

pyelasticsearch

[image: Build Status]
 [https://travis-ci.org/pyelasticsearch/pyelasticsearch]pyelasticsearch is a clean, future-proof, high-scale API to elasticsearch. It
provides…

	Transparent conversion of Python data types to and from JSON, including
datetimes and the arbitrary-precision Decimal type

	Translation of HTTP failure status codes into exceptions

	Connection pooling

	HTTP basic auth and HTTPS support

	Load balancing across nodes in a cluster

	Failed-node marking to avoid downed nodes for a period

	Optional automatic retrying of failed requests

	Thread safety

	Loosely coupled design, letting you customize things like JSON encoding and
bulk indexing

For more on our philosophy and history, see Comparison with elasticsearch-py, the “Official Client”.

A Taste of the API

Make a pooling, balancing, all-singing, all-dancing connection object:

>>> from pyelasticsearch import ElasticSearch
>>> es = ElasticSearch('http://localhost:9200/')

Index a document:

>>> es.index('contacts',
... 'person',
... {'name': 'Joe Tester', 'age': 25, 'title': 'QA Master'},
... id=1)
{u'_type': u'person', u'_id': u'1', u'ok': True, u'_version': 1, u'_index': u'contacts'}

Index a couple more documents, this time in a single request using the
bulk-indexing API:

>>> docs = [{'id': 2, 'name': 'Jessica Coder', 'age': 32, 'title': 'Programmer'},
... {'id': 3, 'name': 'Freddy Tester', 'age': 29, 'title': 'Office Assistant'}]
>>> es.bulk((es.index_op(doc, id=doc.pop('id')) for doc in docs),
... index='contacts',
... doc_type='person')

If we had many documents and wanted to chunk them for performance,
bulk_chunks() would easily rise to the task,
dividing either at a certain number of documents per batch or, for curated
platforms like Google App Engine, at a certain number of bytes. Thanks to
the decoupled design, you can even substitute your own batching function if
you have unusual needs. Bulk indexing is the most demanding ES task in most
applications, so we provide very thorough tools for representing operations,
optimizing wire traffic, and dealing with errors. See
bulk() for more.

Refresh the index to pick up the latest:

>>> es.refresh('contacts')
{u'ok': True, u'_shards': {u'successful': 5, u'failed': 0, u'total': 10}}

Get just Jessica’s document:

>>> es.get('contacts', 'person', 2)
{u'_id': u'2',
 u'_index': u'contacts',
 u'_source': {u'age': 32, u'name': u'Jessica Coder', u'title': u'Programmer'},
 u'_type': u'person',
 u'_version': 1,
 u'exists': True}

Perform a simple search:

>>> es.search('name:joe OR name:freddy', index='contacts')
{u'_shards': {u'failed': 0, u'successful': 42, u'total': 42},
 u'hits': {u'hits': [{u'_id': u'1',
 u'_index': u'contacts',
 u'_score': 0.028130024999999999,
 u'_source': {u'age': 25,
 u'name': u'Joe Tester',
 u'title': u'QA Master'},
 u'_type': u'person'},
 {u'_id': u'3',
 u'_index': u'contacts',
 u'_score': 0.028130024999999999,
 u'_source': {u'age': 29,
 u'name': u'Freddy Tester',
 u'title': u'Office Assistant'},
 u'_type': u'person'}],
 u'max_score': 0.028130024999999999,
 u'total': 2},
 u'timed_out': False,
 u'took': 4}

Perform a search using the elasticsearch query DSL [http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html]:

>>> query = {
... 'query': {
... 'filtered': {
... 'query': {
... 'query_string': {'query': 'name:tester'}
... },
... 'filter': {
... 'range': {
... 'age': {
... 'from': 27,
... 'to': 37,
... },
... },
... },
... },
... },
... }
>>> es.search(query, index='contacts')
{u'_shards': {u'failed': 0, u'successful': 42, u'total': 42},
 u'hits': {u'hits': [{u'_id': u'3',
 u'_index': u'contacts',
 u'_score': 0.19178301,
 u'_source': {u'age': 29,
 u'name': u'Freddy Tester',
 u'title': u'Office Assistant'},
 u'_type': u'person'}],
 u'max_score': 0.19178301,
 u'total': 1},
 u'timed_out': False,
 u'took': 2}

Delete the index:

>>> es.delete_index('contacts')
{u'acknowledged': True, u'ok': True}

For more, see the full API Documentation.

Contents

	Features
	JSON Conversion

	Connection Pooling

	Load-balancing and Failover

	Forward-Compatibility Kwargs

	API Documentation
	A Word About Forward-Compatibility Kwargs

	ElasticSearch Class

	Error Handling

	Debugging

	Comparison with elasticsearch-py, the “Official Client”
	Which Should You Use?

	Migrating From pyes

	Changelog
	v1.4.1 (2018-04-02)

	v1.4

	v1.3

	v1.2.4 (2015-05-21)

	v1.2.3 (2015-04-17)

	v1.2.2 (2015-04-10)

	v1.2.1 (2015-04-09)

	v1.2 (2015-03-06)

	v1.1 (2015-02-12)

	v1.0 (2015-01-23)

	v0.7.1 (2014-08-12)

	v0.7 (2014-08-12)

	v0.6.1 (2013-11-01)

	v0.6 (2013-07-23)

	v0.5 (2013-04-20)

	v0.4.1 (2013-03-25)

	v0.4 (2013-03-19)

	v0.3 (2013-01-10)

	v0.2 (2012-10-06)

	v0.1 (2012-08-30)

	Development Notes
	Testing

	Documentation

	Philosophy

Indices and tables

	Index

	Module Index

	Search Page

Features

JSON Conversion

pyelasticsearch converts transparently between Python datastructures and JSON.

	In request bodies, all the standard conversions are made: strings, numeric
types, nulls, etc.

	We convert datetime and date instances to the format ES understands:
2012-02-23T14:26:01. date objects are taken to represent midnight on
their day.

	Python sets are converted to ES lists.

You can customize JSON conversion by setting the
json_encoder attribute on an
ElasticSearch object.

Connection Pooling

Connection pooling saves setting up a whole new TCP connection for each ES
request, dropping latency by an order of magnitude. The ElasticSearch object is
thread-safe; to take best advantage of connection pooling, create one instance,
and share it among all threads. At most, the object will hold a number of
connections to each node equal to the number of threads.

Load-balancing and Failover

An ElasticSearch object can take a list of node URLs
on construction. This lets us balance load and maintain availability when
nodes go down: pyelasticsearch will randomly choose a server URL for each
request. If a node fails to respond before a timeout period elapses, it is
assumed down and not tried again for awhile. Meanwhile, pyelasticsearch will
retry the request on a different node if max_retries was set to something
greater than zero at construction. If all nodes are marked as down,
pyelasticsearch will loosen its standards and try sending requests to them,
marking them alive if they respond.

Forward-Compatibility Kwargs

All methods that correspond to ES calls take an arbitrary set of kwargs that
can be used to pass query string parameters directly to ES. Certain kwargs
(called out by the @es_kwargs decorator) are explicitly recognized as being
claimed by ES and will never be trod upon by future versions of
pyelasticsearch. To avoid conflicts, kwargs not yet so recognized should have
“es_” prepended by the caller. pyelasticsearch will strip off the “es_” and
pass the rest along to ES unscathed. Ideally, we’ll then add explicit
recognition of those args in a future release.

These “pass-through” kwargs are converted to text as follows:

	Bools

	True: “true”
False: “false”

	Strings

	Passed unmolested

	Ints, longs, and floats

	Converted to strings via str()

	Lists and tuples

	Joined with commas, e.g. ['one-index', 'two-index'] becomes
one-index,two-index

	Datetimes and dates

	Datetimes are converted to ISO strings, like 2001-12-25T13:04:56,
dates convert to midnight: 2001-12-25T00:00:00.

Anything else raises a TypeError.

API Documentation

A Word About Forward-Compatibility Kwargs

In the following documentation, the phrase “other kwargs listed below” refers
to the kwargs documented in a subsequent Parameters section. However, it also
implicitly includes any kwargs the caller might care to make up and have passed
to ES as query string parameters. These kwargs must start with es_ for
forward compatibility and will be unprefixed and converted to strings as
discussed in Features.

ElasticSearch Class

Unless otherwise indicated, methods return the JSON-decoded response sent by
elasticsearch. This way, you don’t lose any part of the return value, no matter
how esoteric. But fear not: if there was an error, an exception will be raised,
so it’ll be hard to miss.

	
class pyelasticsearch.ElasticSearch(urls='http://localhost', timeout=60, max_retries=0, port=9200, username=None, password=None, ca_certs='/home/docs/checkouts/readthedocs.org/user_builds/pyelasticsearch/envs/latest/local/lib/python2.7/site-packages/certifi/cacert.pem', client_cert=None)

	An object which manages connections to elasticsearch and acts as a
go-between for API calls to it

This object is thread-safe. You can create one instance and share it
among all threads.

	Parameters

	
	urls – A URL or iterable of URLs of ES nodes. These can be full
URLs with port numbers, like
http://elasticsearch.example.com:9200, or you can pass the
port separately using the port kwarg. To do HTTP basic
authentication, you can use RFC-2617-style URLs like
http://someuser:somepassword@example.com:9200 or the separate
username and password kwargs below.

	timeout – Number of seconds to wait for each request before raising
Timeout

	max_retries – How many other servers to try, in series, after a
request times out or a connection fails

	username – Authentication username to send via HTTP basic auth

	password – Password to use in HTTP basic auth. If a username and
password are embedded in a URL, those are favored.

	port – The default port to connect on, for URLs that don’t include
an explicit port

	ca_certs – A path to a bundle of CA certificates to trust. The
default is to use Mozilla’s bundle, the same one used by Firefox.

	client_cert – A certificate to authenticate the client to the
server

	
json_encoder = <class 'pyelasticsearch.client.JsonEncoder'>

	You can set this attribute on an instance to customize JSON encoding.
The stock JsonEncoder class maps Python datetimes to ES-style datetimes
and Python sets to ES lists. You can subclass it to add more.

Bulk Indexing Methods

	
class pyelasticsearch.ElasticSearch

	
	
bulk(actions, index=None, doc_type=None[, other kwargs listed below])

	Perform multiple index, delete, create, or update actions per request.

Used with helper routines index_op(), delete_op(), and
update_op(), this provides an efficient, readable way to do
large-scale changes. This contrived example illustrates the structure:

es.bulk([es.index_op({'title': 'All About Cats', 'pages': 20}),
 es.index_op({'title': 'And Rats', 'pages': 47}),
 es.index_op({'title': 'And Bats', 'pages': 23})],
 doc_type='book',
 index='library')

More often, you’ll want to index (or delete or update) a larger number
of documents. In those cases, yield your documents from a generator,
and use bulk_chunks() to divide them into
multiple requests:

from pyelasticsearch import bulk_chunks

def documents():
 for book in books:
 yield es.index_op({'title': book.title, 'pages': book.pages})
 # index_op() also takes kwargs like index= and id= in case
 # you want more control.
 #
 # You could also yield some delete_ops or update_ops here.

bulk_chunks() breaks your documents into smaller requests for speed:
for chunk in bulk_chunks(documents(),
 docs_per_chunk=500,
 bytes_per_chunk=10000):
 # We specify a default index and doc type here so we don't
 # have to repeat them in every operation:
 es.bulk(chunk, doc_type='book', index='library')

	Parameters

	
	actions – An iterable of bulk actions, generally the output of
bulk_chunks() but sometimes a list
of calls to index_op(), delete_op(), and
update_op() directly. Specifically, an iterable of
JSON-encoded bytestrings that can be joined with newlines and
sent to ES.

	index – Default index to operate on

	doc_type – Default type of document to operate on. Cannot be
specified without index.

	consistency – See the ES docs.

	refresh – See the ES docs.

	replication – See the ES docs.

	routing – See the ES docs.

	timeout – See the ES docs.

Return the decoded JSON response on success.

Raise BulkError if any of the
individual actions fail. The exception provides enough about the
failed actions to identify them for retrying.

Sometimes there is an error with the request in general, not with
any individual actions. If there is a connection error, timeout,
or other transport error, a more general exception will be raised, as
with other methods; see Error Handling.

See ES’s bulk API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html] for more detail.

	
index_op(doc, doc_type=None, overwrite_existing=True, **meta)

	Return a document-indexing operation that can be passed to
bulk(). (See there for examples.)

Specifically, return a 2-line, JSON-encoded bytestring.

	Parameters

	
	doc – A mapping of property names to values.

	doc_type – The type of the document to index, if different from
the one you pass to bulk()

	overwrite_existing – Whether we should overwrite existing
documents of the same ID and doc type. (If False, this does a
create operation.)

	meta – Other args controlling how the document is indexed,
like id (most common), index (next most common),
version, and routing. See ES’s bulk API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html] for details on
these.

	
delete_op(doc_type=None, **meta)

	Return a document-deleting operation that can be passed to
bulk().

def actions():
 ...
 yield es.delete_op(id=7)
 yield es.delete_op(id=9,
 index='some-non-default-index',
 doc_type='some-non-default-type')
 ...

es.bulk(actions(), ...)

Specifically, return a JSON-encoded bytestring.

	Parameters

	
	doc_type – The type of the document to delete, if different
from the one passed to bulk()

	meta – A description of what document to delete and how to do it.
Example: {"index": "library", "id": 2, "version": 4}. See
ES’s bulk API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html] for a list of all the options.

	
update_op(doc=None, doc_type=None, upsert=None, doc_as_upsert=None, script=None, params=None, lang=None, **meta)

	Return a document-updating operation that can be passed to
bulk().

def actions():
 ...
 yield es.update_op(doc={'pages': 4},
 id=7,
 version=21)
 ...

es.bulk(actions(), ...)

Specifically, return a JSON-encoded bytestring.

	Parameters

	
	doc – A partial document to be merged into the existing document

	doc_type – The type of the document to update, if different
from the one passed to bulk()

	upsert – The content for the new document created if the
document does not exist

	script – The script to be used to update the document

	params – A dict of the params to be put in scope of the script

	lang – The language of the script. Omit to use the default,
specified by script.default_lang.

	meta – Other args controlling what document to update and how
to do it, like id, index, and retry_on_conflict,
destined for the action line itself rather than the payload. See
ES’s bulk API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html] for details on these.

	
bulk_index(index, doc_type, docs, id_field='id', parent_field='_parent'[, other kwargs listed below])

	Index a list of documents as efficiently as possible.

Note

This is deprecated in favor of bulk(), which supports all
types of bulk actions, not just indexing, is compatible with
bulk_chunks() for batching, and has a
simpler, more flexible design.

	Parameters

	
	index – The name of the index to which to add the document. Pass
None if you will specify indices individual in each doc.

	doc_type – The type of the document

	docs – An iterable of Python mapping objects, convertible to JSON,
representing documents to index

	id_field – The field of each document that holds its ID. Removed
from document before indexing.

	parent_field – The field of each document that holds its parent ID,
if any. Removed from document before indexing.

	index_field – The field of each document that holds the index to
put it into, if different from the index arg. Removed from
document before indexing.

	type_field – The field of each document that holds the doc type it
should become, if different from the doc_type arg. Removed from
the document before indexing.

	consistency – See the ES docs.

	refresh – See the ES docs.

	replication – See the ES docs.

	routing – See the ES docs.

	timeout – See the ES docs.

Raise BulkError if the request as
a whole succeeded but some of the individual actions failed. You can
pull enough about the failed actions out of the exception to identify
them for retrying.

See ES’s bulk API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html] for more detail.

There’s also a helper function, outside the ElasticSearch class:

	
pyelasticsearch.bulk_chunks(actions, docs_per_chunk=300, bytes_per_chunk=None)

	Return groups of bulk-indexing operations to send to
bulk().

Return an iterable of chunks, each of which is a JSON-encoded line or pair
of lines in the format understood by ES’s bulk API.

	Parameters

	
	actions – An iterable of bulk actions, JSON-encoded. The best idea is
to pass me a list of the outputs from
index_op(),
delete_op(), and
update_op().

	docs_per_chunk – The number of documents (or, more technically,
actions) to put in each chunk. Set to None to use only
bytes_per_chunk.

	bytes_per_chunk – The maximum number of bytes of HTTP body payload to
put in each chunk. Leave at None to use only docs_per_chunk. This
option helps prevent timeouts when you have occasional very large
documents. Without it, you may get unlucky: several large docs might
land in one chunk, and ES might time out.

Chunks are capped by docs_per_chunk or bytes_per_chunk, whichever
is reached first. Obviously, we cannot make a chunk to smaller than its
smallest doc, but we do the best we can. If both docs_per_chunk and
bytes_per_chunk are None, all docs end up in one big chunk (and you
might as well not use this at all).

Other Methods

	
class pyelasticsearch.ElasticSearch

	
	
aliases(index=None[, other kwargs listed below])

	

	
close_index(index)

	Close an index.

	Parameters

	index – The index to close

See ES’s close-index API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-open-close.html] for more detail.

	
cluster_state(metric='_all', index='_all'[, other kwargs listed below])

	Return state information about the cluster.

	Parameters

	
	metric – Which metric to return: one of “version”, “master_node”,
“nodes”, “routing_table”, “meatadata”, or “blocks”, an iterable
of them, or a comma-delimited string of them. Defaults to all
metrics.

	index – An index or iterable of indexes to return info about

	local – See the ES docs.

See ES’s cluster-state API [http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html] for more detail.

	
count(query[, other kwargs listed below])

	Execute a query against one or more indices and get hit count.

	Parameters

	
	query – A dictionary that will convert to ES’s query DSL or a
string that will serve as a textual query to be passed as the q
query string parameter

	index – An index or iterable of indexes to search. Omit to search
all.

	doc_type – A document type or iterable thereof to search. Omit to
search all.

	df – See the ES docs.

	analyzer – See the ES docs.

	default_operator – See the ES docs.

	source – See the ES docs.

	routing – See the ES docs.

See ES’s count API [http://www.elastic.co/guide/en/elasticsearch/reference/current/search-count.html] for more detail.

	
create_index(index, settings=None)

	Create an index with optional settings.

	Parameters

	
	index – The name of the index to create

	settings – A dictionary of settings

If the index already exists, raise
IndexAlreadyExistsError.

See ES’s create-index API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html] for more detail.

	
delete(index, doc_type, id[, other kwargs listed below])

	Delete a typed JSON document from a specific index based on its ID.

	Parameters

	
	index – The name of the index from which to delete

	doc_type – The type of the document to delete

	id – The (string or int) ID of the document to delete

	routing – See the ES docs.

	parent – See the ES docs.

	replication – See the ES docs.

	consistency – See the ES docs.

	refresh – See the ES docs.

See ES’s delete API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-delete.html] for more detail.

	
delete_all_indexes()

	Delete all indexes.

	
delete_all(index, doc_type[, other kwargs listed below])

	Delete all documents of the given doc type from an index.

	Parameters

	
	index – The name of the index from which to delete. ES does not
support this being empty or “_all” or a comma-delimited list of
index names (in 0.19.9).

	doc_type – The name of a document type

	routing – See the ES docs.

	parent – See the ES docs.

	replication – See the ES docs.

	consistency – See the ES docs.

	refresh – See the ES docs.

See ES’s delete API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-delete.html] for more detail.

	
delete_by_query(index, doc_type, query[, other kwargs listed below])

	Delete typed JSON documents from a specific index based on query.

	Parameters

	
	index – An index or iterable thereof from which to delete

	doc_type – The type of document or iterable thereof to delete

	query – A dictionary that will convert to ES’s query DSL or a
string that will serve as a textual query to be passed as the q
query string parameter. (Passing the q kwarg yourself is
deprecated.)

	q – See the ES docs.

	df – See the ES docs.

	analyzer – See the ES docs.

	default_operator – See the ES docs.

	sourcerouting – See the ES docs.

	replication – See the ES docs.

	consistency – See the ES docs.

See ES’s delete-by-query API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-delete-by-query.html] for more detail.

	
delete_index(index)

	Delete an index.

	Parameters

	index – An index or iterable thereof to delete

If the index is not found, raise
ElasticHttpNotFoundError.

See ES’s delete-index API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-delete-index.html] for more detail.

	
flush(index=None[, other kwargs listed below])

	Flush one or more indices (clear memory).

	Parameters

	
	index – An index or iterable of indexes

	refresh – See the ES docs.

See ES’s flush API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-flush.html] for more detail.

	
gateway_snapshot(index=None)

	Gateway snapshot one or more indices.

	Parameters

	index – An index or iterable of indexes

See ES’s gateway-snapshot API [http://www.elasticsearch.org/guide/reference/api/admin-indices-gateway-snapshot.html] for more detail.

	
get(index, doc_type, id[, other kwargs listed below])

	Get a typed JSON document from an index by ID.

	Parameters

	
	index – The name of the index from which to retrieve

	doc_type – The type of document to get

	id – The ID of the document to retrieve

	realtime – See the ES docs.

	fields – See the ES docs.

	routing – See the ES docs.

	preference – See the ES docs.

	refresh – See the ES docs.

See ES’s get API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-get.html] for more detail.

	
get_mapping(index=None, doc_type=None)

	Fetch the mapping definition for a specific index and type.

	Parameters

	
	index – An index or iterable thereof

	doc_type – A document type or iterable thereof

Omit both arguments to get mappings for all types and indexes.

See ES’s get-mapping API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html] for more detail.

	
get_settings(index[, other kwargs listed below])

	Get the settings of one or more indexes.

	Parameters

	index – An index or iterable of indexes

See ES’s get-settings API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-settings.html] for more detail.

	
health(index=None[, other kwargs listed below])

	Report on the health of the cluster or certain indices.

	Parameters

	
	index – The index or iterable of indexes to examine

	level – See the ES docs.

	wait_for_status – See the ES docs.

	wait_for_relocating_shards – See the ES docs.

	wait_for_nodes – See the ES docs.

	timeout – See the ES docs.

See ES’s cluster-health API [http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html] for more detail.

	
index(index, doc_type, doc, id=None, overwrite_existing=True[, other kwargs listed below])

	Put a typed JSON document into a specific index to make it searchable.

	Parameters

	
	index – The name of the index to which to add the document

	doc_type – The type of the document

	doc – A Python mapping object, convertible to JSON, representing
the document

	id – The ID to give the document. Leave blank to make one up.

	overwrite_existing – Whether we should overwrite existing documents
of the same ID and doc type

	routing – A value hashed to determine which shard this indexing
request is routed to

	parent – The ID of a parent document, which leads this document to
be routed to the same shard as the parent, unless routing
overrides it.

	timestamp – An explicit value for the (typically automatic)
timestamp associated with a document, for use with ttl and such

	ttl – The time until this document is automatically removed from
the index. Can be an integral number of milliseconds or a duration
like ‘1d’.

	percolate – An indication of which percolator queries, registered
against this index, should be checked against the new document: ‘*’
or a query string like ‘color:green’

	consistency – An indication of how many active shards the contact
node should demand to see in order to let the index operation
succeed: ‘one’, ‘quorum’, or ‘all’

	replication – Set to ‘async’ to return from ES before finishing
replication.

	refresh – Pass True to refresh the index after adding the document.

	timeout – A duration to wait for the relevant primary shard to
become available, in the event that it isn’t: for example, “5m”

	fields – See the ES docs.

See ES’s index API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html] for more detail.

	
more_like_this(index, doc_type, id, fields, body=''[, other kwargs listed below])

	Execute a “more like this” search query against one or more fields and
get back search hits.

	Parameters

	
	index – The index to search and where the document for comparison
lives

	doc_type – The type of document to find others like

	id – The ID of the document to find others like

	mlt_fields – The list of fields to compare on

	body – A dictionary that will convert to ES’s query DSL and be
passed as the request body

	search_type – See the ES docs.

	search_indices – See the ES docs.

	search_types – See the ES docs.

	search_scroll – See the ES docs.

	search_size – See the ES docs.

	search_from – See the ES docs.

	like_text – See the ES docs.

	percent_terms_to_match – See the ES docs.

	min_term_freq – See the ES docs.

	max_query_terms – See the ES docs.

	stop_words – See the ES docs.

	min_doc_freq – See the ES docs.

	max_doc_freq – See the ES docs.

	min_word_len – See the ES docs.

	max_word_len – See the ES docs.

	boost_terms – See the ES docs.

	boost – See the ES docs.

	analyzer – See the ES docs.

See ES’s more-like-this API [http://www.elastic.co/guide/en/elasticsearch/reference/current/search-more-like-this.html] for more detail.

	
multi_get(ids, index=None, doc_type=None, fields=None[, other kwargs listed below])

	Get multiple typed JSON documents from ES.

	Parameters

	
	ids – An iterable, each element of which can be either an a dict or
an id (int or string). IDs are taken to be document IDs. Dicts are
passed through the Multi Get API essentially verbatim, except that
any missing _type, _index, or fields keys are filled in
from the defaults given in the doc_type, index, and
fields args.

	index – Default index name from which to retrieve

	doc_type – Default type of document to get

	fields – Default fields to return

See ES’s Multi Get API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-multi-get.html] for more detail.

	
open_index(index)

	Open an index.

	Parameters

	index – The index to open

See ES’s open-index API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-open-close.html] for more detail.

	
optimize(index=None[, other kwargs listed below])

	Optimize one or more indices.

	Parameters

	
	index – An index or iterable of indexes

	max_num_segments – See the ES docs.

	only_expunge_deletes – See the ES docs.

	refresh – See the ES docs.

	flush – See the ES docs.

	wait_for_merge – See the ES docs.

See ES’s optimize API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-optimize.html] for more detail.

	
percolate(index, doc_type, doc[, other kwargs listed below])

	Run a JSON document through the registered percolator queries, and
return which ones match.

	Parameters

	
	index – The name of the index to which the document pretends to
belong

	doc_type – The type the document should be treated as if it has

	doc – A Python mapping object, convertible to JSON, representing
the document

	routing – See the ES docs.

	preference – See the ES docs.

	ignore_unavailable – See the ES docs.

	percolate_format – See the ES docs.

Use index() to register percolators. See ES’s percolate API [http://www.elastic.co/guide/en/elasticsearch/reference/current/search-percolate.html#_percolate_api]
for more detail.

	
put_mapping(index, doc_type, mapping[, other kwargs listed below])

	Register specific mapping definition for a specific type against one or
more indices.

	Parameters

	
	index – An index or iterable thereof

	doc_type – The document type to set the mapping of

	mapping – A dict representing the mapping to install. For example,
this dict can have top-level keys that are the names of doc types.

	ignore_conflicts – See the ES docs.

See ES’s put-mapping API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-put-mapping.html] for more detail.

	
refresh(index=None)

	Refresh one or more indices.

	Parameters

	index – An index or iterable of indexes

See ES’s refresh API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-refresh.html] for more detail.

	
search(query[, other kwargs listed below])

	Execute a search query against one or more indices and get back search
hits.

	Parameters

	
	query – A dictionary that will convert to ES’s query DSL or a
string that will serve as a textual query to be passed as the q
query string parameter

	index – An index or iterable of indexes to search. Omit to search
all.

	doc_type – A document type or iterable thereof to search. Omit to
search all.

	size – Limit the number of results to size. Use with es_from to
implement paginated searching.

	routing – See the ES docs.

See ES’s search API [http://www.elastic.co/guide/en/elasticsearch/reference/current/_the_search_api.html] for more detail.

	
send_request(method, path_components, body='', query_params=None)

	Send an HTTP request to ES, and return the JSON-decoded response.

This is mostly an internal method, but it also comes in handy if you
need to use a brand new ES API that isn’t yet explicitly supported by
pyelasticsearch, while still taking advantage of our connection pooling
and retrying.

Retry the request on different servers if the first one is down and
the max_retries constructor arg was > 0.

On failure, raise an
ElasticHttpError, a
ConnectionError, or a
Timeout.

	Parameters

	
	method – An HTTP method, like “GET”

	path_components – An iterable of path components, to be joined by
“/”

	body – A map of key/value pairs to be sent as the JSON request
body. Alternatively, a string to be sent verbatim, without further
JSON encoding.

	query_params – A map of querystring param names to values or
None

	
status(index=None[, other kwargs listed below])

	Retrieve the status of one or more indices

	Parameters

	
	index – An index or iterable thereof

	recovery – See the ES docs.

	snapshot – See the ES docs.

See ES’s index-status API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-status.html] for more detail.

	
update(index, doc_type, id, script[, other kwargs listed below])

	Update an existing document. Raise TypeError if script, doc
and upsert are all unspecified.

	Parameters

	
	index – The name of the index containing the document

	doc_type – The type of the document

	id – The ID of the document

	script – The script to be used to update the document

	params – A dict of the params to be put in scope of the script

	lang – The language of the script. Omit to use the default,
specified by script.default_lang.

	doc – A partial document to be merged into the existing document

	upsert – The content for the new document created if the document
does not exist

	doc_as_upsert – The provided document will be inserted if the
document does not already exist

	routing – See the ES docs.

	parent – See the ES docs.

	timeout – See the ES docs.

	replication – See the ES docs.

	consistency – See the ES docs.

	percolate – See the ES docs.

	refresh – See the ES docs.

	retry_on_conflict – See the ES docs.

	fields – See the ES docs.

See ES’s Update API [http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update.html] for more detail.

	
update_aliases(settings[, other kwargs listed below])

	Atomically add, remove, or update aliases in bulk.

	Parameters

	actions – A list of the actions to perform

See ES’s indices-aliases API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html].

	
update_all_settings(settings)

	Update the settings of all indexes.

	Parameters

	settings – A dictionary of settings

See ES’s update-settings API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html] for more detail.

	
update_settings(index, settings)

	Change the settings of one or more indexes.

	Parameters

	
	index – An index or iterable of indexes

	settings – A dictionary of settings

See ES’s update-settings API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html] for more detail.

Error Handling

Any method representing an ES API call can raise one of the following
exceptions:

	
exception pyelasticsearch.exceptions.ConnectionError

	Exception raised there is a connection error and we are out of retries.
(See the max_retries argument to ElasticSearch.)

	
exception pyelasticsearch.exceptions.Timeout

	Exception raised when an HTTP request times out and we are out of
retries. (See the max_retries argument to ElasticSearch.)

	
exception pyelasticsearch.exceptions.BulkError

	Exception raised when one or more bulk actions fail

You can extract document IDs from these to retry them.

	
errors

	Return a list of actions that failed, in the format emitted by ES:

{"index" : {
 "_index" : "test",
 "_type" : "type1",
 "_id" : "1",
 "status" : 409,
 "error" : "VersionConflictEngineException[[test][2] [type1][1]: version conflict, current [3], provided [2]]"
 }
},
{"update" : {
 "_index" : "index1",
 "_type" : "type1",
 "_id" : "1",
 "status" : 404,
 "error" : "DocumentMissingException[[index1][-1] [type1][1]: document missing]"
 }
},
...

	
successes

	Return a list of actions that succeeded, in the same format as
errors().

	
exception pyelasticsearch.exceptions.ElasticHttpError

	Exception raised when ES returns a non-OK (>=400) HTTP status code

	
error

	A string error message

	
status_code

	The HTTP status code of the response that precipitated the error

	
exception pyelasticsearch.exceptions.ElasticHttpNotFoundError

	Exception raised when a request to ES returns a 404

	
exception pyelasticsearch.exceptions.IndexAlreadyExistsError

	Exception raised on an attempt to create an index that already exists

	
exception pyelasticsearch.exceptions.InvalidJsonResponseError

	Exception raised in the unlikely event that ES returns a non-JSON response

	
input

	Return the data we attempted to convert to JSON.

Debugging

pyelasticsearch logs to the elasticsearch.trace logger using the Python
logging module. If you configure that to show INFO-level messages, then it’ll
show the requests in curl form and their responses. To see when a server is
marked as dead, follow the elasticsearch logger.

import logging

logging.getLogger('elasticsearch.trace').setLevel(logging.INFO)
logging.getLogger('elasticsearch').setLevel(logging.INFO)

Note

This assumes that logging is already set up with something like this:

import logging

logging.basicConfig()

pyelasticsearch will log lines like:

INFO:elasticsearch.trace: curl
-XGET 'http://localhost:9200/fooindex/testdoc/_search' -d '{"fa
cets": {"topics": {"terms": {"field": "topics"}}}}'

You can copy and paste the curl line, and it’ll work on the command line.

Comparison with elasticsearch-py, the “Official Client”

pyelasticsearch was created before Elasticsearch-the-company provided its own
client libraries for anything other than Java. There was no reliable,
large-scale ES client for Python: pyes was closest, but it suffered from
unreliability and pervasive weirdness, like closing sockets in __del__ and
doing things which were obvious no-ops. We adapted pyelasticsearch from an
older, very simple client library and gave it a complete API overhaul in
version 0.2, inspired by the principles of poetic API design [https://www.youtube.com/watch?v=JQYnFyG7A8c].

Elasticsearch-the-company later created its own clients, with a strong leaning
toward keeping them similar across languages for ease of support and
maintenance. The upside is that their libraries always support the latest ES
features, down to every last nook and cranny, because the relevant parts are
autogenerated from a generic API description language. The downside is that
they feel autogenerated: some things end up less than Pythonic.

Which Should You Use?

The official Python client borrows much design—and code—from pyelasticsearch.
Starting in 1.0, we return the favor, using elasticsearch-py’s transport layer
rather than maintaining our own. The important differences remain at the API
level.

In general, pyelasticsearch focuses on…

	Pythonic-ness

pyelasticsearch is designed to feel elegant to the caller. For example, we
strive for symmetry: creating an index is es.create(), and searching one
is es.search(). In elasticsearch-py, creating an index is
nested inside es.indices.create(<index name>), an artifact of code
organization. The tradeoff for added design thought is that the project moves slower.

	Good defaults and simple interfaces

For example, there is only a single transport, HTTP(S), but it is almost
always the right one. Thrift, the leading alternative, yields a 15% speed
boost but only when using many small requests. It doesn’t help at all for
bulk indexing, where speed is most often a concern, and it complicates
troubleshooting, proxying, and setup. In fact, it’s deprecated in ES 1.5 and
will be removed in 2.0.

For another example, if you use an HTTPS URL, the authenticity of the server
certificate will be automatically verified using Mozilla’s certificate
authority store. You neither have to manually enable verification nor
provide your own store.

The tradeoff here is that we don’t expose as many knobs to twiddle as the
official client. If you have unusual needs, like using self-signed SSL
certificates, we might not be for you. Otherwise, you can enjoy less verbose
code.

	Safety

If something fails, it always raises an exception, making it hard to
accidentally ignore. elasticsearch-py doesn’t always do this: you need to
check for errors explicitly when using its bulk indexing helper, for example.

In addition, data loss is hard to stumble into; we put up guiderails. For
example, calling the update-settings API with no indices would, if we simply
followed the ES REST API, update all indices, a far-reaching destructive
action caused by an omission. We require the explicit use of an
update_all_settings() method if you want to do this.

	Better documentation

You should never need to read the source code to figure out what to do. In
order to twiddle many of the aforementioned knobs in elasticsearch-py, you
must squirrel kwargs down through multiple undocumented layers, from
constructor to constructor, until something finally understands them. On the
way, it’s often unclear what’s public and what’s private.

Our top-level docs are comprehensive with regard to our API, we link to the
ES docs for details about their system, and we try to respect the Law of
Demeter in our layering.

Conversely, elasticsearch-py focuses on…

	Exhaustive functionality

It provides explicit hooks into every corner of ES and keeps up to date with
ES releases.

Our strategy is to provide Forward-Compatibility Kwargs (which
elasticsearch-py adopted as well) and
send_request() for the period between
an ES release and when we design APIs for its new features.

	Cross-language homogeneity

If you’re using ES from multiple languages every day, you might enjoy an API
that looks similar across them.

Conversely, we aim for idiomatic Python.

Migrating From pyes

Moving your project from pyes to pyelasticsearch is easy, especially
for simple use cases. Here are some code changes that will aid your porting.

	pyelasticsearch requires requests 1.x. Breaking changes were
introduced in requests 1.0, so if your project was using a previous
version, you may need to update your code. Most likely, you just need to
change response.json to response.json().

	Instantiating the client should be as simple as changing the invocation…

pyes.ES(host, **kwargs)

…to…

pyelasticsearch.ElasticSearch(host, **kwargs)

	pyelasticsearch has no method create_index_if_missing. Instead,
you’ll need catch the exception manually:

try:
 connection.create_index(index='already_existing_index')
except pyelasticsearch.IndexAlreadyExistsError as ex:
 print 'Index already exists, moving on...'

	Instead of using pyes’s _send_request, use
send_request(). This also requires the
path to be passed as an iterable instead of a string. For example…

es._send_request('POST', 'my_index/my_doc_type', body)

…becomes…

connection.send_request('POST', ['my_index', 'my_doc_type'], body)

	The indices keyword argument in pyes turns to index in
pyelasticsearch, whether the method takes multiple indices or not.

	The doc_types keyword argument in pyes turns to doc_type in
pyelasticsearch.

	get() will raise
ElasticHttpNotFoundError if
the requested documents are not found.

	pyes expects arguments to index to be in a
different order than our index(). The
document to be indexed needs to be moved from the first positional argument
to the third.

	send_request() will raise an error if
the response can’t be converted to JSON. If you expect that a response will
not be JSON, catch the exception and inspect the status code. For example…

connection = ElasticSearch(host)
try:
 # Check for the existence of the "pycon" index:
 connection.send_request('HEAD', ['pycon'])
except InvalidJsonResponseError as exc:
 if exc.response.status_code == 200:
 print 'The index exists!'

	If using search_raw from pyes, you can use
search() and, if necessary, rename
the keyword arguments.

Changelog

v1.4.1 (2018-04-02)

	Recognize new “index already exists” spelling so we raise the right
exceptions. Close #195.

	Fix CI setup.

	Drop Python 2.6 support.

	Drop nose for testing.

v1.4

	Add support for custom certificate authorities via the ca_certs arg to
the ElasticSearch constructor.

	Add support for client certificates via the client_cert arg.

v1.3

	Add support for HTTPS.

	Add username, password, and port kwargs to the constructor so you don’t have
to repeat their values if they’re the same across many servers.

v1.2.4 (2015-05-21)

	Don’t crash when the query_params kwarg is omitted from calls to
send_request().

v1.2.3 (2015-04-17)

	Make delete_all_indexes() work.

	Fix a bug in which specifying _all as an index name sometimes caused
doctype names to be treated as index names.

v1.2.2 (2015-04-10)

	Correct a typo in the bulk() docs.

v1.2.1 (2015-04-09)

	Update ES doc links, now that Elastic has changed domains and reorganized
its docs.

	Require elasticsearch lib 1.3 or greater, as that’s when it started exposing
ConnectionTimeout.

v1.2 (2015-03-06)

	Make sure the Content-Length header gets set when calling create_index()
with no explicit settings arg. This solves 411s when using nginx as a
proxy.

	Add doc_as_upsert() arg to update().

	Make bulk_chunks() compute perfectly optimal results, no longer ever
exceeding the byte limit unless a single document is over the limit on its own.

v1.1 (2015-02-12)

	Introduce new bulk API, supporting all types of bulk operations (index,
update, create, and delete), providing chunking via bulk_chunks(), and
introducing per-action error-handling. All errors raise exceptions–even
individual failed operations–and the exceptions expose enough data to
identify operations for retrying or reporting. The design is decoupled in
case you want to create your own chunkers or operation builders.

	Deprecate bulk_index() in favor of the more capable bulk().

	Make one last update to bulk_index(). It now catches individual
operation failures, raising BulkError. Also add the index_field and
type_field args, allowing you to index across different indices and doc
types within one request.

	ElasticSearch object now defaults to http://localhost:9200/ if you don’t provide any node URLs.

	Improve docs: give a better overview on the front page, and document how to
customize JSON encoding.

v1.0 (2015-01-23)

	Switch to elasticsearch-py’s transport and downtime-pooling machinery,
much of which was borrowed from us anyway.

	Make bulk indexing (and likely other network things) 15 times faster.

	Add a comparison with the official client to the docs.

	Fix delete_by_query() to work with ES 1.0 and later.

	Bring percolate() es_kwargs up to date.

	Fix all tests that were failing on modern versions of ES.

	Tolerate errors that are non-strings and create exceptions for them properly.

Note

Backward incompatible:

	Drop compatibility with elasticsearch < 1.0.

	Redo cluster_state() to work with ES 1.0 and later. Arguments have
changed.

	InvalidJsonResponseError no longer provides access to the HTTP response
(in the response property): just the bad data (the input property).

	Change from the logger “pyelasticsearch” to “elasticsearch.trace”.

	Remove revival_delay param from ElasticSearch object.

	Remove encode_body param from send_request(). Now all dicts are
JSON-encoded, and all strings are left alone.

v0.7.1 (2014-08-12)

	Brings tests up to date with update_aliases() API change.

v0.7 (2014-08-12)

	When an id_field is specified for bulk_index(), don’t index it under
its original name as well; use it only as the _id.

	Rename aliases() to get_aliases() for consistency with other
methods. Original name still works but is deprecated. Add an alias kwarg
to the method so you can fetch specific aliases.

Note

Backward incompatible:

	update_aliases() no longer requires a dict with an actions key;
that much is implied. Just pass the value of that key.

v0.6.1 (2013-11-01)

	Update package requirements to allow requests 2.0, which is in fact
compatible. (Natim)

	Properly raise IndexAlreadyExistsException even if the error is reported
by a node other than the one to which the client is directly connected.
(Jannis Leidel)

v0.6 (2013-07-23)

Note

Note the change in behavior of bulk_index() in this release. This change
probably brings it more in line with your expectations. But double check,
since it now overwrites existing docs in situations where it didn’t before.

Also, we made a backward-incompatible spelling change to a little-used
index() kwarg.

	bulk_index() now overwrites any existing doc of the same ID and doctype.
Before, in certain versions of ES (like 0.90RC2), it did nothing at all if a
document already existed, probably much to your surprise. (We removed the
'op_type': 'create' pair, whose intentions were always mysterious.)
(Gavin Carothers)

	Rename the force_insert kwarg of index() to overwrite_existing.
The old name implied the opposite of what it actually did. (Gavin Carothers)

v0.5 (2013-04-20)

	Support multiple indices and doctypes in delete_by_query(). Accept both
string and JSON queries in the query arg, just as search() does.
Passing the q arg explicitly is now deprecated.

	Add multi_get.

	Add percolate. Thanks, Adam Georgiou and Joseph Rose!

	Add ability to specify the parent document in bulk_index(). Thanks, Gavin
Carothers!

	Remove the internal, undocumented from_python method. django-haystack
users will need to upgrade to a newer version that avoids using it.

	Refactor JSON encoding machinery. Now it’s clearer how to customize it: just
plug your custom JSON encoder class into ElasticSearch.json_encoder.

	Don’t crash under python -OO.

	Support non-ASCII URL path components (like Unicode document IDs) and query
string param values.

	Switch to the nose testrunner.

v0.4.1 (2013-03-25)

	Fix a bug introduced in 0.4 wherein “None” was accidentally sent to ES when
an ID wasn’t passed to index().

v0.4 (2013-03-19)

	Support Python 3.

	Support more APIs:

	cluster_state

	get_settings

	update_aliases and aliases

	update (existed but didn’t work before)

	Support the size param of the search method. (You can now change
es_size to size in your code if you like.)

	Support the fields param on index and update methods, new since
ES 0.20.

	Maintain better precision of floats when passed to ES.

	Change endpoint of bulk indexing so it works on ES < 0.18.

	Support documents whose ID is 0.

	URL-escape path components, so doc IDs containing funny chars work.

	Add a dedicated IndexAlreadyExistsError exception for when you try to
create an index that already exists. This helps you trap this situation
unambiguously.

	Add docs about upgrading from pyes.

	Remove the undocumented and unused to_python method.

v0.3 (2013-01-10)

	Correct the requests requirement to require a version that has everything
we need. In fact, require requests 1.x, which has a stable API.

	Add update() method.

	Make send_request method public so you can use ES APIs we don’t yet
explicitly support.

	Handle JSON translation of Decimal class and sets.

	Make more_like_this() take an arbitrary request body so you can filter
the returned docs.

	Replace the fields arg of more_like_this with mlt_fields. This
makes it actually work, as it’s the param name ES expects.

	Make explicit our undeclared dependency on simplejson.

v0.2 (2012-10-06)

Many thanks to Erik Rose for almost completely rewriting the API to follow
best practices, improve the API user experience, and make pyelasticsearch
future-proof.

Note

This release is backward-incompatible in numerous ways, please
read the following section carefully. If in doubt, you can easily stick
with pyelasticsearch 0.1.

Backward-incompatible changes:

	Simplify search() and count() calling conventions. Each now supports
either a textual or a dict-based query as its first argument. There’s no
longer a need to, for example, pass an empty string as the first arg in order
to use a JSON query (a common case).

	Standardize on the singular for the names of the index and doc_type
kwargs. It’s not always obvious whether an ES API allows for multiple
indexes. This was leading me to have to look aside to the docs to determine
whether the kwarg was called index or indexes. Using the singular
everywhere will result in fewer doc lookups, especially for the common case
of a single index.

	Rename morelikethis to more_like_this for consistency with other
methods.

	index() now takes (index, doc_type, doc) rather than (doc, index,
doc_type), for consistency with bulk_index() and other methods.

	Similarly, put_mapping() now takes (index, doc_type, mapping)
rather than (doc_type, mapping, index).

	To prevent callers from accidentally destroying large amounts of data…

	delete() no longer deletes all documents of a doctype when no ID is
specified; use delete_all() instead.

	delete_index() no longer deletes all indexes when none are given; use
delete_all_indexes() instead.

	update_settings() no longer updates the settings of all indexes when
none are specified; use update_all_settings() instead.

	setup_logging() is gone. If you want to configure logging, use the
logging module’s usual facilities. We still log to the “pyelasticsearch”
named logger.

	Rethink error handling:

	Raise a more specific exception for HTTP error codes so callers can catch
it without examining a string.

	Catch non-JSON responses properly, and raise the more specific
NonJsonResponseError instead of the generic ElasticSearchError.

	Remove mentions of nonexistent exception types that would cause crashes
in their except clauses.

	Crash harder if JSON encoding fails: that always indicates a bug in
pyelasticsearch.

	Remove the ill-defined ElasticSearchError.

	Raise ConnectionError rather than ElasticSearchError if we can’t
connect to a node (and we’re out of auto-retries).

	Raise ValueError rather than ElasticSearchError if no documents
are passed to bulk_index.

	All exceptions are now more introspectable, because they don’t
immediately mash all the context down into a string. For example, you can
recover the unmolested response object from ElasticHttpError.

	Removed quiet kwarg, meaning we always expose errors.

Other changes:

	Add Sphinx documentation.

	Add load-balancing across multiple nodes.

	Add failover in the case where a node doesn’t respond.

	Add close_index, open_index, update_settings, health.

	Support passing arbitrary kwargs through to the ES query string. Known ones
are taken verbatim; unanticipated ones need an “es_” prefix to guarantee
forward compatibility.

	Automatically convert datetime objects when encoding JSON.

	Recognize and convert datetimes and dates in pass-through kwargs. This is
useful for timeout.

	In routines that can take either one or many indexes, don’t require the
caller to wrap a single index name in a list.

	Many other internal improvements

v0.1 (2012-08-30)

Initial release based on the work of Robert Eanes and other authors

Development Notes

Testing

To run the tests:

% python setup.py test

This should automatically install the additional dependencies required for
testing if you don’t have them.

Documentation

Documentation is located in docs/ and requires Sphinx [http://sphinx-doc.org/] to build.

To get the requirements:

% pip install Sphinx

To build the docs:

% cd docs/
% make html

Documentation committed and pushed to the main repository is available
on ReadTheDocs at http://pyelasticsearch.readthedocs.org/.

Philosophy

pyelasticsearch is intended as a low-level, lossless API to elasticsearch. That
is, it generally refrains from adding abstractions that limit flexibility or
power. For example, it handles JSON conversion because there is a strict
one-to-one mapping between JSON and Python dictionaries: nothing is lost. It
converts bad HTTP status codes to exceptions, but you can still access the raw
codes and responses by drilling into the exceptions.

Therefore, pyelasticsearch is a good choice for building higher-level APIs
upon—ones which make common cases easier but where certain edge cases feel like
“coloring outside the lines”. One such library is elasticutils [https://pypi.python.org/pypi/elasticutils/]. However, pyelasticsearch is
also meant to be directly usable by humans: a great deal of care has been taken
to keep calls brief, understandable, consistent, and error-resistant and to
deal in data structures which are easy to manipulate with Python’s built-in
routines.

Patches along these lines are always welcome. Thank you for trying
pyelasticsearch!

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyelasticsearch	

 	
 	
 pyelasticsearch.exceptions	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	aliases() (pyelasticsearch.ElasticSearch method)

B

 	
 	bulk() (pyelasticsearch.ElasticSearch method)

 	bulk_chunks() (in module pyelasticsearch)

 	
 	bulk_index() (pyelasticsearch.ElasticSearch method)

 	BulkError

C

 	
 	close_index() (pyelasticsearch.ElasticSearch method)

 	cluster_state() (pyelasticsearch.ElasticSearch method)

 	
 	ConnectionError

 	count() (pyelasticsearch.ElasticSearch method)

 	create_index() (pyelasticsearch.ElasticSearch method)

D

 	
 	delete() (pyelasticsearch.ElasticSearch method)

 	delete_all() (pyelasticsearch.ElasticSearch method)

 	delete_all_indexes() (pyelasticsearch.ElasticSearch method)

 	
 	delete_by_query() (pyelasticsearch.ElasticSearch method)

 	delete_index() (pyelasticsearch.ElasticSearch method)

 	delete_op() (pyelasticsearch.ElasticSearch method)

E

 	
 	ElasticHttpError

 	ElasticHttpNotFoundError

 	
 	ElasticSearch (class in pyelasticsearch), [1], [2]

 	error (pyelasticsearch.exceptions.ElasticHttpError attribute)

 	errors (pyelasticsearch.exceptions.BulkError attribute)

F

 	
 	flush() (pyelasticsearch.ElasticSearch method)

G

 	
 	gateway_snapshot() (pyelasticsearch.ElasticSearch method)

 	get() (pyelasticsearch.ElasticSearch method)

 	
 	get_mapping() (pyelasticsearch.ElasticSearch method)

 	get_settings() (pyelasticsearch.ElasticSearch method)

H

 	
 	health() (pyelasticsearch.ElasticSearch method)

I

 	
 	index() (pyelasticsearch.ElasticSearch method)

 	index_op() (pyelasticsearch.ElasticSearch method)

 	
 	IndexAlreadyExistsError

 	input (pyelasticsearch.exceptions.InvalidJsonResponseError attribute)

 	InvalidJsonResponseError

J

 	
 	json_encoder (pyelasticsearch.ElasticSearch attribute)

M

 	
 	more_like_this() (pyelasticsearch.ElasticSearch method)

 	
 	multi_get() (pyelasticsearch.ElasticSearch method)

O

 	
 	open_index() (pyelasticsearch.ElasticSearch method)

 	
 	optimize() (pyelasticsearch.ElasticSearch method)

P

 	
 	percolate() (pyelasticsearch.ElasticSearch method)

 	put_mapping() (pyelasticsearch.ElasticSearch method)

 	
 	pyelasticsearch (module)

 	pyelasticsearch.exceptions (module)

R

 	
 	refresh() (pyelasticsearch.ElasticSearch method)

S

 	
 	search() (pyelasticsearch.ElasticSearch method)

 	send_request() (pyelasticsearch.ElasticSearch method)

 	
 	status() (pyelasticsearch.ElasticSearch method)

 	status_code (pyelasticsearch.exceptions.ElasticHttpError attribute)

 	successes (pyelasticsearch.exceptions.BulkError attribute)

T

 	
 	Timeout

U

 	
 	update() (pyelasticsearch.ElasticSearch method)

 	update_aliases() (pyelasticsearch.ElasticSearch method)

 	
 	update_all_settings() (pyelasticsearch.ElasticSearch method)

 	update_op() (pyelasticsearch.ElasticSearch method)

 	update_settings() (pyelasticsearch.ElasticSearch method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/pyelasticsearch.png
“build passing

_static/plus.png

nav.xhtml

 Table of Contents

 		
 pyelasticsearch

 		
 Features

 		
 JSON Conversion

 		
 Connection Pooling

 		
 Load-balancing and Failover

 		
 Forward-Compatibility Kwargs

 		
 API Documentation

 		
 A Word About Forward-Compatibility Kwargs

 		
 ElasticSearch Class

 		
 Bulk Indexing Methods

 		
 Other Methods

 		
 Error Handling

 		
 Debugging

 		
 Comparison with elasticsearch-py, the “Official Client”

 		
 Which Should You Use?

 		
 Migrating From pyes

 		
 Changelog

 		
 v1.4.1 (2018-04-02)

 		
 v1.4

 		
 v1.3

 		
 v1.2.4 (2015-05-21)

 		
 v1.2.3 (2015-04-17)

 		
 v1.2.2 (2015-04-10)

 		
 v1.2.1 (2015-04-09)

 		
 v1.2 (2015-03-06)

 		
 v1.1 (2015-02-12)

 		
 v1.0 (2015-01-23)

 		
 v0.7.1 (2014-08-12)

 		
 v0.7 (2014-08-12)

 		
 v0.6.1 (2013-11-01)

 		
 v0.6 (2013-07-23)

 		
 v0.5 (2013-04-20)

 		
 v0.4.1 (2013-03-25)

 		
 v0.4 (2013-03-19)

 		
 v0.3 (2013-01-10)

 		
 v0.2 (2012-10-06)

 		
 v0.1 (2012-08-30)

 		
 Development Notes

 		
 Testing

 		
 Documentation

 		
 Philosophy

_static/up.png

_static/up-pressed.png

