Release 0.7.0

file format | definition

csv comma separated values

tsv tab separated values

csvz a zip file that contains one or many csv files

tsvz a zip file that contains one or many tsv files

xls a spreadsheet file format created by MS-Excel 97-2003'
xlsx MS-Excel Extensions to the Office Open XML SpreadsheetML File Format.”
xlsm an MS-Excel Macro-Enabled Workbook file

ods open document spreadsheet

json java script object notation

html html table of the data structure

simple simple presentation

st rStructured Text presentation of the data

mediawiki | media wiki table

See also A list of file formats supported by external plugins.

Data transformation

Often a developer would like to have excel data imported into a Python data structure. This library supports the
conversions from previous three data source to the following list of data structures, and vice versa.

Table 6: A list of supported data structures

Pesudo name Python name Related model
two dimensional array a list of lists pyexcel.Sheet
a dictionary of key value pair a dictionary pyexcel.Sheet
a dictionary of one dimensional arrays | a dictionary of lists pyexcel.Sheet
a list of dictionaries a list of dictionaries pyexcel.Sheet
a dictionary of two dimensional arrays | a dictionary of lists of lists | pyexcel.Book

Data manipulation
The main operation on a cell involves cell access, formatting and cleansing. The main operation on a sheet involves

group access to a row or a column; data filtering; and data transformation. The main operation in a book is obtain
access to individual sheets.

Data transcoding

For various reasons the data in one format needs to be transcoded into another. This library provides a transcoding
tunnel for data transcoding between supported file formats.

Data visualization

Via pyexcel.renderer.AbstractRenderer interface, data visualization is made possible. pyexcel-chart is
the interface plugin to formalize this effort. pyexcel-pygal is the first plugin to provide bar, pie, histogram charts and
more.

! quoted from whatis.com. Technical details can be found at MSDN XLS
2 xlsx is used by MS-Excel 2007, more information can be found at MSDN XLSX

2.5. Design 11

http://whatis.techtarget.com/fileformat/XLS-Worksheet-file-Microsoft-Excel
https://msdn.microsoft.com/en-us/library/office/gg615597(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/dd922181(v=office.12).aspx

pyexcel, Release 0.7.0

Examples of supported data structure

Here is a list of examples:

>>> import pyexcel as p
>>> two_dimensional_list = [

[, 2, 3, 471,

[5, 6, 7, 81,

[, 10, 11, 121,

]

>>> p.get_sheet (array=two_dimensional_list)
pyexcel_sheetl:

>>> a_dictionary_of_key_value_pair = {
"IE": 0.2,
"Firefox": 0.3
}
>>> p.get_sheet (adict=a_dictionary_of_key_value_pair)
pyexcel_sheetl:

fomm o= +
| Firefox | IE |
o +———— +
| 0.3 | 0.2 |
B — +——— +
>>> a_dictionary_of_one_dimensional_arrays = {
"Column 1": [1, 2, 3, 41,
"Column 2": [5, 6, 7, 8],
"Column 3": [9, 10, 11, 1217,

}
>>> p.get_sheet (adict=a_dictionary_of_one_dimensional_arrays)
pyexcel_sheetl:

fom— fom fom— +
| Column 1 | Column 2 | Column 3 |
o o o +
|1 | 5 () |
o o E e —— +
I 2 | 6 | 10 |
fomm o fomm +
I3 |7 [11 |
o o o +
| 4 | 8 | 12 |
o o o +
>>> a_list_of_dictionaries = [
{
"Name": 'Adam',
"Age": 28
}I
{
"Name": 'Beatrice',
"Age": 29

(continues on next page)

12 Chapter 2. Support the project

pyexcel, Release 0.7.0

(continued from previous page)

"Name": 'Ceri',
"Age": 30

}I

{
"Name": 'Dean',
"Age": 26

]

>>> p.get_sheet (records=a_list_of_dictionaries)

pyexcel_sheetl:

>>> a_dictionary_of_two_dimensional_arrays

+——— o +
| Age | Name |
+——— o +
| 28 | Adam
- - +
| 29 | Beatrice |
+——— o +
| 30 | Ceri |
+——— o +
| 26 | Dean |
- - +
'Sheet 1':
[
[1.0,
[4.0,
[7.0,
]I
'Sheet 2':
[
['x,
[1.0,
[4.0,
]I
'Sheet 3':
[
['o',
[3.0,
[4.0,

>>> p.get_book (bookdict=a_dictionary_of_two_dimensional_arrays)

Sheet 1

+——— +———— +———— +
| 1.0 | 2.0 | 3.0 |
+———— +———— +———— +
| 4.0 | 5.0 | 6.0 |
- - - +
| 7.0 | 8.0 | 9.0 |
+———— +———— +———— +
Sheet 2

+———— +———— +———— +
I X | Y 'z
+——— - - +
| 1.0 | 2.0 | 3.0 |
+———— +———— +———— +
| 4.0 | 5.0 | 6.0 |

o U1 N
o O O
~

~

~

(continues on next page)

2.5. Design

13

pyexcel, Release 0.7.0

(continued from previous page)

fo————— fo———— fo———— +
Sheet 3:

- o +————= +
| O | P [Q \
+————— +————= = +
| 3.0 | 2.0 | 1.0 |
fo———— fo——— fo———— +
| 4.0 | 3.0 | 2.0 |
o +———— +————= +

2.5.2 Signature functions

Import data into Python

This library provides one application programming interface to read data from one of the following data sources:

¢ physical file
* memory file

SQLAIchemy table

* Django Model

 Python data structures: dictionary, records and array

and to transform them into one of the following data structures:

* two dimensional array

* adictionary of one dimensional arrays

e alist of dictionaries

* adictionary of two dimensional arrays

* a Sheet

* a Book

Four data access functions

Python data can be handled well using lists, dictionaries and various mixture of both. This library provides four
module level functions to help you obtain excel data in these data structures. Please refer to “A list of module level
functions”, the first three functions operates on any one sheet from an excel book and the fourth one returns all data in

all sheets in an excel book.

Table 7: A list of module level functions

Functions Name Python name
get_array () two dimensional array a list of lists
get_dict () a dictionary of one dimensional arrays | an ordered dictionary of lists

get_records ()

a list of dictionaries

a list of dictionaries

get_book_dict ()

a dictionary of two dimensional arrays

a dictionary of lists of lists

See also:

e get_an_array_from_an_excel_sheet

14

Chapter 2. Support the project

pyexcel, Release 0.7.0

* How to get a dictionary from an excel sheet
* How to obtain records from an excel sheet
* How to obtain a dictionary from a multiple sheet book

The following two variants of the data access function use generator and should work well with big data files

Table 8: A list of variant functions

Functions Name Python name
iget_array () a generator of a list of lists

a memory efficient two dimensiona
array

iget_records () a memory efficient list list of dictio- | a generator of a list of dictionaries
naries

However, you will need to call free_resource () to make sure file handles are closed.

Two pyexcel functions

In cases where the excel data needs custom manipulations, a pyexcel user got a few choices: one is to use Sheet and
Book, the other is to look for more sophisticated ones:

 Pandas, for numerical analysis

* Do-it-yourself

Functions Returns
get__sheet () Sheet
get_book () Book

For all six functions, you can pass on the same command parameters while the return value is what the function says.

Export data from Python

This library provides one application programming interface to transform them into one of the data structures:
* two dimensional array
* a (ordered) dictionary of one dimensional arrays
* alist of dictionaries
* adictionary of two dimensional arrays
* a Sheet
* a Book
and write to one of the following data sources:
* physical file
* memory file
* SQLAIchemy table
* Django Model

2.5. Design 15

pyexcel, Release 0.7.0

* Python data structures: dictionary, records and array

Here are the two functions:

Functions Description
save_as () Works well with single sheet file
isave_as () Works well with big data files

book
save book_as () Works with multiple sheet file and big data files

[book
teave book as() Works with multiple sheet file and big data files

If you would only use these two functions to do format transcoding, you may enjoy a speed boost using i save_as ()
and isave_book_as (), because they use yield keyword and minimize memory footprint. However, you will need
to call free_resource () to make sure file handles are closed. And save as () and save _book_as () reads
all data into memory and will make all rows the same width.

See also:
* How to save an python array as an excel file
* How to save a dictionary of two dimensional array as an excel file

* How to save an python array as a csv file with special delimiter

Data transportation/transcoding

This library is capable of transporting your data between any of the following data sources:
* physical file
¢ memory file
* SQLAIlchemy table
* Django Model
* Python data structures: dictionary, records and array
See also:
* How to import an excel sheet to a database using SQLAlchemy
* How to open an xls file and save it as xlsx

* How to open an xls file and save it as csv

2.5.3 Architecture

pyexcel uses loosely couple plugins to fullfil the promise to access various file formats. Iml is the plugin management
library that provide the specialized support for the loose coupling.

What is loose coupling?

The components of pyexcel is designed as building blocks. For your project, you can cherry-pick the file format
support without affecting the core functionality of pyexcel. Each plugin will bring in additional dependences. For
example, if you choose pyexcel-xls, xlrd and xlwt will be brought in as 2nd level depndencies.

16 Chapter 2. Support the project

pyexcel, Release 0.7.0

Looking at the following architectural diagram, pyexcel hosts plugin interfaces for data source, data renderer and data
parser. pyexcel-pygal, pyexcel-matplotlib, and pyexcel-handsontable extend pyexcel using data renderer interface.
pyexcel-io package takes away the responsibilities to interface with excel libraries, for example: xIrd, openpyxl,
ezodf.

Asin A list of file formats supported by external plugins, there are overlapping capabilities in reading and writing xIsx,
ods files. Because each third parties express different personalities although they may read and write data in the same
file format, you as the pyexcel is left to pick which suit your task best.

Dotted arrow means the package or module is loaded later.

2.6 New tutorial

2.6.1 One liners

This section shows you how to get data from your excel files and how to export data to excel files in one line
Read from the excel files
Get a list of dictionaries

Suppose you want to process History of Classical Music:

Let’s get a list of dictionary out from the xIs file:

>>> records = p.get_records (file_name="your_file.x1ls")

And let’s check what do we have:

>>> for row in records:
print (f" {row['Representative Composers'] are from {row['Name'] period ({row|
—'Period']) ")
Machaut, Landini are from Medieval period (c.1150-c.1400)
Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600)
JS Bach, Vivaldi are from Baroque period (c.1600-c.1750)
Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830)
Chopin, Mendelssohn, Schumann, Liszt are from Earley Romantic period (c.1830-c.1860)
Wagner,Verdi are from Late Romantic period (c.1860-c.1920)

Get two dimensional array

Instead, what if you have to use pyexcel.get_array to do the same:

>>> for row in p.get_array(file_name="your_file.xls", start_row=1l):
print (£" {row[2] are from {row[0] period ({row[1l]/})"™)
Machaut, Landini are from Medieval period (c.1150-c.1400)
Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600)
JS Bach, Vivaldi are from Baroque period (c.1600-c.1750)
Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830)
Chopin, Mendelssohn, Schumann, Liszt are from Earley Romantic period (c.1830-c.1860)
Wagner,Verdi are from Late Romantic period (c.1860-c.1920)

2.6. New tutorial 17

https://www.naxos.com/education/brief_history.asp

pyexcel, Release 0.7.0

where start_row skips the header row.

Get a dictionary

You can get a dictionary too:

Now let’s get a dictionary out from the spreadsheet:

>>> my_dict = p.get_dict (file_name="your_ file.xls", name_columns_by_row=0)

And check what do we have:

>>> from pyexcel._ compact import OrderedDict
>>> isinstance (my_dict, OrderedDict)

True
>>> for key, values in my_dict.items():
print(key + " : " + ', " . jJoin([str(item) for item in values]))
Name : Medieval,Renaissance,Baroque,Classical,Earley Romantic,Late Romantic

Period : ¢.1150-¢.1400,c¢.1400-c.1600,c.1600-¢c.1750,¢c.1750-¢c.1830,c.1830-c.1860,c.1860~
—c.1920

Representative Composers : Machaut, Landini,Gibbons, Frescobaldi,JS Bach, Vivaldi,
—~Joseph Haydn, Wolfgan Amadeus Mozart,Chopin, Mendelssohn, Schumann, Liszt,Wagner,
—Verdi

Please note that my_dict is an OrderedDict.

Get a dictionary of two dimensional array

Suppose you have a multiple sheet book as the following:

Here is the code to obtain those sheets as a single dictionary:

>>> pbook_dict = p.get_book_dict (file_name="book.xls")

And check:

>>> isinstance (book_dict, OrderedDict)

True

>>> import json

>>> for key, item in book_dict.items () :

C.. print (json.dumps ({key: item}))
{"Sheet 1": [[1, 2, 31, [4, 5, 61, [7, 8, 911}
{"Sheet 2": [["x", "Yy", "z"1, [1, 2, 31, 1[4, 5, 611}
{"Sheet 3": [["O", "P", "Q"I], [3, 2, 11, T[4, 3

Write data

Export an array

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file :

18 Chapter 2. Support the project

pyexcel, Release 0.7.0

>>> p.save_as (array=data, dest_file_name="example.xls")

Let’s verify it:

>>> p.get_sheet (file_name="example.xls")
pyexcel_sheetl:

11021 31
s
41 51 6|
fo—m—m——t———t
7181 91
fo——o——t———+

And here is the code to save it as a csv file :

>>> p.save_as (array=data,
dest_file_name="example.csv",
dest_delimiter=":")

Let’s verify it:

>>> with open ("example.csv") as f:
for line in f.readlines():
print (line.rstrip())

~ =
0 U1 N e
O o W

Export a list of dictionaries

>>> records = [
{"year": 1903, "country": "Germany", "speed": "206.7km/h"},
{"year": 1964, "country": "Japan", "speed": "210km/h"},
{"year": 2008, "country": "China", "speed": "350km/h"}

1

>>> p.save_as (records=records, dest_file_name='high_ speed_rail.xls")

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
"area": "5.58 square meters",
"population": "11,619",
"civial parish": "Henley-on-Thames",
"latitude": "51.536",
"longitude": "-0.898"
}

>>> p.save_as (adict=henley_on_thames_facts, dest_file_name='henley.xlsx'")

2.6. New tutorial 19

pyexcel, Release 0.7.0

Export a dictionary of single dimensonal array

>>> ccs_insights = {
"year": ["2017", "2018", "2019", "2020", "2021"],
"smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
"feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]

}

>>> p.save_as (adict=ccs_insights, dest_file_name='ccs.csv')

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file :

>>> a_dictionary_of_two_dimensional_arrays = {
'Sheet 1':
[
(1.0, 2.0, 3.01,
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]
1,
'Sheet 2':

[
['X'l 'Y’I 'Z']l
[1.0, 2.0, 3
[4.0, 5.0, o.

JI

'Sheet 3':

[
[ro', 'p', 'Q'l,
[3.0, 2.0, 1
[4.0, 3.0, 2.

Here is the code:

>>> p.save_book_as (
bookdict=a_dictionary_of_two_dimensional_arrays,
dest_file_name="book.xls"

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> data = OrderedDict ()

>>> data.update ({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2'1})
>>> data.update ({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update ({"Sheet 3": a_dictionary_of_two_dimensional_arrays|['Sheet 3']})

>>> p.save_book_as (bookdict=data, dest_file_name="book.xls")

Let’s verify its order:

>>> pbook_dict = p.get_book_dict (file_name="book.xls")
>>> for key, item in book_dict.items () :
print (json.dumps ({key: item}))

(continues on next page)

20 Chapter 2. Support the project

pyexcel, Release 0.7.0

(continued from previous page)

{"Sheet 2": [["X", "Y", "Z"J, [1, 2’ 3], [4, 5, 6}]}
{"Sheet 1": [[1, 2, 3], [4, 5, 61, [7, 8, 911}
{"Sheet 311: [["O", "P", "Q"], [3, 2, l], [4, 3’ 21]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

Transcoding

Note: Please note that pyexcel-cli can perform file transcoding at command line. No need to open your editor, save
the problem, then python run.

The following code does a simple file format transcoding from xIs to csv:

>>> p.save_as (file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet (file_name="birth.csv")
>>> sheet
birth.csv:

- - o +
| name | weight | birth |
o B o +
| Adam | 3.4 | 03/02/15 |
e Fo— fomm +
| Smith | 4.2 | 12/11/14 |
- +———— o +

Note: Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xlIs
file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

Let use previous example and save it as xIsx instead

>>> p.save_as (file_name="birth.xls",
dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = p.get_sheet (file_name="birth.xlsx")
>>> sheet
pyexcel_sheetl:

- o t———— +
| name | weight | birth

fo—————— Fo——————— Fomm——————— +
| Adam | 3.4 | 03/02/15 |
- o o +
| Smith | 4.2 | 12/11/14 |
+——— B o +

2.6. New tutorial 21

pyexcel, Release 0.7.0

Excel book merge and split operation in one line

Merge all excel files in directory into a book where each file become a sheet

The following code will merge every excel files into one file, say “output.xls’:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book (glob.glob ("your_csv_directory*.csv"), "output.xls")

You can mix and match with other excel formats: xIs, xIsm and ods. For example, if you are sure you have only xls,
xlsm, xIsx, ods and csv files in your_excel_file_directory, you can do the following:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book (glob.glob ("your_excel_ file directory\x.x"), "output.xls")

Split a book into single sheet files

Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You
can easily do this:

>>> from pyexcel.cookbook import split_a_book
>>> split_a_book ("megabook.xls", "output.xls")
>>> import glob
>>> outputfiles = glob.glob ("+_output.xls")
>>> for file in sorted(outputfiles):

print (file)

Sheet 1_output.xls
Sheet 2_output.xls
Sheet 3_output.xls

for the output file, you can specify any of the supported formats

Extract just one sheet from a book

Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate
it into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import extract_a_sheet_from_a_book
>>> extract_a_sheet_from_a_book ("megabook.x1ls", "Sheet 1", "output.xls")
>>> if os.path.exists ("Sheet 1_output.xls"):

print ("Sheet 1_output.xls exists")

Sheet 1_output.xls exists

for the output file, you can specify any of the supported formats

22 Chapter 2. Support the project

pyexcel, Release 0.7.0

2.6.2 Stream APIs for big file : A set of two liners

When you are dealing with BIG excel files, you will want pyexcel to use constant memory.

This section shows you how to get data from your BIG excel files and how to export data to excel files in two lines at
most, without eating all your computer memory.

Two liners for get data from big excel files
Get a list of dictionaries

Suppose you want to process the following coffee data:

Let’s get a list of dictionary out from the xIs file:

>>> records = p.iget_records (file_name="your_file.xls")

And let’s check what do we have:

>>> for r in records:

C print (f"{r['Serving Size'] of {r['Coffees'] has {r['Caffeine (mg)']} mg")
venti (20 oz) of Starbucks Coffee Blonde Roast has 475 mg

large (20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg

grande (16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg

regular (16 oz.) of Panera Coffee Light Roast has 300 mg

Please do not forgot the second line to close the opened file handle:

>>> p.free_resources ()

Get two dimensional array

Instead, what if you have to use pyexcel.get_array to do the same:

>>> for row in p.iget_array(file_name="your_file.xls", start_row=1l):
e print (£" {row([1] of {row[0] has {row[2] mg")

venti (20 oz) of Starbucks Coffee Blonde Roast has 475 mg

large (20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande (16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular (16 oz.) of Panera Coffee Light Roast has 300 mg

Again, do not forgot the second line:

>>> p.free_resources ()

where start_row skips the header row.

Data export in one liners

Export an array

Suppose you have the following array:

2.6. New tutorial 23

pyexcel, Release 0.7.0

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file :

>>> p.isave_as (array=data, dest_file_name="example.xls")

But the following line is not required because the data source are not file sources:

>>> # p.free_resources ()

Let’s verify it:

>>> p.get_sheet (file_name="example.xls")
pyexcel_sheetl:

11021 31
i St
41 51 6|
fo——o——t———+
7181 91
s e

And here is the code to save it as a csv file :

>>> p.isave_as (array=data,
dest_file_name="example.csv",
dest_delimiter='":")

Let’s verify it:

>>> with open ("example.csv") as f:
for line in f.readlines():
print (line.rstrip())

~ =
0 U1 N e
O o W

Export a list of dictionaries

>>> records = [
{"year": 1903, "country": "Germany", "speed": "206.7km/h"},
{"year": 1964, "country": "Japan", "speed": "210km/h"},
{"year": 2008, "country": "China", "speed": "350km/h"}

]

>>> p.isave_as (records=records, dest_file_name='high speed rail.xls')

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
"area": "5.58 square meters",
"population": "11,619",
"civial parish": "Henley-on-Thames",

(continues on next page)

24 Chapter 2. Support the project

pyexcel, Release 0.7.0

(continued from previous page)

"latitude": "51.536",
"longitude": "-0.898"
}

>>> p.isave_as (adict=henley_on_thames_facts, dest_file_name='henley.xlsx')

Export a dictionary of single dimensonal array

>>> ccs_insights = {
"year": ["2017", "2018", "2019", "2020", "2021"],
"smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
"feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]

}
>>> p.isave_as (adict=ccs_insights, dest_file_name='ccs.csv')
>>> p.free_resources|()

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file :

>>> a_dictionary_of_two_dimensional_arrays = {
'Sheet 1':
[
[1.0, 2.0, 3.01,
[4.0, 5.0, 6.01],
[7.0, 8.0, .01
} 14
'Sheet 2':

[
['xt, 'y, 'z2'],
[1.0, 2.0, 3.
[4.0, 5.0, 6

}V

'Sheet 3':

[
[ro', 'p', 'Q'l,
[3.0, 2.0, 1
[4.0, 3.0, 2.

Here is the code:

>>> p.isave_book_as(
bookdict=a_dictionary_of_two_dimensional_arrays,
dest_file_name="book.xls"

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> from pyexcel._ compact import OrderedDict
>>> data = OrderedDict ()

(continues on next page)

2.6. New tutorial 25

pyexcel, Release 0.7.0

(continued from previous page)

>>> data.update ({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update ({"Sheet 1": a_dictionary_of_two_dimensional_arrays|['Sheet 1']})
>>> data.update ({"Sheet 3": a_dictionary_of_two_dimensional_arrays|['Sheet 3']})

>>> p.isave_book_as (bookdict=data, dest_file_name="book.xls")
>>> p.free_resources()

Let’s verify its order:

>>> import json
>>> book_dict = p.get_book_dict (file_name="book.xls")
>>> for key, item in book_dict.items() :
. print (json.dumps ({key: item}))

{"Sheet 2": [["X", "Y"’ "Z"], [1, 2, 3]

, [4, 5, 611}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "OQ"], [3, 2, 11, [4, 3, 211}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

File format transcoding on one line

Note: Please note that the following file transcoding could be with zero line. Please install pyexcel-cli and you will
do the transcode in one command. No need to open your editor, save the problem, then python run.

The following code does a simple file format transcoding from xIs to csv:

>>> import pyexcel
>>> p.save_as (file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet (file_name="birth.csv")
>>> sheet
birth.csv:

o - o +
| name | weight | birth |
o o o +
| Adam | 3.4 | 03/02/15 |
fomm———— fommm———— fommm +
| Smith | 4.2 | 12/11/14 |
fo— - o Fomm +

Note: Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls
file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

Let use previous example and save it as xIsx instead

>>> import pyexcel
>>> p.isave_as (file_name="birth.xls",
dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

26 Chapter 2. Support the project

pyexcel, Release 0.7.0

>>> sheet = p.get_sheet (file_name="birth.xlsx")
>>> sheet
pyexcel_sheetl:

o o o +
| name | weight | birth |
fo—————— Fo——————— fom— +
| Adam | 3.4 | 03/02/15 |
- +———— o +
| Smith | 4.2 | 12/11/14 |
o o o +

2.6.3 For web developer

The following libraries are written to facilitate the daily import and export of excel data.

framework | plugin/middleware/extension
Flask Flask-Excel

Django django-excel

Pyramid pyramid-excel

And you may make your own by using pyexcel-webio

Read any supported excel and respond its content in json

You can find a real world example in examples/memoryfile/ directory: pyexcel_server.py. Here is the example snippet

def upload() :
if request.method == 'POST' and 'excel' in request.files:
handle file upload
filename = request.files['excel'].filename
extension = filename.split (".") [-1]

Obtain the file extension and content
pass a tuple instead of a file name
content = request.files['excel'].read()
if sys.version_info[0] > 2:
in order to support python 3
have to decode bytes to str
content = content.decode ('utf-8")
sheet = pe.get_sheet (file_type=extension, file_content=content)
then use it as usual
sheet .name_columns_by_row (0)
respond with a json
return jsonify ({"result": sheet.dict})
return render_template ('upload.html")

request.files[‘excel’] in line 4 holds the file object. line 5 finds out the file extension. line 13 obtains a sheet instance.
line 15 uses the first row as data header. line 17 sends the json representation of the excel file back to client browser.

Write to memory and respond to download

2.6. New tutorial 27

https://github.com/pyexcel-webwares/Flask-Excel
https://github.com/pyexcel-webwares/django-exce