

PyeDNA

[image: https://github.com/drericstrong/pyedna/blob/master/images/pyedna_small.jpg?raw=true]
PyeDNA (“pie-dee-en-ay”) is a Python wrapper library for the C++ EzDnaApi, written for data analysts who wish to work with eDNA data in the context of a pandas DataFrame. By converting eDNA data into a DataFrame, data analysis can be accomplished using familiar tools like scikit-learn, statsmodels, etc. New functions will be added upon request.

	1. Introduction
	Disclaimer

	Package Organization

	Basic Examples

	2. Getting Started
	Installation

	eDNA Requirements

	Python Requirements

	Python Version Support

	eDNA Version Support

	Importing PyeDNA

	3. Configuration Information
	Service Information

	Tag Information

	Tag Picker

	4. Pulling Data
	Types of Data Pulls

	eDNA Data Compression

	GetHist

	GetMultipleTags

	5. Pushing Data
	Serv Capabilities

	Change Log
	Version 0.14

	Version 0.15

	Version 0.16

	Version 0.17

	Version 0.17

	Version 0.18

	Version 1.01

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

PyeDNA (“pie-dee-en-ay”) is a Python wrapper library for the C++ EzDnaApi,
written for data analysts who wish to work with eDNA data in the context of a
pandas DataFrame. By converting eDNA data into a DataFrame, data analysis can
be accomplished using familiar tools like scikit-learn, statsmodels, etc. New
functions will be added upon request.

Disclaimer

PyeDNA is a wrapper library for the API of a data historian called eDNA. eDNA
is developed by InStepSoftware, LLC (http://www.instepsoftware.com/),
who holds all rights to the eDNA software. PyeDNA does not contain any
proprietary code, and is merely a wrapper for functions that must be obtained
from a legal, licensed version of EzDnaApi.dll.

This is fan-supported project and is not affiliated in any way with InStepSoftware, LLC.
The maintainer enjoys working with eDNA and wishes them the best. :)

Package Organization

PyeDNA is organized into several namespaces, including:

	calc_config

	ezdna

	serv

The namespace of most interest to the typical user will be the ezdna namespace,
which contains methods that are meant to translate the eDNA API to Pythonic syntax
and common libraries, such as pandas. For instance, all the data pulling and
configuration information functions are in this namespace.

The other two namespaces, calc_config and serv, contain more specialized functions.
Serv contains functions from the EzDNAServAPI that are meant to push data into eDNA.
These functions are not entirely converted to familiar syntax, behaving in a more
low-level fashion. Calc_config is a namespace meant for parsing a CM.DB file (a sqlite
database), which each eDNA service contains. Calculations defined in eDNA may be
difficult to parse, and this class is meant to determine which tags are located in which
calculations, to determine a dependency structure.

Basic Examples

All of the core data pulling functions are located in the GetHist function,
which will return a pandas DataFrame with the timestamp, value, and status
columns. For example, the following code will pull snap data from TESTPNT1
over a 30-second interval:

> import pyedna.ezdna as dna

> tag = “TESTSITE.TESTSERVICE.TESTPNT1” # format site.service.tag

> start = “12/01/16 01:01:01” # format mm/dd/yy hh:mm:ss

> end = “01/03/17 01:01:01” # format mm/dd/yy hh:mm:ss

> period = “00:00:30” # format hh:mm:ss

> df = dna.GetHist(tag, start, end, period=period, mode=”snap”)

Raw data may be obtained from TESTPNT1 using:

> df = dna.GetHist(tag, start, end, mode=”raw”)

Other supported pull types include Average, Interpolated, Max, and Min. Please
refer to eDNA documentation for more description about these pull types.

Multiple tags can be pulled (in Raw mode) at the same time using:

> tags = [“TESTSITE.TESTSERVICE.TESTPNT1”, “TESTSITE.TESTSERVICE.TESTPNT2”, “TESTSITE.TESTSERVICE.TESTPNT3”, “TESTSITE.TESTSERVICE.TESTPNT4”]

> df = dna.GetMultipleTags(tags, start, end)

A list of connected services may be obtained using GetServices:

> services = dna.GetServices()

A list of point information for a given service can be found using GetPoints:

> points = dna.GetPoints(“TESTSITE.TESTSERVICE”)

2. Getting Started

Installation

If Python is already installed on your computer, PyeDNA can be installed using
PyPI by opening a command window and typing:

pip install pyedna

Upgrading to a new version of pyedna can be accomplished by:

pip install pyedna –upgrade

The source code of pyedna is hosted on GitHub at:

https://github.com/drericstrong/pyedna

eDNA Requirements

PyeDNA currently requires that a legal, licensed version of the EzDnaApi be
located in the following directory:

C:Program Files (x86)eDNAEzDnaApi64.dll

If your EzDNAApi is in a different location, each namespace contains a method
called LoadDll which can be used to specify the correct location:

LoadDll(“CORRECT_LOCATION”)

Python Requirements

Required libraries: numba, numpy, pandas

A requirements.txt document is located in the GitHub repository, and all
package requirements can be installed using the following line in a
command window:

pip install -r requirements.txt

Numba is required to significantly speed up the base-level data pull, and
numpy and pandas are used for ease of data processing. It is very unlikely
that these requirements will change in the future.

Python Version Support

Currently, PyeDNA only supports Python 3.2+ and is not compatible with
Python 2. Testing confirms that PyeDNA will not work on Python 2 without
some adjustments to the codebase. If this is important to you, please
make a pull request at:

https://github.com/drericstrong/pyedna

The package maintainer welcomes collaboration.

eDNA Version Support

Only the 64-bit version of the eDNA API is supported in the current
release. I am having trouble getting the 32-bit version to work. It may
be an issue with my particular API file. Again, if 32-bit support is
important to you, please contact me for collaboration.

Importing PyeDNA

PyeDNA is usually imported into a script using the following line:

import pyedna.ezdna as dna

Warning- since pyedna is connection-based, importing PyeDNA will
always have direct side effects. When the module is imported, PyeDNA
will attempt to connect to all available eDNA services. If none are
available, a warning will be thrown, and the user’s eDNA connection
should be checked. If services are available, the number of available
services will be printed to the console (the maintainer apologizes for
this intrusion, but it was determined to be necessary to provide
visibility for connection issues unrelated to PyeDNA behavior).

3. Configuration Information

PyeDNA contains a number of functions which allow the user to pull configuration
information from current eDNA services and points. These functions are located in
the pyedna.ezdna namespace.

Warning- One of the most common mistakes when using PyeDNA is not to specify the
full eDNA tag when using the module. Unless otherwise specified, tags should always
be specified by their full Site.Service.Tag designation.

All code in this section assumes that PyeDNA has been imported using:

import pyedna.ezdna as dna

Service Information

eDNA contains a number of services, which each contain many tags. When PyeDNA is
imported, it attempts to connect to all available services and will print the
number of available eDNA services.

A list of all connection services can be obtained using:

dna.GetServices()

The above function will return a pandas DataFrame with the following columns:

	Name

	Description

	Type

	Status

Tag Information

Each service contains a number of tags, which define a block of time-based data
storage. Connecting to a service allows access to all of its tags, which can be
found using the following command:

dna.GetPoints(“EDNA_SERVICE”)

The above function will return a pandas DataFrame with all the points from the
eDNA service, also including information such as:

	Tag

	Current Value

	Current Time

	Current Status

	Description

	Units

More specific information about a single point can be obtained using:

dna.GetRTFull(“SITE.SERVICE.TAG”)

The tag description alone can be found by:

dna.GetTagDescription(“SITE.SERVICE.TAG”)

Determining if a tag exists in any connected service can be accomplished by:

dna.DoesIDExist(“SITE.SERVICE.TAG”)

The above function will return either TRUE or FALSE. Ensure that proper spelling
and the full Site.Service.Tag format is used.

Tag Picker

A dialog box containing the native eDNA “tag picker” can be brought up using:

dna.SelectPoint()

Unfortunately, only the single point version is supported at this time. Support
for multiple tags is expected to be available in the future.

4. Pulling Data

Data from each defined eDNA tag can be obtained by the functions in this section.

Warning- One of the most common mistakes when using PyeDNA is not to specify the
full eDNA tag when using the module. Unless otherwise specified, tags should always
be specified by their full Site.Service.Tag designation.

Danger- Please read the data compression section to understand what is actually
happening when data is pulled in “raw” mode- it will affect your data analysis.

All code in this section assumes that PyeDNA has been imported using:

import pyedna.ezdna as dna

Types of Data Pulls

As defined by eDNA, several different types of data pulls may be accomplished:

	Avg: Finds the arithmetic mean of values over a window defined by the time span.

	Interp: Interpolates values over a window defined by the time span.

	Min: Finds the minimum value over a window defined by the time span.

	Max: Finds the maximum value over a window defined by the time span.

	Raw: Pulls data exactly as it is stored in the database (read data compression below)

	Snap: Finds the last data point over a window defined by the time span.

PyeDNA provides functionality for all of these methods.

eDNA Data Compression

The eDNA database only stores data points when either the value or status of the point
changes. This allows the data files to be compressed, which is advantageous for transfer
over a low-speed or expensive medium. However, this compression presents some issues for
data analysis that the user must be aware of.

First, data gaps may occur over the time period if data transfer is interrupted in some
way. These data gaps may be hard to notice in practice, especially if the user is pulling
data with the “Snap” method. Since “Snap” will find the last data point at each time window,
the “last” data point will be the data point right before the data gap. This causes a
“flat-lining” behavior that is usually obvious if the data gap is large enough. It is
strongly recommended that the user implement some kind of gap-detection algorithm if gaps
are frequent and “Snap” mode is being used.

Second, data pulled using “Raw” mode is not appropriate for many types of statistical
analysis. Since “Raw” mode pulls compressed data as it is actually stored in the database,
the frequency of common data points is reduced compared to uncommon data points. Hence,
statistical analysis will be skewed towards outliers. It is recommended that the user
typically use “Snap” mode to prevent this situation, especially if the data sampling rate
is known a priori. However, take care about data gaps when using “Snap” mode, as
mentioned above.

Please refer to eDNA documentation for more information.

GetHist

The main data pulling functionality is contained in the dna.GetHist function. GetHist will return
a pandas DataFrame with the requested data, providing easy access to more advanced data
analysis tools in Python.

The start date and end date of the data pull must be specified as input parameters. Warning-
eDNA prefers the date in this format:

mm/dd/yy hh:mm:ss

While other formats may work, please specify your dates in this format, for safety.

By default, the column label of the DataFrame will be the eDNA tag name, but by specifying
the parameter desc_as_label=True, the eDNA description can be used instead. Otherwise,
a custom label can be specified by label=”CUSTOM_LABEL”.

Each of the six data pulling methods mentioned above are supported in this function
by supplying the parameter mode=”X”. The default data pulling mode is raw:

	avg

	interp

	min

	max

	raw

	snap

By default, the data returned in the pandas DataFrame will use a numpy DateTime as the index.
However, if the native eDNA UTC time is requested using utc=True, the index will be an
integer instead. The speed of the data pull will actually be slightly improved if
utc=True is selected.

High-speed data can be obtained using the parameter high_speed=True. Take care that high
speed data is required, because it can significantly slow down the data pull.

Legacy data pulling functions are still available, but have been consolidated into GetHist:

	dna.GetHistAvg

	dna.GetHistInterp

	dna.GetHistMax

	dna.GetHistMin

	dna.GetHistRaw

	dna.GetHistSnap

GetMultipleTags

dna.GetMultipleTags is a convenience function designed to prepare data from multiple tags
simultaneously. It may save the user a large amount of time, but it’s important to understand
what’s happening behind the scenes to determine if this function will meet your needs.

The core behavior of GetMultipleTags is to:

	Pull data from multiple eDNA tags (supplied via a list) using GetHist(mode=”raw”)

	Remove any duplicated indices (this happens sometimes in eDNA and will cause the concatenation to fail)

	Concatenate all the DataFrames using an outer join (time indices which are not shared will be filled with None)

	Fill the None values using a “fill-forward” algorithm

If data is to be used for statistical analysis, it is strongly recommended that the user
adjust the parameter sampling_rate=”X”, since data is being pulled using “Raw” mode
in this function. The format of the sampling_rate parameter uses pandas resampling
notation. For instance, “1S” means 1 second, and “5M” means 5 minutes. Refers to pandas
documentation for more information.

The parameter fill_limit can be used to specify how many data points are filled-forward
in step 4 above. If fill_limit is set to 0, the data will not be filled-forward at all.

verify_time=True can be used to ensure that no duplicate time indices exist after the
concatenation, which will sometimes occur when more than 10 tags are being concatenated.
Unfortunately, this will significantly slow down the data pull.

As with GetHist above, the parameters desc_as_label and utc may also be specified.

5. Pushing Data

PyeDNA contains the ability to push data to an eDNA database. The functions
in this section are primarily contained in the “serv” namepace.

Warning- This namespace is still under development, but many of the main
functions should be working correctly.

All code in this section assumes that PyeDNA has been imported using:

import pyedna.serv as serv

Serv Capabilities

PyeDNA exposes the following eZDNAServApi functions:

	AddAnalogShortIdRecord

	AddAnalogShortIdRecordNoStatus

	AddDigitalShortIdRecord

	AddAnalogShortIdMsecRecord

	AddAnalogShortIdMsecRecordNoStatus

	AddDigitalShortIdMsecRecord

	FlushShortIdRecords

More information about these functions can be found in eDNA documentation.

Change Log

Version 0.14

	FEATURE- GetServices allows you to get all connected eDNA service information

	FEATURE- GetPoints allows you to get information about all points in a service

	FEATURE- Number of connected services are printed when library is imported

	Better error handling for eDNA connection drops

	Before a data pull, there is now error checking to see if a point exists

	GetMultipleTags no longer automatically resamples and forward-fills data. The user should be in control of this.

Version 0.15

	FEATURE- In the pulling functions, you can now use the desc_as_label parameter to use the point description as the DataFrame column name.

	FEATURE- In the pulling functions, you can now specify a custom column label.

	Better handling of non-ASCII characters in descriptions and units

	GetRTFull never returned a point description- alternative written

	Improved handling of unicode errors- non-Unicode characters are now ignored

	Consistency between ezdna and serv file formatting and dll calls

	Beginnings of a unit test framework

	Miscellaneous code cleanup

Version 0.16

	MAJOR- Refactoring of all GetHistX methods into GetHist. Please use the “mode” parameter to specify the type of history call. Old methods still available.

	New DEPENDENCY- Numba

	Significant speed increase due to JIT compilation

	Bugfix in __init__ header

	Project documentation

Version 0.17

	Bugfix in GetHist related to “switch” statement

	Minor documentation fixes

	Mocking the dna_dll variable so that RTD documentation can be automatically created

Version 0.17

	Bugfix- minor issue with a duplicated last point in every data pull

	Bugfix where GetPoints and GetServices did not return the first entry (due to eDNA apparently treating these functions in a completely different way than the GetHist functions)

	Fixed issue in GetMultipleTags where the pandas function drop_duplicates() removed too many rows. Removed duplicate indices only, instead.

Version 0.18

	Updated logo

	New and improved documentation

	Import function updated

	Minor bugfixes

Version 1.01

	Re-released using the 1.X scheme to fix versioning control (developer mistake)

	No other major updates

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyedna	

 	
 	
 pyedna.calc_config	

 	
 	
 pyedna.ezdna	

 	
 	
 pyedna.serv	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | L
 | P
 | S
 | W

A

 	
 	AddAnalogShortIdMsecRecord() (in module pyedna.serv)

 	AddAnalogShortIdMsecRecordNoStatus() (in module pyedna.serv)

 	AddAnalogShortIdRecord() (in module pyedna.serv)

 	
 	AddAnalogShortIdRecordNoStatus() (in module pyedna.serv)

 	AddDigitalShortIdMsecRecord() (in module pyedna.serv)

 	AddDigitalShortIdRecord() (in module pyedna.serv)

C

 	
 	CalcConfig (class in pyedna.calc_config)

D

 	
 	DoesIDExist() (in module pyedna.ezdna)

F

 	
 	FlushShortIdRecords() (in module pyedna.serv)

G

 	
 	get_relationships() (pyedna.calc_config.CalcConfig method)

 	GetHist() (in module pyedna.ezdna)

 	GetHistAvg() (in module pyedna.ezdna)

 	GetHistInterp() (in module pyedna.ezdna)

 	GetHistMax() (in module pyedna.ezdna)

 	GetHistMin() (in module pyedna.ezdna)

 	
 	GetHistRaw() (in module pyedna.ezdna)

 	GetHistSnap() (in module pyedna.ezdna)

 	GetMultipleTags() (in module pyedna.ezdna)

 	GetPoints() (in module pyedna.ezdna)

 	GetRTFull() (in module pyedna.ezdna)

 	GetServices() (in module pyedna.ezdna)

 	GetTagDescription() (in module pyedna.ezdna)

H

 	
 	HistAppendValues() (in module pyedna.ezdna)

 	
 	HistUpdateInsertValues() (in module pyedna.ezdna)

L

 	
 	LoadDll() (in module pyedna.ezdna)

 	(in module pyedna.serv)

P

 	
 	pyedna (module)

 	pyedna.calc_config (module)

 	
 	pyedna.ezdna (module)

 	pyedna.serv (module)

S

 	
 	SelectPoint() (in module pyedna.ezdna)

 	
 	StringToUTCTime() (in module pyedna.ezdna)

W

 	
 	write_relationships() (pyedna.calc_config.CalcConfig method)

pyedna

	pyedna package
	Submodules

	pyedna.calc_config module
	pyedna.calc_config

	pyedna.ezdna module
	pyedna.ezdna

	pyedna.serv module
	pyedna.serv

	Module contents
	pyedna

pyedna package

Submodules

pyedna.calc_config module

pyedna.calc_config

This module is meant to parse a calc config file from an eDNA service.

	copyright:	
	2017 Eric Strong.

	license:	Refer to LICENSE.txt for more information.

	
class pyedna.calc_config.CalcConfig(filename, site_override=None)

	Bases: object

	
get_relationships()

	Gets the relationships between calc tags and all associated tags.

	Returns:	a pandas DataFrame with columns:
‘FullTag’ = calculation tag
‘TagsInCalc’ = the tags that appear in the calculation

	
write_relationships(file_name, flat=True)

	This module will output the eDNA tags which are used inside each
calculation.

	If flat=True, data will be written flat, like:

	ADE1CA01, ADE1PI01, ADE1PI02

	If flat=False, data will be written in the non-flat way, like:

	ADE1CA01, ADE1PI01
ADE1CA01, ADE1PI02

	Parameters:	
	file_name – the output filename to write the relationships,
which should include the ‘.csv’ extension

	flat – True or False

pyedna.ezdna module

pyedna.ezdna

This module contains “easy” versions of common functions from the eDNA
C++ dll. Obtain a legal copy of the C++ eDNA dll for use.

	copyright:	
	2017 Eric Strong.

	license:	Refer to LICENSE.txt for more information.

	
pyedna.ezdna.DoesIDExist(tag_name)

	Determines if a fully-qualified site.service.tag eDNA tag exists
in any of the connected services.

	Parameters:	tag_name – fully-qualified (site.service.tag) eDNA tag

	Returns:	true if the point exists, false if the point does not exist

Example:

>>> DoesIDExist("Site.Service.Tag")

	
pyedna.ezdna.GetHist(tag_name, start_time, end_time, period=5, mode='raw', desc_as_label=False, label=None, high_speed=False, utc=False)

	Retrieves data from eDNA history for a given tag.

	Parameters:	
	tag_name – fully-qualified (site.service.tag) eDNA tag

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	period – specify the number of seconds for the pull interval

	mode – “raw”, “snap”, “avg”, “interp”, “max”, “min”
See eDNA documentation for more information.

	desc_as_label – use the tag description as the column name instead
of the full tag

	label – supply a custom label to use as the DataFrame column name

	high_speed – if True, pull millisecond data

	utc – if True, use the integer time format instead of DateTime

	Returns:	a pandas DataFrame with timestamp, value, and status

	
pyedna.ezdna.GetHistAvg(tag_name, start_time, end_time, period, desc_as_label=False, label=None)

	Retrieves data from eDNA history for a given tag. The data will be
averaged over the specified “period”.

	Parameters:	
	tag_name – fully-qualified (site.service.tag) eDNA tag

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	period – in units of seconds (e.g. 10)

	desc_as_label – use the tag description as the column name instead
of the full tag

	label – supply a custom label to use as the DataFrame column name

	Returns:	a pandas DataFrame with timestamp, value, and status

	
pyedna.ezdna.GetHistInterp(tag_name, start_time, end_time, period, desc_as_label=False, label=None)

	Retrieves data from eDNA history for a given tag. The data will be
linearly interpolated over the specified “period”.

	Parameters:	
	tag_name – fully-qualified (site.service.tag) eDNA tag

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	period – in units of seconds (e.g. 10)

	desc_as_label – use the tag description as the column name instead
of the full tag

	label – supply a custom label to use as the DataFrame column name

	Returns:	a pandas DataFrame with timestamp, value, and status

	
pyedna.ezdna.GetHistMax(tag_name, start_time, end_time, period, desc_as_label=False, label=None)

	Retrieves data from eDNA history for a given tag. The maximum of the data
will be found over the specified “period”.

	Parameters:	
	tag_name – fully-qualified (site.service.tag) eDNA tag

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	period – in units of seconds (e.g. 10)

	desc_as_label – use the tag description as the column name instead
of the full tag

	label – supply a custom label to use as the DataFrame column name

	Returns:	a pandas DataFrame with timestamp, value, and status

	
pyedna.ezdna.GetHistMin(tag_name, start_time, end_time, period, desc_as_label=False, label=None)

	Retrieves data from eDNA history for a given tag. The minimum of the data
will be found over the specified “period”.

	Parameters:	
	tag_name – fully-qualified (site.service.tag) eDNA tag

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	period – in units of seconds (e.g. 10)

	desc_as_label – use the tag description as the column name instead
of the full tag

	label – supply a custom label to use as the DataFrame column name

	Returns:	a pandas DataFrame with timestamp, value, and status

	
pyedna.ezdna.GetHistRaw(tag_name, start_time, end_time, high_speed=False, desc_as_label=False, label=None)

	Retrieves raw data from eDNA history for a given tag.

	Parameters:	
	tag_name – fully-qualified (site.service.tag) eDNA tag

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	high_speed – true = pull milliseconds

	desc_as_label – use the tag description as the column name instead
of the full tag

	label – supply a custom label to use as the DataFrame column name

	Returns:	a pandas DataFrame with timestamp, value, and status

	
pyedna.ezdna.GetHistSnap(tag_name, start_time, end_time, period, desc_as_label=False, label=None)

	Retrieves data from eDNA history for a given tag. The data will be
snapped to the last known value over intervals of the specified “period”.

	Parameters:	
	tag_name – fully-qualified (site.service.tag) eDNA tag

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	period – in units of seconds (e.g. 10)

	desc_as_label – use the tag description as the column name instead
of the full tag

	label – supply a custom label to use as the DataFrame column name

	Returns:	a pandas DataFrame with timestamp, value, and status

	
pyedna.ezdna.GetMultipleTags(tag_list, start_time, end_time, sampling_rate=None, fill_limit=99999, verify_time=False, desc_as_label=False, utc=False)

	Retrieves raw data from eDNA history for multiple tags, merging them into
a single DataFrame, and resampling the data according to the specified
sampling_rate.

	Parameters:	
	tag_list – a list of fully-qualified (site.service.tag) eDNA tags

	start_time – must be in format mm/dd/yy hh:mm:ss

	end_time – must be in format mm/dd/yy hh:mm:ss

	sampling_rate – in units of seconds

	fill_limit – in units of data points

	verify_time – verify that the time is not before or after the query

	desc_as_label – use the tag description as the column name instead
of the full tag

	utc – if True, use the integer time format instead of DateTime

	Returns:	a pandas DataFrame with timestamp and values

	
pyedna.ezdna.GetPoints(edna_service)

	Obtains all the points in the edna_service, including real-time values.

	Parameters:	edna_service – The full Site.Service name of the eDNA service.

	Returns:	A pandas DataFrame of points in the form [Tag, Value, Time,
Description, Units]

	
pyedna.ezdna.GetRTFull(tag_name)

	Gets current information about a point configured in a real-time
eDNA service, including current value, time, status, description,
and units.

	Parameters:	tag_name – fully-qualified (site.service.tag) eDNA tag

	Returns:	tuple of: alue, time, status, statusint, description, units

	
pyedna.ezdna.GetServices()

	Obtains all the connected eDNA services.

	Returns:	A pandas DataFrame of connected eDNA services in the form [Name,
Description, Type, Status]

	
pyedna.ezdna.GetTagDescription(tag_name)

	Gets the current description of a point configured in a real-time eDNA
service.

	Parameters:	tag_name – fully-qualified (site.service.tag) eDNA tag

	Returns:	tag description

	
pyedna.ezdna.HistAppendValues(site_service, tag_name, times, values, statuses)

	Appends a value to an eDNA history service. Take very careful note of the
following required parameters. Any deviation from this exact format WILL
cause the function to fail.

This function will append values to history, only if they are LATER than
the current time of the last written data point. If this is not true, no
data will be appended.

This value is strongly preferred over HistUpdateInsertValues, which will
slow down data retrieval if it is used too often.

	Parameters:	
	site_service – This is the history service for the eDNA tag, NOT
the site.service of the tag itself. For instance,
ANTARES.HISTORY, not ANTARES.ANVCALC

	tag_name – This is the full site.service.tag. For instance,
ANTARES.ANVCALC.ADE1CA02

	times – This is a Python array of times in UTC Epoch format.
For example, “1483926416” not “2016/01/01 01:01:01”.
This must be an array.

	values – A Python array of data point values for each times.

	statuses – The status of the point. Refer to eDNA documentation
for more information. Usually use ‘3’, which is ‘OK’.

	
pyedna.ezdna.HistUpdateInsertValues(site_service, tag_name, times, values, statuses)

	CAUTION- Use HistAppendValues instead of this function, unless you know
what you are doing.

Inserts a value to an eDNA history service. Take very careful note of the
following required parameters. Any deviation from this exact format WILL
cause the function to fail.

	Parameters:	
	site_service – This is the history service for the eDNA tag, NOT
the site.service of the tag itself. For instance,
ANTARES.HISTORY, not ANTARES.ANVCALC

	tag_name – This is the full site.service.tag. For instance,
ANTARES.ANVCALC.ADE1CA02

	times – This is a Python array of times in UTC Epoch format.
For example, “1483926416” not “2016/01/01 01:01:01”.
This must be an array.

	values – A Python array of data point values for each times.

	statuses – The status of the point. Refer to eDNA documentation
for more information. Usually use ‘3’, which is ‘OK’.

	
pyedna.ezdna.LoadDll(location)

	If the EzDnaApi64.dll file is not in the default location
(C:Program Files (x86)eDNAEzDnaApi64.dll) then the user must specify
the correct location of the file, before this module can be used.

	Parameters:	location – the full location of EzDnaApi64.dll, including filename

	
pyedna.ezdna.SelectPoint()

	Opens an eDNA point picker, where the user can select a single tag.

	Returns:	selected tag name

	
pyedna.ezdna.StringToUTCTime(time_string)

	Turns a DateTime string into UTC time.

	Parameters:	time_string – Must be the format “MM/dd/yy hh:mm:ss”

	Returns:	an integer representing the UTC int format

pyedna.serv module

pyedna.serv

This module contains functions within the EzDnaServApi, mainly used for
direct interaction with eDNA services, such as pushing data in real-time.

	copyright:	
	2017 Eric Strong.

	license:	Refer to LICENSE.txt for more information.

	
pyedna.serv.AddAnalogShortIdMsecRecord(site_service, tag, time_value, msec, value, low_warn=False, high_warn=False, low_alarm=False, high_alarm=False, oor_low=False, oor_high=False, unreliable=False, manual=False)

	This function will add an analog value to the specified eDNA service and
tag, with many optional status definitions.

	Parameters:	
	site_service – The site.service where data will be pushed

	tag – The eDNA tag to push data. Tag only (e.g. ADE1CA01)

	time_value – The time of the point, which MUST be in UTC Epoch
format. For example, “1483926416” not “2016/01/01 01:01:01”.

	msec – The additional milliseconds for the time_value

	value – The value associated with the above time.

	low_warn – TRUE if the point is in a low warning state

	high_warn – TRUE if the point is in a high warning state

	low_alarm – TRUE if the point is in a low alarm state

	high_alarm – TRUE if the point is in a high alarm state

	oor_low – TRUE if the point is out-of-range low

	oor_high – TRUE if the point is out-of-range high

	unreliable – TRUE if the point is unreliable

	manual – TRUE if the point is manually set

	Returns:	0, if the data push is successful

	
pyedna.serv.AddAnalogShortIdMsecRecordNoStatus(site_service, tag, time_value, msec, value)

	This function will add an analog value to the specified eDNA service and
tag, without an associated point status.

	Parameters:	
	site_service – The site.service where data will be pushed

	tag – The eDNA tag to push data. Tag only (e.g. ADE1CA01)

	time_value – The time of the point, which MUST be in UTC Epoch
format. For example, “1483926416” not “2016/01/01 01:01:01”.

	msec – The additional milliseconds for the time_value

	value – The value associated with the above time.

	Returns:	0, if the data push is successful

	
pyedna.serv.AddAnalogShortIdRecord(site_service, tag, time_value, value, low_warn=False, high_warn=False, low_alarm=False, high_alarm=False, oor_low=False, oor_high=False, unreliable=False, manual=False)

	This function will add an analog value to the specified eDNA service and
tag, with many optional status definitions.

	Parameters:	
	site_service – The site.service where data will be pushed

	tag – The eDNA tag to push data. Tag only (e.g. ADE1CA01)

	time_value – The time of the point, which MUST be in UTC Epoch
format. For example, “1483926416” not “2016/01/01 01:01:01”.

	value – The value associated with the above time.

	low_warn – TRUE if the point is in a low warning state

	high_warn – TRUE if the point is in a high warning state

	low_alarm – TRUE if the point is in a low alarm state

	high_alarm – TRUE if the point is in a high alarm state

	oor_low – TRUE if the point is out-of-range low

	oor_high – TRUE if the point is out-of-range high

	unreliable – TRUE if the point is unreliable

	manual – TRUE if the point is manually set

	Returns:	0, if the data push is successful

	
pyedna.serv.AddAnalogShortIdRecordNoStatus(site_service, tag, time_value, value)

	This function will add an analog value to the specified eDNA service and
tag, without an associated point status.

	Parameters:	
	site_service – The site.service where data will be pushed

	tag – The eDNA tag to push data. Tag only (e.g. ADE1CA01)

	time_value – The time of the point, which MUST be in UTC Epoch
format. For example, “1483926416” not “2016/01/01 01:01:01”.

	value – The value associated with the above time.

	Returns:	0, if the data push is successful

	
pyedna.serv.AddDigitalShortIdMsecRecord(site_service, tag, time_value, msec, value, status_string='OK ', warn=False, chattering=False, unreliable=False, manual=False)

	This function will add a digital value to the specified eDNA service and
tag, including all default point status definitions.

	Parameters:	
	site_service – The site.service where data will be pushed

	tag – The eDNA tag to push data. Tag only (e.g. ADE1CA01)

	time_value – The time of the point, which MUST be in UTC Epoch
format. For example, “1483926416” not “2016/01/01 01:01:01”.

	msec – The additional milliseconds for the time_value

	value – should be either TRUE or FALSE

	status_string – a string that must be EXACTLY 16 characters

	warn – TRUE if the point is in a warning state

	chattering – TRUE if the point is in a chattering state

	unreliable – TRUE if the point is in an unreliable state

	manual – TRUE if the point was manually set

	Returns:	0, if the data push is successful

	
pyedna.serv.AddDigitalShortIdRecord(site_service, tag, time_value, value, status_string='OK ', warn=False, chattering=False, unreliable=False, manual=False)

	This function will add a digital value to the specified eDNA service and
tag, including all default point status definitions.

	Parameters:	
	site_service – The site.service where data will be pushed

	tag – The eDNA tag to push data. Tag only (e.g. ADE1CA01)

	time_value – The time of the point, which MUST be in UTC Epoch
format. For example, “1483926416” not “2016/01/01 01:01:01”.

	value – should be either TRUE or FALSE

	status_string – a string that must be EXACTLY 16 characters

	warn – TRUE if the point is in a warning state

	chattering – TRUE if the point is in a chattering state

	unreliable – TRUE if the point is in an unreliable state

	manual – TRUE if the point was manually set

	Returns:	0, if the data push is successful

	
pyedna.serv.FlushShortIdRecords(site_service)

	Flush all the queued records.

	Parameters:	site_service – The site.service where data was pushed

	Returns:	message whether function was successful

	
pyedna.serv.LoadDll(location)

	If the EZDnaServApi64.dll file is not in the default location
(C:Program Files (x86)eDNAEZDnaServApi64.dll) then the user must specify
the correct location of the file, before this module can be used.

	Parameters:	location – full location of EZDnaServApi64.dll, including filename

Module contents

pyedna

A set of Python wrappers for functions in the eDNA API.

	copyright:	
	2017 by Eric Strong.

	license:	Refer to LICENSE.txt for more information.

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		PyeDNA

 		1. Introduction

 		Disclaimer

 		Package Organization

 		Basic Examples

 		2. Getting Started

 		Installation

 		eDNA Requirements

 		Python Requirements

 		Python Version Support

 		eDNA Version Support

 		Importing PyeDNA

 		3. Configuration Information

 		Service Information

 		Tag Information

 		Tag Picker

 		4. Pulling Data

 		Types of Data Pulls

 		eDNA Data Compression

 		GetHist

 		GetMultipleTags

 		5. Pushing Data

 		Serv Capabilities

 		Change Log

 		Version 0.14

 		Version 0.15

 		Version 0.16

 		Version 0.17

 		Version 0.17

 		Version 0.18

 		Version 1.01

_static/up.png

_static/up-pressed.png

