
pyeddl

Salva Carrión

Jun 18, 2019





USER GUIDE

1 Installation 3

2 Frequently Asked Questions 5

3 Getting started 7

4 Model (pyeddl.models) 9

5 Convolutional (pyeddl.layers.conv) 15

6 Core (pyeddl.layers.core) 19

7 Merge (pyeddl.layers.merge) 23

8 Pooling (pyeddl.layers.pooling) 25

9 Losses (pyeddl.losses) 27

10 Metrics (pyeddl.metrics) 29

11 Optimizers (pyeddl.optim) 31

12 Datasets (pyeddl.datasets) 33

13 Indices and tables 35

Python Module Index 37

Index 39

i



ii



pyeddl

PyEddl is a Python library that wraps the C++ European Distributed Deep Learning Library (EDDLL). The code is
open source, and available on github.

USER GUIDE 1

https://github.com/salvacarrion/pyeddl


pyeddl

2 USER GUIDE



CHAPTER

ONE

INSTALLATION

Pyeddl has a couple of prerequisites that need to be installed first, but once met, the rest of picky requirements are
automatically handle by the installer.

1.1 Requirements

• Python3

• CMake 3.14 or higher

• A modern compiler with C++11 support

1.2 Installation

To build and install pyeddl, clone or download this repository and then, from within the repository, run:

python3 setup.py install

or

pip3 install .

1.3 Tests

To execute all unit tests, run the following command:

python3 setup.py test

3



pyeddl

4 Chapter 1. Installation



CHAPTER

TWO

FREQUENTLY ASKED QUESTIONS

2.1 Can I contribute to the library?

Yes, please! Indeed, if you don’t want, you don’t have to worry neither about the widgets nor the documentation if
you don’t want. The only requirement is you add a new model is that it passes through all the tests.

Fork and contribute all as you want! https://github.com/salvacarrion/EDDL

5

https://github.com/salvacarrion/EDDL


pyeddl

6 Chapter 2. Frequently Asked Questions



CHAPTER

THREE

GETTING STARTED

3.1 Multi-layer Perceptron

1 from pyeddl.layers import Tensor, Input, Dense, Activation, Drop
2 from pyeddl.models import Model
3 from pyeddl.datasets import mnist
4

5

6 # Get dataset
7 (x_train, y_train),(x_test, y_test) = mnist.load_data()
8

9 # Input
10 batch = 1000
11 in_layer = Input(shape=(batch, 784))
12

13 # Layers
14 l1 = Activation(Dense(in_layer, 1024), 'relu')
15 l2 = Activation(Dense(l1, 1024), 'relu')
16 out_layer = Activation(Dense(Drop(l2, 0.5), 10), 'softmax')
17

18 m = Model(in_layer, out_layer)
19

20 # Plot model
21 m.plot("model.pdf")
22

23 # Get info
24 m.summary()
25

26 # Create optimizer, loss and metric
27 opt = SGD(lr=0.01, mu=0.9)
28 losses = [SoftCrossEntropy()]
29 metrics = [CategoricalAccuracy()]
30

31 # Define computing services (CPU, GPU, FPGA)
32 cs = ComputingService(CPU_threads=4)
33

34 # Build network
35 m.build(opt, losses, metrics, cs)
36

37 # Train model
38 m.fit(x_train, y_train, batch=batch, epochs=1)
39

40 # Evaluate model
41 m.evaluate(x_train, y_train)

7



pyeddl

3.2 Convolutional

1 from pyeddl.layers import Tensor, Input, Dense, Activation, Drop
2 from pyeddl.models import Model
3 from pyeddl.datasets import mnist
4

5

6 # Get dataset
7 (x_train, y_train),(x_test, y_test) = mnist.load_data()
8

9 # Input
10 batch = 1000
11 in_layer = Input(shape=(batch, 784))
12

13 # Layers
14 l = Reshape(in_layer, [batch, 1, 28, 28])
15 l = MaxPool(Activation(Conv(l, 16, [3, 3]), 'relu'), [2, 2])
16 l = MaxPool(Activation(Conv(l, 32, [3, 3]), 'relu'), [2, 2])
17 l = MaxPool(Activation(Conv(l, 64, [3, 3]), 'relu'), [2, 2])
18 l = MaxPool(Activation(Conv(l, 128, [3, 3]), 'relu'), [2, 2])
19 l = Reshape(l, [batch, -1])
20 l = Activation(Dense(l, 32), 'relu')
21 out_tensor = Activation(Dense(l, 10), 'softmax')
22

23 m = Model(in_layer, out_layer)
24

25 # Plot model
26 m.plot("model.pdf")
27

28 # Get info
29 m.summary()
30

31 # Create optimizer, loss and metric
32 opt = SGD(lr=0.01, mu=0.9)
33 losses = [SoftCrossEntropy()]
34 metrics = [CategoricalAccuracy()]
35

36 # Define computing services (CPU, GPU, FPGA)
37 cs = ComputingService(CPU_threads=4)
38

39 # Build network
40 m.build(opt, losses, metrics, cs)
41

42 # Train model
43 m.fit(x_train, y_train, batch=batch, epochs=1)
44

45 # Evaluate model
46 m.evaluate(x_train, y_train)

8 Chapter 3. Getting started



CHAPTER

FOUR

MODEL (PYEDDL.MODELS)

Model The Model class adds training & evaluation routines to
a Network.

4.1 Model

Model

class pyeddl.model.Model(cmodel=None)
The Model class adds training & evaluation routines to a Network.

__init__(cmodel=None)
Initialize self. See help(type(self)) for accurate signature.

compile(optimizer, losses=None, metrics=None, loss_weights=None, sample_weight_mode=None,
weighted_metrics=None, target_tensors=None, device=’cpu’, **kwargs)

Configures the model for training. # Arguments

optimizer: String (name of optimizer) or optimizer instance. loss: String (name of objective
function) or objective function.

If the model has multiple outputs, you can use a different loss on each output by passing
a dictionary or a list of losses. The loss value that will be minimized by the model will
then be the sum of all individual losses.

metrics: List of metrics to be evaluated by the model during training and testing. Typically
you will use metrics=[‘accuracy’]. To specify different metrics for different outputs of a
multi-output model, you could also pass a dictionary, such as metrics={‘output_a’: ‘accu-
racy’}.

loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to
weight the loss contributions of different model outputs. The loss value that will be min-
imized by the model will then be the weighted sum of all individual losses, weighted by
the loss_weights coefficients. If a list, it is expected to have a 1:1 mapping to the model’s
outputs. If a dict, it is expected to map output names (strings) to scalar coefficients.

sample_weight_mode: If you need to do timestep-wise sample weighting (2D weights), set
this to “temporal”. None defaults to sample-wise weights (1D). If the model has multiple
outputs, you can use a different sample_weight_mode on each output by passing a dictionary
or a list of modes.

weighted_metrics: List of metrics to be evaluated and weighted by sample_weight or
class_weight during training and testing.

9



pyeddl

target_tensors: By default, Keras will create placeholders for the model’s target, which will
be fed with the target data during training. If instead you would like to use your own target
tensors (in turn, Keras will not expect external Numpy data for these targets at training time),
you can specify them via the target_tensors argument. It can be a single tensor (for a single-
output model), a list of tensors, or a dict mapping output names to target tensors.

**kwargs: When using the Theano/CNTK backends, these arguments are passed into
K.function. When using the TensorFlow backend, these arguments are passed into
tf.Session.run.

# Raises

ValueError: In case of invalid arguments for optimizer, loss, metrics or sample_weight_mode.

evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, call-
backs=None, max_queue_size=10, workers=1, use_multiprocessing=False)

Returns the loss value & metrics values for the model in test mode. Computation is done in batches. #
Arguments

x: Input data. It could be:

• A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).

• A dict mapping input names to the corresponding array/tensors, if the model has named
inputs.

• None (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors).

y: Target data. Like the input data x, it could be either Numpy array(s), framework-native
tensor(s), list of Numpy arrays (if the model has multiple outputs) or None (default) if feed-
ing from framework-native tensors (e.g. TensorFlow data tensors). If output layers in the
model are named, you can also pass a dictionary mapping output names to Numpy arrays.

batch_size: Integer or None. Number of samples per gradient update. If unspecified,
batch_size will default to 32. Do not specify the batch_size is your data is in the form of
symbolic tensors, generators

verbose: 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar.

sample_weight: Optional Numpy array of weights for the test samples, used for weighting
the loss function. You can either pass a flat (1D) Numpy array with the same length as
the input samples (1:1 mapping between weights and samples), or in the case of temporal
data, you can pass a 2D array with shape (samples, sequence_length), to apply a different
weight to every timestep of every sample. In this case you should make sure to specify
sample_weight_mode=”temporal” in compile().

steps: Integer or None. Total number of steps (batches of samples) before declaring the evalu-
ation round finished. Ignored with the default value of None.

callbacks: List of callbacks to apply during evaluation. max_queue_size: Integer. Maximum size
for the generator queue.

If unspecified, max_queue_size will default to 10.

workers: Integer. Maximum number of processes to spin up when using process-based
threading. If unspecified, workers will default to 1. If 0, will execute the generator on the
main thread.

use_multiprocessing: Boolean. If True, use process-based threading. If unspecified,
use_multiprocessing will default to False. Note that because this implementation re-

10 Chapter 4. Model (pyeddl.models)



pyeddl

lies on multiprocessing, you should not pass non-picklable arguments to the generator as
they can’t be passed easily to children processes.

# Raises ValueError: in case of invalid arguments.

# Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model
has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display
labels for the scalar outputs.

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0,
validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0,
steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, work-
ers=1, use_multiprocessing=False, **kwargs)
Trains the model for a fixed number of epochs (iterations on a dataset). Arguments:

x: Input data. It could be:

• A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).

• A dict mapping input names to the corresponding array/tensors, if the model has named
inputs.

y: Target data. Like the input data x, it could be either Numpy array(s), framework-native
tensor(s), list of Numpy arrays (if the model has multiple outputs) or None (default) if feed-
ing from framework-native tensors (e.g. TensorFlow data tensors). If output layers in the
model are named, you can also pass a dictionary mapping output names to Numpy arrays.

batch_size: Integer or None. Number of samples per gradient update. If unspecified,
batch_size will default to 32. Do not specify the batch_size if your data is in the form of
symbolic tensors, generators, or Sequence instances (since they generate batches).

epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the en-
tire x and y data provided. Note that in conjunction with initial_epoch, epochs is to be
understood as “final epoch”. The model is not trained for a number of iterations given by
epochs, but merely until the epoch of index epochs is reached.

verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per
epoch.

callbacks: List of callbacks to apply during training and validation validation_split: Float be-
tween 0 and 1.

Fraction of the training data to be used as validation data. The model will set apart this
fraction of the training data, will not train on it, and will evaluate the loss and any model
metrics on this data at the end of each epoch. The validation data is selected from the last
samples in the x and y data provided, before shuffling. This argument is not supported
when x is a generator or Sequence instance.

validation_data: Data on which to evaluate the loss and any model metrics at the end of each
epoch. The model will not be trained on this data. validation_data will override valida-
tion_split. validation_data could be:

• tuple (x_val, y_val) of Numpy arrays or tensors

• tuple (x_val, y_val, val_sample_weights) of Numpy arrays

• dataset or a dataset iterator

For the first two cases, batch_size must be provided. For the last case, validation_steps must
be provided.

4.1. Model 11



pyeddl

shuffle: Boolean (whether to shuffle the training data before each epoch) or str (for ‘batch’).
‘batch’ is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-
sized chunks. Has no effect when steps_per_epoch is not None.

class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value,
used for weighting the loss function (during training only). This can be useful to tell the
model to “pay more attention” to samples from an under-represented class.

sample_weight: Optional Numpy array of weights for the training samples, used for weight-
ing the loss function (during training only). You can either pass a flat (1D) Numpy array
with the same length as the input samples (1:1 mapping between weights and samples), or in
the case of temporal data, you can pass a 2D array with shape (samples, sequence_length),
to apply a different weight to every timestep of every sample. In this case you should make
sure to specify sample_weight_mode=”temporal” in compile(). This argument is not sup-
ported when x generator, or Sequence instance, instead provide the sample_weights as the
third element of x.

initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training
run).

steps_per_epoch: Integer or None. Total number of steps (batches of samples) before declar-
ing one epoch finished and starting the next epoch. When training with input tensors such as
TensorFlow data tensors, the default None is equal to the number of samples in your dataset
divided by the batch size, or 1 if that cannot be determined.

validation_steps: Only relevant if steps_per_epoch is specified. Total number of steps
(batches of samples) to validate before stopping.

validation_steps: Only relevant if validation_data is provided and is a generator. Total num-
ber of steps (batches of samples) to draw before stopping when performing validation at the
end of every epoch.

validation_freq: Only relevant if validation data is provided. Integer or list/tuple/set. If an
integer, specifies how many training epochs to run before a new validation run is performed,
e.g. validation_freq=2 runs validation every 2 epochs. If a list, tuple, or set, specifies the
epochs on which to run validation, e.g. validation_freq=[1, 2, 10] runs validation at the end
of the 1st, 2nd, and 10th epochs.

max_queue_size: Integer. Used for generator. Maximum size for the generator queue. If un-
specified, max_queue_size will default to 10.

workers: Maximum number of processes to spin up when using process-based threading. If
unspecified, workers will default to 1. If 0, will execute the generator on the main thread.

use_multiprocessing: Boolean. If True, use process-based threading. If unspecified,
use_multiprocessing will default to False. Note that because this implementation re-
lies on multiprocessing, you should not pass non-picklable arguments to the generator as
they can’t be passed easily to children processes.

**kwargs: Used for backwards compatibility.

Returns: A History object. Its History.history attribute is a record of training loss values and metrics val-
ues at successive epochs, as well as validation loss values and validation metrics values (if applicable).

Raises: RuntimeError: If the model was never compiled. ValueError: In case of mismatch between the
provided input data

and what the model expects.

12 Chapter 4. Model (pyeddl.models)



pyeddl

train_on_batch(x, y, sample_weight=None, class_weight=None)
Runs a single gradient update on a single batch of data.

Args:

x: Numpy array of training data, or list of Numpy arrays if the model has multiple inputs. If all
inputs in the model are named, you can also pass a dictionary mapping input names to Numpy
arrays.

y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all
outputs in the model are named, you can also pass a dictionary mapping output names to Numpy
arrays.

sample_weight: Optional array of the same length as x, containing weights to apply to the
model’s loss for each sample. In the case of temporal data, you can pass a 2D array with shape
(samples, sequence_length), to apply a different weight to every timestep of every sample. In this
case you should make sure to specify sample_weight_mode=”temporal” in compile().

class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to
the model’s loss for the samples from this class during training. This can be useful to tell the
model to “pay more attention” to samples from an under-represented class.

Returns: Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the
model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the
display labels for the scalar outputs.

4.1. Model 13



pyeddl

14 Chapter 4. Model (pyeddl.models)



CHAPTER

FIVE

CONVOLUTIONAL (PYEDDL.LAYERS.CONV)

Conv2D 2D convolution layer (spatial convolution over images).
Conv2DTranspose Transposed convolution layer (sometimes called Decon-

volution).

5.1 Conv2D

class pyeddl.layers.conv.Conv2D(filters, kernel_size, strides=(1, 1), padding=’valid’,
data_format=None, dilation_rate=(1, 1), activation=None,
use_bias=True, kernel_initializer=’glorot_uniform’,
bias_initializer=’zeros’, kernel_regularizer=None,
bias_regularizer=None, activity_regularizer=None, ker-
nel_constraint=None, bias_constraint=None, **kwargs)

2D convolution layer (spatial convolution over images).

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs.
If use_bias is True, a bias vector is created and added to the outputs. Finally, if activation is not None, it is
applied to the outputs as well. When using this layer as the first layer in a model, provide the keyword argument
input_shape (tuple of integers, does not include the batch axis), e.g. input_shape=(128, 128, 3) for 128x128
RGB pictures in data_format=”channels_last”.

Args:

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolu-
tion).

kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolu-
tion window. Can be a single integer to specify the same value for all spatial dimensions.

strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height
and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying
any stride value != 1 is incompatible with specifying any dilation_rate value != 1.

padding: one of “valid” or “same” (case-insensitive). data_format: A string,

one of “channels_last” or “channels_first”. The ordering of the dimensions in the inputs.
“channels_last” corresponds to inputs with shape (batch, height, width, channels) while “chan-
nels_first” corresponds to inputs with shape (batch, channels, height, width). If you never set it,
then it will be “channels_last”.

dilation_rate: an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated con-
volution. Can be a single integer to specify the same value for all spatial dimensions. Currently,
specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.

15



pyeddl

activation: Activation function to use If you don’t specify anything, no activation is applied (ie. “linear”
activation: a(x) = x).

use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the kernel weights
matrix bias_initializer: Initializer for the bias vector kernel_regularizer: Regularizer function applied to

the kernel weights matrix

bias_regularizer: Regularizer function applied to the bias vector activity_regularizer: Regularizer function
applied to

the output of the layer (its “activation”).

kernel_constraint: Constraint function applied to the kernel matrix bias_constraint: Constraint function
applied to the bias vector

Input shape: 4D tensor with shape: (batch, channels, rows, cols) if data_format is “channels_first” or 4D
tensor with shape: (batch, rows, cols, channels) if data_format is “channels_last”.

Output shape: 4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format is “channels_first”
or 4D tensor with shape: (batch, new_rows, new_cols, filters) if data_format is “channels_last”. rows and
cols values might have changed due to padding.

__init__(filters, kernel_size, strides=(1, 1), padding=’valid’, data_format=None, dila-
tion_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=’glorot_uniform’,
bias_initializer=’zeros’, kernel_regularizer=None, bias_regularizer=None, activ-
ity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

5.2 Conv2DTranspose

class pyeddl.layers.conv.Conv2DTranspose(filters, kernel_size, strides=(1, 1),
padding=’valid’, output_padding=None,
data_format=None, dilation_rate=(1,
1), activation=None, use_bias=True,
kernel_initializer=’glorot_uniform’,
bias_initializer=’zeros’, ker-
nel_regularizer=None, bias_regularizer=None,
activity_regularizer=None, ker-
nel_constraint=None, bias_constraint=None,
**kwargs)

Transposed convolution layer (sometimes called Deconvolution).

The need for transposed convolutions generally arises from the desire to use a transformation going in the oppo-
site direction of a normal convolution, i.e., from something that has the shape of the output of some convolution
to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said
convolution. When using this layer as the first layer in a model, provide the keyword argument input_shape
(tuple of integers, does not include the batch axis), e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures
in data_format=”channels_last”.

Args:

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolu-
tion).

kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolu-
tion window. Can be a single integer to specify the same value for all spatial dimensions.

16 Chapter 5. Convolutional (pyeddl.layers.conv)



pyeddl

strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height
and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying
any stride value != 1 is incompatible with specifying any dilation_rate value != 1.

padding: one of “valid” or “same” (case-insensitive). output_padding: An integer or tuple/list of 2
integers,

specifying the amount of padding along the height and width of the output tensor. Can be a
single integer to specify the same value for all spatial dimensions. The amount of output padding
along a given dimension must be lower than the stride along that same dimension. If set to None
(default), the output shape is inferred.

data_format: A string, one of “channels_last” or “channels_first”. The ordering of the dimensions in
the inputs. “channels_last” corresponds to inputs with shape (batch, height, width, channels) while
“channels_first” corresponds to inputs with shape (batch, channels, height, width). It defaults to the
image_data_format value found in your

dilation_rate: an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated con-
volution. Can be a single integer to specify the same value for all spatial dimensions. Currently,
specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.

activation: Activation function to use If you don’t specify anything, no activation is applied (ie. “linear”
activation: a(x) = x).

use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the kernel weights
matrix bias_initializer: Initializer for the bias vector kernel_regularizer: Regularizer function applied to

the kernel weights matrix

bias_regularizer: Regularizer function applied to the bias vector activity_regularizer: Regularizer function
applied to

the output of the layer (its “activation”).

kernel_constraint: Constraint function applied to the kernel matrix bias_constraint: Constraint function
applied to the bias vector

Input shape: 4D tensor with shape: (batch, channels, rows, cols) if data_format is “channels_first” or 4D
tensor with shape: (batch, rows, cols, channels) if data_format is “channels_last”.

Output shape: 4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format is “channels_first”
or 4D tensor with shape: (batch, new_rows, new_cols, filters) if data_format is “channels_last”. rows and
cols values might have changed due to padding. If output_padding is specified: ‘‘‘ new_rows = ((rows -
1) * strides[0] + kernel_size[0]

• 2 * padding[0] + output_padding[0])

new_cols = ((cols - 1) * strides[1] + kernel_size[1]

• 2 * padding[1] + output_padding[1])

‘‘‘

References

• [A guide to convolution arithmetic for deep learning]( https://arxiv.org/abs/1603.07285v1)

• [Deconvolutional Networks]( https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.
pdf)

5.2. Conv2DTranspose 17

https://arxiv.org/abs/1603.07285v1
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf


pyeddl

__init__(filters, kernel_size, strides=(1, 1), padding=’valid’, output_padding=None,
data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, ker-
nel_initializer=’glorot_uniform’, bias_initializer=’zeros’, kernel_regularizer=None,
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
bias_constraint=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

18 Chapter 5. Convolutional (pyeddl.layers.conv)



CHAPTER

SIX

CORE (PYEDDL.LAYERS.CORE)

Activation Applies an activation function to an output.
Dense Just your regular densely-connected NN layer.
Dropout Applies Dropout to the input.
Input Layer to be used as an entry point into a model.
Reshape Reshapes an output to a certain shape.

6.1 Activation

class pyeddl.layers.core.Activation(activation, **kwargs)
Applies an activation function to an output.

Args: activation: name of activation function to use

Input shape: Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the samples
axis) when using this layer as the first layer in a model.

Output shape: Same shape as input.

__init__(activation, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

6.2 Dense

class pyeddl.layers.core.Dense(units, activation=None, use_bias=True, ker-
nel_initializer=’glorot_uniform’, bias_initializer=’zeros’,
kernel_regularizer=None, bias_regularizer=None, ac-
tivity_regularizer=None, kernel_constraint=None,
bias_constraint=None, **kwargs)

Just your regular densely-connected NN layer.

Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the element-
wise activation function passed as the activation argument, kernel is a weights matrix created by the layer, and
bias is a bias vector created by the layer (only applicable if use_bias is True). Note: if the input to the layer has
a rank greater than 2, then it is flattened prior to the initial dot product with kernel.

Example: # as first layer in a sequential model: model = Sequential() model.add(Dense(32, in-
put_shape=(16,))) # now the model will take as input arrays of shape (, 16) # and output arrays of shape (,
32) # after the first layer, you don’t need to specify # the size of the input anymore: model.add(Dense(32))

Args: units: Positive integer, dimensionality of the output space. activation: Activation function to use

19



pyeddl

If you don’t specify anything, no activation is applied (ie. “linear” activation: a(x) = x).

use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the kernel weights
matrix bias_initializer: Initializer for the bias vector kernel_regularizer: Regularizer function applied to

the kernel weights matrix

bias_regularizer: Regularizer function applied to the bias vector activity_regularizer: Regularizer function
applied to

the output of the layer (its “activation”).

kernel_constraint: Constraint function applied to the kernel weights matrix

bias_constraint: Constraint function applied to the bias vector

Input shape: nD tensor with shape: (batch_size, . . . , input_dim). The most common situation would be a 2D
input with shape (batch_size, input_dim).

Output shape: nD tensor with shape: (batch_size, . . . , units). For instance, for a 2D input with shape
(batch_size, input_dim), the output would have shape (batch_size, units).

__init__(units, activation=None, use_bias=True, kernel_initializer=’glorot_uniform’,
bias_initializer=’zeros’, kernel_regularizer=None, bias_regularizer=None, activ-
ity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

6.3 Dropout

class pyeddl.layers.core.Dropout(rate, noise_shape=None, seed=None, **kwargs)
Applies Dropout to the input.

Dropout consists in randomly setting a fraction rate of input units to 0 at each update during training time, which
helps prevent overfitting.

Args: rate: float between 0 and 1. Fraction of the input units to drop. noise_shape: 1D integer tensor represent-
ing the shape of the

binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape
(batch_size, timesteps, features) and you want the dropout mask to be the same for all timesteps,
you can use noise_shape=(batch_size, 1, features).

seed: A Python integer to use as random seed.

References

• [Dropout: A Simple Way to Prevent Neural Networks from Overfitting]( http://www.jmlr.org/
papers/volume15/srivastava14a/srivastava14a.pdf)

__init__(rate, noise_shape=None, seed=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

6.4 Input

class pyeddl.layers.core.Input(input_shape=None, batch_size=None,
batch_input_shape=None, dtype=None, input_tensor=None,
sparse=False, name=None)

Layer to be used as an entry point into a model.

20 Chapter 6. Core (pyeddl.layers.core)

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


pyeddl

It can either wrap an existing tensor (pass an input_tensor argument) or create its a placeholder tensor (pass
arguments input_shape or batch_input_shape as well as dtype).

Args: input_shape: Shape tuple, not including the batch axis. batch_size: Optional input batch size (inte-
ger or None). batch_input_shape: Shape tuple, including the batch axis. dtype: Datatype of the input.
input_tensor: Optional tensor to use as layer input

instead of creating a placeholder.

sparse: Boolean, whether the placeholder created is meant to be sparse.

name: Name of the layer (string).

__init__(input_shape=None, batch_size=None, batch_input_shape=None, dtype=None, in-
put_tensor=None, sparse=False, name=None)

Initialize self. See help(type(self)) for accurate signature.

6.5 Reshape

class pyeddl.layers.core.Reshape(target_shape, **kwargs)
Reshapes an output to a certain shape.

Args:

target_shape: target shape. Tuple of integers. Does not include the batch axis.

Input shape: Arbitrary, although all dimensions in the input shaped must be fixed. Use the keyword argument
input_shape (tuple of integers, does not include the batch axis) when using this layer as the first layer in a
model.

Output shape: (batch_size,) + target_shape

# Example ‘‘‘python

# as first layer in a Sequential model model = Sequential() model.add(Reshape((3, 4), in-
put_shape=(12,))) # now: model.output_shape == (None, 3, 4) # note: None is the batch dimension #
as intermediate layer in a Sequential model model.add(Reshape((6, 2))) # now: model.output_shape
== (None, 6, 2) # also supports shape inference using -1 as dimension model.add(Reshape((-1, 2,
2))) # now: model.output_shape == (None, 3, 2, 2)

‘‘‘

__init__(target_shape, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

6.5. Reshape 21



pyeddl

22 Chapter 6. Core (pyeddl.layers.core)



CHAPTER

SEVEN

MERGE (PYEDDL.LAYERS.MERGE)

Add Layer that adds a list of inputs.
Concatenate Layer that concatenates a list of inputs.

7.1 Add

class pyeddl.layers.merge.Add(**kwargs)
Layer that adds a list of inputs.

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape).

Example:

‘‘‘python import pyeddl input1 = pyeddl.layers.Input(shape=(16,)) x1 = pyeddl.layers.Dense(8, ac-
tivation=’relu’)(input1) input2 = pyeddl.layers.Input(shape=(32,)) x2 = pyeddl.layers.Dense(8,
activation=’relu’)(input2) # equivalent to added = pyeddl.layers.add([x1, x2]) added
= pyeddl.layers.Add()([x1, x2]) out = pyeddl.layers.Dense(4)(added) model =
pyeddl.models.Model(inputs=[input1, input2], outputs=out)

‘‘‘

7.2 Concatenate

class pyeddl.layers.merge.Concatenate(axis=-1, **kwargs)
Layer that concatenates a list of inputs.

It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single
tensor, the concatenation of all inputs.

Args: axis: Axis along which to concatenate. **kwargs: standard layer keyword arguments.

__init__(axis=-1, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

23



pyeddl

24 Chapter 7. Merge (pyeddl.layers.merge)



CHAPTER

EIGHT

POOLING (PYEDDL.LAYERS.POOLING)

MaxPooling2D Max pooling operation for spatial data.
AveragePooling2D Average pooling operation for spatial data.

8.1 MaxPooling2D

class pyeddl.layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=None, padding=’valid’,
data_format=None, **kwargs)

Max pooling operation for spatial data.

Args:

pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2) will
halve the input in both spatial dimension. If only one integer is specified, the same window length
will be used for both dimensions.

strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size.

padding: One of “valid” or “same” (case-insensitive). data_format: A string,

one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape (batch, height, width, channels) while chan-
nels_first corresponds to inputs with shape (batch, channels, height, width). It defaults to the
image_data_format value found in your

Input shape:

• If data_format=’channels_last’: 4D tensor with shape: (batch_size, rows, cols, channels)

• If data_format=’channels_first’: 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape:

• If data_format=’channels_last’: 4D tensor with shape: (batch_size, pooled_rows, pooled_cols,
channels)

• If data_format=’channels_first’: 4D tensor with shape: (batch_size, channels, pooled_rows,
pooled_cols)

__init__(pool_size=(2, 2), strides=None, padding=’valid’, data_format=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

25



pyeddl

8.2 AveragePooling2D

class pyeddl.layers.pooling.AveragePooling2D(pool_size=(2, 2), strides=None,
padding=’valid’, data_format=None,
**kwargs)

Average pooling operation for spatial data.

Args:

pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2) will
halve the input in both spatial dimension. If only one integer is specified, the same window length
will be used for both dimensions.

strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size.

padding: One of “valid” or “same” (case-insensitive). data_format: A string,

one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape (batch, height, width, channels) while chan-
nels_first corresponds to inputs with shape (batch, channels, height, width).

Input shape:

• If data_format=’channels_last’: 4D tensor with shape: (batch_size, rows, cols, channels)

• If data_format=’channels_first’: 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape:

• If data_format=’channels_last’: 4D tensor with shape: (batch_size, pooled_rows, pooled_cols,
channels)

• If data_format=’channels_first’: 4D tensor with shape: (batch_size, channels, pooled_rows,
pooled_cols)

__init__(pool_size=(2, 2), strides=None, padding=’valid’, data_format=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

26 Chapter 8. Pooling (pyeddl.layers.pooling)



CHAPTER

NINE

LOSSES (PYEDDL.LOSSES)

Built-in loss functions.

mean_squared_error Mean Squared Error
categorical_crossentropy Categorical Cross-Entropy
categorical_soft_crossentropy Categorical Soft Cross-Entropy

9.1 Mean Squared Error

pyeddl.losses.mean_squared_error()
Mean Squared Error

9.2 Cross Entropy

pyeddl.losses.categorical_crossentropy()
Categorical Cross-Entropy

9.3 Soft Cross Entropy

pyeddl.losses.categorical_soft_crossentropy()
Categorical Soft Cross-Entropy

27



pyeddl

28 Chapter 9. Losses (pyeddl.losses)



CHAPTER

TEN

METRICS (PYEDDL.METRICS)

mean_squared_error Mean Squared Error
categorical_accuracy Categorical Accuracy

10.1 Mean Squared Error

pyeddl.metrics.mean_squared_error()
Mean Squared Error

10.2 Categorical accuracy

pyeddl.metrics.categorical_accuracy()
Categorical Accuracy

29



pyeddl

30 Chapter 10. Metrics (pyeddl.metrics)



CHAPTER

ELEVEN

OPTIMIZERS (PYEDDL.OPTIM)

The classes presented in this section are optimizers to modify the SGD updates during the training of a model.

The update functions control the learning rate during the SGD optimization

SGD Stochastic gradient descent optimizer.

11.1 Stochastic Gradient Descent

This is the optimizer by default in all models.

class pyeddl.optim.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, **kwargs)
Stochastic gradient descent optimizer.

Includes support for momentum, learning rate decay, and Nesterov momentum.

Args: lr: float >= 0. Learning rate. momentum: float >= 0. Parameter that accelerates SGD

in the relevant direction and dampens oscillations.

decay: float >= 0. Learning rate decay over each update. nesterov: boolean. Whether to apply Nesterov
momentum.

__init__(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

31



pyeddl

32 Chapter 11. Optimizers (pyeddl.optim)



CHAPTER

TWELVE

DATASETS (PYEDDL.DATASETS)

mnist MNIST handwritten digits dataset.
cifar10 CIFAR10 small images classification dataset.

12.1 MNIST

MNIST handwritten digits dataset.

pyeddl.datasets.mnist.load_data(path=’mnist.npz’)
Loads the MNIST dataset.

Arguments: path: path where to cache the dataset locally

Returns: Tuple of Numpy arrays: (x_train, y_train), (x_test, y_test).

License: Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative work
from original NIST datasets. MNIST dataset is made available under the terms of the [Creative Commons
Attribution-Share Alike 3.0 license.]( https://creativecommons.org/licenses/by-sa/3.0/)

12.2 CIFAR-10

CIFAR10 small images classification dataset.

pyeddl.datasets.cifar10.load_data()
Loads CIFAR10 dataset.

Returns: Tuple of Numpy arrays: (x_train, y_train), (x_test, y_test).

33

https://creativecommons.org/licenses/by-sa/3.0/


pyeddl

34 Chapter 12. Datasets (pyeddl.datasets)



CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

35



pyeddl

36 Chapter 13. Indices and tables



PYTHON MODULE INDEX

p
pyeddl.datasets.cifar10, 33
pyeddl.datasets.mnist, 33
pyeddl.layers.conv, 15
pyeddl.layers.core, 19
pyeddl.layers.merge, 23
pyeddl.layers.pooling, 25
pyeddl.losses, 27
pyeddl.metrics, 29
pyeddl.model, 9
pyeddl.optim, 31

37



pyeddl

38 Python Module Index



INDEX

Symbols
__init__() (pyeddl.layers.conv.Conv2D method), 16
__init__() (pyeddl.layers.conv.Conv2DTranspose

method), 17
__init__() (pyeddl.layers.core.Activation method),

19
__init__() (pyeddl.layers.core.Dense method), 20
__init__() (pyeddl.layers.core.Dropout method), 20
__init__() (pyeddl.layers.core.Input method), 21
__init__() (pyeddl.layers.core.Reshape method), 21
__init__() (pyeddl.layers.merge.Concatenate

method), 23
__init__() (pyeddl.layers.pooling.AveragePooling2D

method), 26
__init__() (pyeddl.layers.pooling.MaxPooling2D

method), 25
__init__() (pyeddl.model.Model method), 9
__init__() (pyeddl.optim.SGD method), 31

A
Activation (class in pyeddl.layers.core), 19
Add (class in pyeddl.layers.merge), 23
AveragePooling2D (class in pyeddl.layers.pooling),

26

C
categorical_accuracy() (in module

pyeddl.metrics), 29
categorical_crossentropy() (in module

pyeddl.losses), 27
categorical_soft_crossentropy() (in mod-

ule pyeddl.losses), 27
compile() (pyeddl.model.Model method), 9
Concatenate (class in pyeddl.layers.merge), 23
Conv2D (class in pyeddl.layers.conv), 15
Conv2DTranspose (class in pyeddl.layers.conv), 16

D
Dense (class in pyeddl.layers.core), 19
Dropout (class in pyeddl.layers.core), 20

E
evaluate() (pyeddl.model.Model method), 10

F
fit() (pyeddl.model.Model method), 11

I
Input (class in pyeddl.layers.core), 20

L
load_data() (in module pyeddl.datasets.cifar10), 33
load_data() (in module pyeddl.datasets.mnist), 33

M
MaxPooling2D (class in pyeddl.layers.pooling), 25
mean_squared_error() (in module pyeddl.losses),

27
mean_squared_error() (in module

pyeddl.metrics), 29
Model (class in pyeddl.model), 9

P
pyeddl.datasets.cifar10 (module), 33
pyeddl.datasets.mnist (module), 33
pyeddl.layers.conv (module), 15
pyeddl.layers.core (module), 19
pyeddl.layers.merge (module), 23
pyeddl.layers.pooling (module), 25
pyeddl.losses (module), 27
pyeddl.metrics (module), 29
pyeddl.model (module), 9
pyeddl.optim (module), 31

R
Reshape (class in pyeddl.layers.core), 21

S
SGD (class in pyeddl.optim), 31

T
train_on_batch() (pyeddl.model.Model method),

12

39


	Installation
	Frequently Asked Questions
	Getting started
	Model (pyeddl.models)
	Convolutional (pyeddl.layers.conv)
	Core (pyeddl.layers.core)
	Merge (pyeddl.layers.merge)
	Pooling (pyeddl.layers.pooling)
	Losses (pyeddl.losses)
	Metrics (pyeddl.metrics)
	Optimizers (pyeddl.optim)
	Datasets (pyeddl.datasets)
	Indices and tables
	Python Module Index
	Index

