

Welcome to pyentrypoint’s documentation!

pyentrypoint is a tool written in Python to manage Docker
containers ENTRYPOINT.

This tool avoids writing shell scripts to:

	Handle commands and sub commands

	Identify linked containers

	Auto configure container using jinja2 templates

	Run commands before starting service

	Clean environment before running service

	Reload service when configuration has changed

	Increase security by setuid/setgid service

Contents:

	Installation

	pyentrypoint-config.yml
	yaml references
	command

	subcommands

	user, group

	config_files

	secret_env

	links

	pre_conf_commands

	post_conf_commands

	post_run_commands

	reload

	clean_env

	debug

	quiet

	Templates
	Accessible objects
	config

	links

	containers

	environ

	yaml and json

	Options setup

Working examples

	Tor hidden
service [https://github.com/cmehay/docker-tor-hidden-service]

Indices and tables

	Index

	Module Index

	Search Page

Installation

All you need to do is to setup a yaml file called
entrypoint-config.yml and to install pyentrypoint in your
Dockerfile using pip.

FROM debian
Installing git for example
RUN apt-get update && apt-get install git python-pip -y
Install pyentrypoint
RUN pip install pyentrypoint
Copy config file in the current WORKDIR
COPY entrypoint-config.yml .
Set ENTRYPOINT
ENTRYPOINT ['pyentrypoint']
git will be the default command
CMD ['git']

FROM alpine
Installing git for example
RUN apk add --update py-pip git
Install pyentrypoint
RUN pip install pyentrypoint
Copy config file in the current WORKDIR
COPY entrypoint-config.yml .
Set ENTRYPOINT
ENTRYPOINT ['pyentrypoint']
git will be the default command
CMD ['git']

pyentrypoint-config.yml

This is an example of entrypoint-config.yml file.

Entrypoint configuration example

This entry should reflect CMD in Dockerfile
command: git

This is a list with some subcommands to handle
when CMD is not `git` here.
By default, all args started with hyphen are handled.
subcommands:
 - "-*"
 - clone
 - init
 - ls-files
 # etc...

User and group to run the cmd.
Can be name or uid/gid.
Affect only command handled.
Dockerfile USER value by default.
user: 1000
group: 1000

These files should exist (ADD or COPY)
and should be jinja templated.
Note: if config files end with ".tpl", the extension will be removed.
config_files:
 - /etc/gitconfig
 - .ssh/config.tpl # Will apply to ".ssh/config"
 - /tmp/id_rsa: .ssh/id_rsa # Will apply "/tmp/id_rsa" template to ".ssh/id_rsa"

These environment variables will be wiped before
exec command to keep them secret
CAUTION: if the container is linked to another one,
theses variables will passed to it anyway
secret_env:
 - SSHKEY
 - '*' # Support globbing, all environment will be wiped

Links are handled here
Port, name, protocol or env variable can be used to identify the links
Raise an error if the link could not be identified
This is not supported when using docker network or docker-compose v2.
links:
 'ssh':
 port: 22
 name: 'ssh*'
 protocol: tcp
 # env can be list, dict or string
 env:
 FOO: bar
 # Single doesn't allow multiple links for this ID
 # false by default
 single: true
 # Set to false to get optional link
 # true by default
 required: true

Commands to run before applying configuration
pre_conf_commands:
 - echo something > to_this_file

commands to run after applying configuration
post_conf_commands:
 - echo "something else" > to_this_another_file

post_run_commands:
 - echo run commands after started service

Reload service when configuration change by sending a signal to process
reload:
 signal: SIGHUP # Optional, signal to send, default is SIGHUP
 watch_config_files: true # Optional, watch defined config files, default True
 files: # Optional, list of files to watch
 - /etc/conf/to/watch
can also be enabled with a boolean:
reload: true

Cleanup environment from variables created by linked containers
before running command (True by default)
clean_env: true

Enable debug to debug
debug: true

Do not output anything except error
quiet: false

yaml references

command

command should reflect CMD in Dockerfile.

If the container is not started with this commande,
the configuration will not be applied.

subcommands

subcommands is a list with some subcommands to handle.

Running container with a matching subcommand run it with setuped command.

subcommands:
 - "-*"
 - clone
 - init
 - ls-files

Note: Globbing pattern is enabled here.

By default, all args started with hyphen are handled.

user, group

User and group to run the command.
Can be name or uid/gid.
Affect only command handled.

user: 1000
group: root

Note: Dockerfile USER value by default.

Can be expended from environment in ENTRYPOINT_USER and ENTRYPOINT_GROUP.

config_files

These files should exist (ADD or COPY) and should be jinja templated.

config_files:
 - /etc/gitconfig
 - .ssh/config.tpl # Will apply to ".ssh/config"
 - /tmp/id_rsa: .ssh/id_rsa # Will apply "/tmp/id_rsa" template to ".ssh/id_rsa"

Note: if config files end with ”.tpl”, the extension will be removed.

secret_env

These environment variables will be wiped before
running command to keep them secret.

secret_env:
 - SSHKEY
 - APIKEY

CAUTION: if the container is linked to another one,
theses variables will be sent to it anyway.

links

Not supported when using docker network or docker-compose v2.

Links are handled here.

Port, name, protocol or environment variables can be used to identify the links.

links:
 'ssh': # This is the name to handle link in templates
 port: 22
 name: 'ssh*'
 protocol: tcp
 # env can be list, dictionary or string
 env:
 FOO: bar
 # Single doesn't allow multiple links for this ID
 # false by default
 single: true
 # Set to false to get optional link
 # true by default
 required: true

Note: All parameters are optionals.

Raise an error if the link could not be identified.

pre_conf_commands

List of shell commands to run before applying configuration

pre_conf_commands:
 - echo something > to_this_file

post_conf_commands

List of shell commands to run after applying configuration

post_conf_commands:
 - echo "something else" > to_this_another_file

post_run_commands

List of shell commands to run after service is started

post_run_commands:
 - sleep 5
 - echo "something else" > to_this_another_file

reload

Send SIGHUP to PID 1 to reload service when configuration change

Accept boolean or dictionary

reload:
 signal: SIGHUP # Optional, signal to send, default is SIGHUP
 watch_config_files: true # Optional, watch defined config files, default True
 files: # Optional, list of files to watch
 - /etc/conf/to/watch
 - /file/support/*.matching
can also be enabled with a boolean:
reload: true

clean_env

Cleanup environment from variables created by linked containers
before running command (True by default)

debug

Print some debug.

quiet

Do not output anything except error

Templates

You can generate configuration for your service with jinga2 template.

Here is an example for an hypothetical ssh config file:

host server:
 hostname {{links.ssh.ip}}
 port {{links.ssh.port}}

Templates will be replaced with ip address and port of the identified
link. All links can be accessed from links.all, this is a tuple of
links you can iterate on it.

{% for link in links.all %}
host {{link.names[0]}}
 hostname {{link.ip}}
 port {{links.port}}
{% endfor %}

If you change the option single to false in the
entrypoint-config.yml, the identified link ssh will become a
tuple of links. You must iterate on it in the jinja template.

{% for link in links.ssh %}
host {{link.names[0]}}
 hostname {{link.ip}}
 port {{links.port}}
{% endfor %}

Accessing environment in template.

{% if 'SSHKEY in env' %}
{{env['SSHKEY']}}
{% endfor %}

Accessible objects

You have 4 available objects in your templates.

	config

	links

	containers

	environ

config

Config reflect the config file. You can retrieve any setup in this
object.

(see config.py)

links

Not supported when using docker network or docker-compose v2.

Links handles Link objects. You can identify links using
wildcard patterns in the configuration file.

link is related to one physical link (one ip and one port).

link handles the following attributes: - ip - link ip - port
- link port (integer) - environ - related container environment -
protocol - link protocol (tcp or udp) - uri - link URI
(example: tcp://10.0.0.3:80) - names - tuple of related
container names

containers

Not supported when using docker network or docker-compose v2.

containers handles a tuple of container object.

container handles the following attributes: - ip - container ip
- environ - container environment - names - List of containers
names - Names are sorted by length, but container ID will be the last
element. - id - Hexadecimal container ID (if available, empty string
else) - links - Tuple of link objects related to this container

environ

environ is the environment of the container (os.environ).

env is an alias to environ.

yaml and json

yaml and json objects are respectively an import of PyYAML <http://pyyaml.org/> and `json <https://docs.python.org/2/library/json.html> modules.

They are useful to load and dump serialized data from environment.

Options setup

Some setups can be overridden using environment variables in the container.

	ENTRYPOINT_CONFIG overrides path of entrypoint-config.yml
file.

	ENTRYPOINT_FORCE applies configuration and runs pre and post conf
commands even if the command provided is not handled.

	ENTRYPOINT_PRECONF_COMMAND run an extra pre conf shell command after
all pre conf commands.

	ENTRYPOINT_POSTCONF_COMMAND run an extra post conf shell command after
all post conf commands.

	ENTRYPOINT_DEBUG enables debug logs.

	ENTRYPOINT_RAW does not use logging to display pre and post conf
commands. This can be useful if output is serialized.

	ENTRYPOINT_DISABLE_RELOAD disable reload system even if it is enabled
in entrypoint-config.yml.

	ENTRYPOINT_USER overrides user in config.

	ENTRYPOINT_GROUP overrides group in config.

	ENTRYPOINT_DISABLE_SERVICE exits container with 0 before doing anything. Useful to disable container using environement.

Index

 nav.xhtml

 Table of Contents

 		Welcome to pyentrypoint's documentation!

 		Installation

 		pyentrypoint-config.yml

 		yaml references

 		command

 		subcommands

 		user, group

 		config_files

 		secret_env

 		links

 		pre_conf_commands

 		post_conf_commands

 		post_run_commands

 		reload

 		clean_env

 		debug

 		quiet

 		Templates

 		Accessible objects

 		config

 		links

 		containers

 		environ

 		yaml and json

 		Options setup

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

