

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/pyeloqua/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/pyeloqua/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

2017-12-06 v0.5.10

	FEATURE: Added Bulk.get_export_count method to return total number of exported records

2017-12-03 v0.5.7

	FEATURE: Added offset paramater to Bulk.get_data() and Bulk.get_export_data() to allow results to be returned in chunks instead of all at once for larger data sets.

2017-10-20 v0.5.6

	FEATURE: Added max_recs parameter to Bulk.get_export_data() which limits the count of records which will be returned

	CLEANUP: refactored a few small lines of code

2017-10-02 v0.5.5

	FEATURE: add system fields for bulk activity Bounceback which were made available in the 491 release

	BUGFIX: auto-set filter on ActivityType if exporting an activity

2017-08-30 v0.5.3

	FEATURE: add method Bulk.handle_sync() to raise error exceptions or log warnings on sync issues

	MINOR: added logger to Bulk class file; need to add standard logging to most methods

2017-05-22 v0.5.1

	FEATURE: add parameter uri to Bulk.check_sync, allowing a check-later model of syncing

2017-05-19 v0.5.0

	FEATURE: Form object added to allow pulling form submission data via REST API
	Allows future room for structured form submissions as well (likely coming in v0.5.x)

2017-02-28 v0.4.3

	BUGFIX: Bulk.filter_date would only include start if both start and end were included.

2017-02-16 v0.4.2

	BUGFIX: Bulk.get_data would throw an KeyError when no records because Eloqua doesn’t give items as part of the return.

2017-02-16 v0.4.1

	FEATURE: Bulk.write_job and Bulk.read_job classes to save a job for later reuse

	FEATURE: EloquaBulkSyncTimeout exception class for syncs not finished in specified time period

	FEATURE: EloquaValidationError for API 400 codes

	FEATURE: EloquaServerError for API 5xx codes

2017-02-15 v0.4.0

	MAJOR FEATURE: New Bulk class for interacting with Bulk API; see README and examples for more info

	DEPRECATION: Old Bulk API methods in Eloqua now give deprecation warnings

2017-02-02 v0.3.5

	BUGFIX: fix dependency install by switching around where __version__ was stored (now in setup.py)

	FEATURE: add updateRule optional argument to CreateDef

2017-01-25 v0.3.4

	FEATURE: add parameter to Eloqua class; adding test=True creates a dummy instance which can be used in context of other unit testing

2017-01-19 v0.3.3

	FEATURE: add method GetAsset, which returns dict of asset info (list, filter, and segment)

2016-11-17 v0.3.2

	BUGFIX: Now CreateFieldStatement works in many circumstances, passing a single field as string, a dict of fields, or a list of fields, or passing a blank value '' and specifying addAll=True

	FEATURE: added GetAssetSize method which returns current count of a contact shared list

2016-11-14 v0.3.1

	BUGFIX: fixed CreateFieldStatement

2016-11-01 v0.3.0

	BUGFIX: CreateFieldStatement now allows creation of field statements passing only addSystemContactFields or addLinkedContactFields

	FEATURE: new parameter for CreateFieldStatement, addAll - adds all fields from entity to output field set (default=False)

	FEATURE: new parameter for CreateFieldStatement, addLinkedAccountFields - adds specified account fields to export of contact data

	FEATURE: CreateFieldStatement now allows passing fields as a dict, providing custom import/export field names

2016-10-07 v0.2.91

	HOTFIX: Set “ensure_ascii” parameter of json.dumps = False and encode = ‘utf8’; was causing problems with imports

2016-10-06 v0.2.8

	Added exception handling for PostSyncData status codes

2016-09-28 v0.2.7

	Added functionality for syncActions in import/export definitions

2016-09-20 v0.2.6

	Fixed sync count that gets return in data post

2016-09-18 v0.2.5

	Added functionality to export a max # of rows

2016-09-15 v0.2.4

	Fixed some issues around code that got changed for form posts

2016-08-15 v0.2.2

	Fixed dependency requirement for requests

2016-08-02 v0.2.0

	Added export functionality for activities

	Added ability to create field statements for CDO exports that include linked contact fields

	Deprecated addSystemFields in CreateFieldStatement; begin using addSystemContactFields instead

2016-06-27 v0.1.0

	fixed FilterDateRange to allow for filtering on system fields createdAt, updatedAt, on contacts and accounts

2016-06-23 v0.0.9 hotfix

	fixed GetSyncedRecordCount

2016-06-17 v0.0.8

	Added sync status to PostSyncData output

2016-06-16 v0.0.7

	Added deletion functionality for contact, account, and CDO records

	Improved some inline documentation

	bug fix for GetSyncedRecordCount

	added import sync error handling (GetSyncRejectedRecords)

	updated PostSyncData to output a summary of sync URIs, send count, and reject count

2016-06-13 v0.0.5

	hotfix for post data to form (was sending all data as query string params)

2016-06-11 v0.0.4

	Added functions for posting data to Eloqua forms

Eloqua

	Bearer-based authentication

Bulk

	Everything

REST

	Everything

pyeloqua

Python wrapper functions for Eloqua APIs, tested with Python 2.7 and Python 3.3 - 3.6.

Documentation is your friend (http://docs.oracle.com/cloud/latest/marketingcs_gs/OMCAC/index.html) - if you can’t do it in the API, you can’t do it with this module.

NOTICE I’m in the middle of a rebuild that will result in breaking changes to existing uses. This is to facilitate better unit testing and meet coding standards and best practices. Right now, if you upgrade to the latest version (release v0.4.0), you will receive warnings when attempting to use the old methods. After a few minor version releases, when the new code is stabilized, the deprecated code will be removed entirely. Please continue using release v0.3.5 until you have updated your code.

Please feel free to let me know of any problems by filing an issue on Github.

What can the API do? The Eloqua APIs are for the import and export of data from an existing Eloqua instance.

Examples

##Getting started

You need an Eloqua user account with at least Advanced Marketing User or API User permissions.

To work with the bulk API, we start with the Bulk class:

from pyeloqua import Bulk

bulk = Bulk(company='mycompany', username='myusername', password='mypassword')

We can even view some basic information about our Eloqua instance:

bulk.site_id # Eloqua site ID
bulk.user_display # Your displayed username

To work with small batches of form data, use the Form class
NOTE: for large batches of form data that do not need to be close to realtime,
use Bulk for an Activity export

from pyeloqua import Form

form = Form(company='mycompany', username='myusername', password='mypassword',
 form_id=1234)

More examples

There are examples in the /examples directory:

	Export a segment of contacts (Walkthrough, Code)

	Import a set of contacts (Walkthrough, Code)

	Export a set of event data records

	Import a set of event data records

	Export a set of custom object data records

	Import a set of custom object data records

	Export a set of activity data

	Export form submission data via REST API (with the Form class)

Youtube tutorials

Coming soon!

Feature requests

To request a new feature in this package, please open a new issue on the Github repo.
To report problems, please open a new issue on the Github repo.

Contribution

Pull requests are welcomed! All pull requests must have the following:

	OK global score from pylint using PEP8 standards
	This one is a bit loose for now given that the old code is still a mess; once the renovation is complete, we will implement a minimum passing pylint score

	Passing unit tests (nosetests) that cover the included use cases and pass the current tox config

Introduction

This tutorial will show how to use pyeloqua to export a contact segment via the Bulk API.

Setup

Please follow example_setup.md for instructions on properly setting up Python with pyeloqua.

Defining an export

Logging in

Start by calling the Bulk object and telling it we are creating a new export:

from pyeloqua import Bulk

set up a "session" with our Eloqua instance
bulk = Bulk(company='mycompany', username='myusername', password='mypassword')
specify that we want an export of contact records:
bulk.exports('contacts')

Filter by segment

Now we specify to filter contact records by those only in a particular segment:

bulk.asset_exists('segments', asset_id=12345)

The segment ID is in the URL when you open it through the Eloqua interface:

Note: you can specify a segment by name, but since you can have duplicate segment names in Eloqua, using the ID is safer.

Add fields

Add the fields that we want. You can do this by the field’s display name (what you see in the interface) or by the database name:

field_set = ['C_EmailAddress', 'contactID', 'createdAt', 'C_FirstName']

bulk.add_fields(field_set)

In this case, we are adding two system fields (contactID and createdAt) which are always available on the contact. We’re also adding two standard contact fields, C_EmailAddress and C_FirstName.

Send export definition to Eloqua

Now that we’ve defined what we want in the export, we pass that along to Eloqua to create an export definition:

bulk.create_def('my export') # send export info to Eloqua

print(bulk.job_def) # show on-screen the definition as Eloqua interprets it to make sure it is correct

Getting export data

Sync export definition

Right now, Eloqua just has a definition of what we want to export - it hasn’t actually exported our data yet. To do that, we need to sync it to tell Eloqua to prepare the data so we can get it:

bulk.sync()

If it works, we should see success printed on the screen.

Retrieve synced data

Now that the data is ready, we can get it!

contact_records = bulk.get_export_data()

If we want to look at the first record:

print(contact_records[0])

If we want to see all the records:

for contact in contact_records:
 print(contact)

Writing the data to a file

Normally, if we’re using Python to automate some sort of data process, we won’t need to put our data in a “flat file” - we would just process it and re-import back to Eloqua.

If we do need to write it to a file, there are several tutorials online that show how to export to a CSV or JSON file.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

