
PyDocX Documentation
Release dev

PyDocX Team

Jul 06, 2017





Contents

1 Installation 1
1.1 Python & OS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Install using pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Upgrade using pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Usage 3
2.1 Converting files using the command line interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Converting files using the library directly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Currently Supported HTML elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 HTML Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Conformance 7
3.1 17.9 Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Extending PyDocX 9
4.1 Customizing the HTML Exporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Implementing a new exporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Export Mixins 13
5.1 Detect faked superscript and subscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Enumerated List Detection 15
6.1 Supported enumeration sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Supported enumeration patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 How to disable enumerated list detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Development 17
7.1 Installing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Building the documentation locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Running tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 Getting involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.5 Coding Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.6 Release process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Plugins 21

i



8.1 Available Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Release Notes 23

ii



CHAPTER 1

Installation

Python & OS Support

PyDocX is supported and tested with CPython versions 2.6, 2.7, 3.3, 3.4, and pypy.

PyDocX is supported and tested with Linux and Windows.

Install using pip

$ pip install pydocx

Upgrade using pip

$ pip install -U pydocx

1



PyDocX Documentation, Release dev

2 Chapter 1. Installation



CHAPTER 2

Usage

Converting files using the command line interface

Using the pydocx command, you can specify the output format with the input and output files:

$ pydocx --html input.docx output.html

Converting files using the library directly

If you don’t want to mess around having to create exporters, you can use the PyDocX.to_html helper method:

from pydocx import PyDocX

# Pass in a path
html = PyDocX.to_html('file.docx')

# Pass in a file object
html = PyDocX.to_html(open('file.docx', 'rb'))

# Pass in a file-like object
from cStringIO import StringIO
buf = StringIO()
with open('file.docx') as f:

buf.write(f.read())

html = PyDocX.to_html(buf)

Of course, you can do the same using the exporter class:

from pydocx.export import PyDocXHTMLExporter

# Pass in a path

3



PyDocX Documentation, Release dev

exporter = PyDocXHTMLExporter('file.docx')
html = exporter.export()

# Pass in a file object
exporter = PyDocXHTMLExporter(open('file.docx', 'rb'))
html = exporter.export()

# Pass in a file-like object
from cStringIO import StringIO
buf = StringIO()
with open('file.docx') as f:

buf.write(f.read())

exporter = PyDocXHTMLExporter(buf)
html = exporter.export()

Currently Supported HTML elements

• tables

– nested tables

– rowspans

– colspans

– lists in tables

• lists

– list styles

– nested lists

– list of tables

– list of pragraphs

• justification

• images

• styles

– bold

– italics

– underline

– hyperlinks

• headings

HTML Styles

The export class pydocx.export.PyDocXHTMLExporter relies on certain CSS classes being defined for cer-
tain behavior to occur.

Currently these include:

4 Chapter 2. Usage



PyDocX Documentation, Release dev

• class pydocx-insert -> Turns the text green.

• class pydocx-delete -> Turns the text red and draws a line through the text.

• class pydocx-center -> Aligns the text to the center.

• class pydocx-right -> Aligns the text to the right.

• class pydocx-left -> Aligns the text to the left.

• class pydocx-comment -> Turns the text blue.

• class pydocx-underline -> Underlines the text.

• class pydocx-caps -> Makes all text uppercase.

• class pydocx-small-caps -> Makes all text uppercase, however truly lowercase letters will be small than
their uppercase counterparts.

• class pydocx-strike -> Strike a line through.

• class pydocx-hidden -> Hide the text.

• class pydocx-tab -> Represents a tab within the document.

Additionally, several list styles are defined based off the attribute values listed at: http://officeopenxml.com/
WPnumbering-numFmt.php

• class pydocx-list-style-type-cardinalText -> (1, 2, 3, 4, etc.)

• class pydocx-list-style-type-decimal -> (1, 2, 3, 4, etc.)

• class pydocx-list-style-type-decimalEnclosedCircle -> (1, 2, 3, 4, etc.)

• class pydocx-list-style-type-decimalEnclosedFullstop -> (1, 2, 3, 4, etc.)

• class pydocx-list-style-type-decimalEnclosedParen -> (1, 2, 3, 4, etc.)

• class pydocx-list-style-type-decimalZero -> (01, 02, 03, etc.)

• class pydocx-list-style-type-lowerLetter -> (a, b, c, etc.)

• class pydocx-list-style-type-lowerRoman -> (i, ii, iii, etc.)

• class pydocx-list-style-type-none -> List style is removed

• class pydocx-list-style-type-ordinalText -> (1, 2, 3, 4, etc.)

• class pydocx-list-style-type-upperLetter -> (A, B, C, etc.)

• class pydocx-list-style-type-upperRoman -> (I, II, III, etc.)

Exceptions

There is only one custom exception (MalformedDocxException). It is raised if either the xml or zipfile
libraries raise an exception.

2.5. Exceptions 5

http://officeopenxml.com/WPnumbering-numFmt.php
http://officeopenxml.com/WPnumbering-numFmt.php


PyDocX Documentation, Release dev

6 Chapter 2. Usage



CHAPTER 3

Conformance

Open Office XML is standardized by ECMA-376.

To the greatest degree possible, PyDocX intends to conform with this and subsequent standards.

7

http://www.ecma-international.org/publications/standards/Ecma-376.htm


PyDocX Documentation, Release dev

17.9 Numbering

Section Description Implemented
17.9.1 abstractNum true
17.9.2 abstractNumId true
17.9.3 ilvl true
17.9.4 isLgl false
17.9.5 lvl (override) false
17.9.6 lvl true
17.9.7 lvlJc false
17.9.8 lvlOverride false
17.9.9 lvlPictPulletId false
17.9.10 lvlRestart false
17.9.11 lvlText false
17.9.12 multiLevelType false
17.9.13 name false
17.9.14 nsid false
17.9.15 num true
17.9.16 numbering true
17.9.17 numFmt true
17.9.18 numId true
17.9.19 numIdMacAtCleanup false
17.9.20 numPicBullet false
17.9.21 numStyleLink false
17.9.22 pPr false
17.9.23 pStyle false
17.9.24 rPr false
17.9.25 start false
17.9.26 startOverride false
17.9.27 styleLink false
17.9.28 suff false
17.9.29 tmpl false

Deviations

In some cases, it was necessary to deviate from the specification. Such deviations should be only done with justifica-
tion, and minimally. All intended deviations shall be documented here. Any undocumented deviations are bugs.

Missing val attribute in underline tag

• In the event that the val attribute is missing from a u (ST_Underline type), we treat the underline as off, or
none. See also http://msdn.microsoft.com/en-us/library/ff532016%28v=office.12%29.aspx

If the val attribute is not specified, Word defaults to the value defined in the style hierarchy and then
to no underline.

8 Chapter 3. Conformance

http://msdn.microsoft.com/en-us/library/ff532016%28v=office.12%29.aspx


CHAPTER 4

Extending PyDocX

Customizing the HTML Exporter

Basic HTML exporting is implemented in pydocx.export.html.PyDocXHTMLExporter. To override default
behavior, simply extend the class and implement the desired methods. Here are a few examples to show you what is
possible:

class MyPyDocXHTMLExporter(PyDocXExporter):

def __init__(self, path):
# Handle dstrike the same as italic
self.export_run_property_dstrike = self.export_run_property_italic

super(MyPyDocXHTMLExporter, self).__init__(path=path)

# Perform specific pre-processing
def export(self):

self.delete_only_FOO_text_nodes()
return super(MyPyDocXHTMLExporter, self).export()

def delete_only_FOO_text_nodes(self):
# Delete all text nodes that match 'FOO' exactly
document = self.main_document_part.document
for body_child in document.body.children:

if isinstance(body_child, wordprocessing.Paragraph):
paragraph = body_child
for paragraph_child in paragraph.children:

if isinstance(paragraph_child, wordprocessing.Run):
run = paragraph_child
for run_child in run.children[:]:

if isinstance(run_child, wordprocessing.Text):
text = run_child
if text.text == 'FOO'

run.children.remove(text)

9



PyDocX Documentation, Release dev

# Don't display head
def head(self):

return
# The exporter expects all methods to return a generator
yield # this syntax causes an empty generator to be returned

# Ignore page break
def get_break_tag(self, br):

if br.is_page_break():
pass

else:
return super(MyPyDocXHTMLExporter, self).get_break_tag(br)

# Do not show deleted runs
def export_deleted_run(self, deleted_run):

return
yield

# Custom table tag
def get_table_tag(self, table):

attrs = {
'class': 'awesome-table',

}
return HtmlTag('table', **attrs)

# By default, the HTML exporter wraps inserted runs in a span with
# class="pydocx-insert". This example overrides that method to skip
# that behavior by jumping to the base implementation.
def export_inserted_run(self, inserted_run):

return super(PyDocXExporter, self).export_inserted_run(inserted_run)

# Hide hidden runs
def export_run(self, run):

properties = run.effective_properties
if properties.vanish:

return
elif properties.hidden:

return
results = super(MyPyDocXHTMLExporter, self).export_run(run)
for result in results:

yield result

Implementing a new exporter

If you want to implement an exporter for an unsupported markup language, you can do that by extending pydocx.
export.base.PyDocXExporter as needed. For example, this shows how you might create a custom exporter
for the FML, or Foo Markup Language:

class PyDocXFOOExporter(PyDocXExporter):

# The "FOO" markup language denotes breaks using "\"
def export_break(self):

yield '\\'

def export_document(self, document):

10 Chapter 4. Extending PyDocX



PyDocX Documentation, Release dev

yield 'START OF DOC'
results = super(PyDocXFOOExporter, self).export_document(self, document)
for result in results:

yield result
yield 'END OF DOC'

# Text must be wrapped in ()
def export_text(self, text):

yield '({0})'.format(text.text)

# Tables are denoted by [ ]
def export_table(self, table):

yield '['
results = super(PyDocXFOOExporter, self).export_table(self, table)
for result in results:

yield result
yield ']'

# Table rows are denoted by { }
def export_table_row(self, table_row):

yield '{'
results = super(PyDocXFOOExporter, self).export_table_row(self, table_row)
for result in results:

yield result
yield '}'

# Table cells are denoted by < >
def export_table_row(self, table_cell):

yield '<'
results = super(PyDocXFOOExporter, self).export_table_cell(self, table_cell)
for result in results:

yield result
yield '>'

The base exporter implementation expects all methods to return a generator. For this reason, it is not possible to have
an empty method (pass) or have a method that just returns None. The one caveat is the special syntax that causes a
method to return an empty generator:

def empty_generator():
return
yield

This implementation is consistent with the “only generators” rule, and is actually computationally faster than returning
an empty list.

4.2. Implementing a new exporter 11



PyDocX Documentation, Release dev

12 Chapter 4. Extending PyDocX



CHAPTER 5

Export Mixins

Export mixins provide standardized optional overrides for specific use cases. They exist in pydocx.export.
mixins. Each mixin is defined as a class in its own module.

Detect faked superscript and subscript

Useful if you want runs of text that are styled smaller (relative to surrounding text) and positioned either above or
below the surrounding text to be treated as super/subscript.

Example usage:

from pydocx.export.mixins import FakedSuperscriptAndSubscriptExportMixin

class CustomExporter(
FakedSuperscriptAndSubscriptExportMixin,
PyDocXHTMLExporter,

):
pass

13



PyDocX Documentation, Release dev

14 Chapter 5. Export Mixins



CHAPTER 6

Enumerated List Detection

The default behavior in PyDocX is to convert “faked” enumerated lists into “real” enumerated lists.

A “faked” enumerated list is a sequence of paragraphs in which the numbering has been explicitly typed. Additionally,
the spacing across levels is manually set either using tab characters, or indentation. For example:

1. Apple
2. Banana

a. Chiquita
b. Dole

3. Carrot

Conversely, a “real” enumerated list is a sequence of paragraphs in which the numbering, and spacing, is automatic:

1. Apple

2. Banana

(a) Chiquita

(b) Dole

3. Carrot

Supported enumeration sequences

• arabic numberals: 1, 2, 3, ...

• uppercase alphabet characters A, B, C, ..., Z, AA, AB, ... AZ, ...

• lowercase alphabet characters a, b, c, ..., z, aa, ab, ... az, ...

• uppercase Roman numberals: I, II, III, IV, ...

• lowercase Roman numberals: i, ii, iii, iv, ...

15



PyDocX Documentation, Release dev

Supported enumeration patterns

• Digit followed by a dot plus space: “1. ”, “A. ”, “a. ”, “I. ”, “i. “

• Surrounded by parentheses: “(1)”, “(A)”, “(a)”, “(I)”, “(i)”

• Digit followed by a parenthesis: “1)”, “A)”, “a)”, “I)”, “i)”

How to disable enumerated list detection

Extend the exporter to override the numbering_span_builder_class class variable as follows:

from pydocx.export.numbering_span import BaseNumberingSpanBuilder

class CustomExporter(PyDocXHTMLExporter):
numbering_span_builder_class = BaseNumberingSpanBuilder

16 Chapter 6. Enumerated List Detection



CHAPTER 7

Development

Installing requirements

Using pip

$ pip install -r requirements/docs.txt -r requirements/testing.txt

Using terrarium

Terrarium will package up and compress a virtualenv for you based on pip requirements and then let you ship that
environment around.

$ terrarium install requirements/*.txt

Building the documentation locally

1. Install the documentation requirements:

$ pip install -r requirements/docs.txt

2. Change directory to docs and run make html:

$ cd docs
$ make html

3. Load HTML documentation in a web browser of your choice:

$ firefox docs/_build/html/index.html

17



PyDocX Documentation, Release dev

Running tests

1. Install the development requirements:

$ pip install -r requirements/testing.txt

2. Run make test lint in the project root. This will run nosetests with coverage and also display any
flake8 errors.

$ make test lint

To run all tests against all supported versions of python, use tox.

Running tests with tox

tox allows us to use one command to run tests against all versions of python that we support.

Setting up tox

1. Decide how you want to manage multiple python versions.

(a) System level using a package manager such as apt-get. This approach will likely require adding addi-
tional apt-get sources in order to install alternative versions of python.

(b) Use pyenv to manage and install multiple python versions. After installation, see the pyenv command
reference.

2. Install tox.

$ pip install tox

3. Configure tox.

Running tox

Now that you have tox setup, you just need to run the command tox from the project root directory.

$ tox

Getting involved

The PyDocX project welcomes help in any of the following ways:

• Making pull requests on github for code, tests and documentation.

• Participating on open issues and pull requests, reviewing changes

18 Chapter 7. Development

https://github.com/yyuu/pyenv-installer#installation
https://github.com/yyuu/pyenv/blob/master/COMMANDS.md
https://github.com/yyuu/pyenv/blob/master/COMMANDS.md
http://tox.readthedocs.org/en/latest


PyDocX Documentation, Release dev

Coding Standards

• All python source files must be PEP8 compliant.

• All python source files must include the following import declaration at the top of the file:

from __future__ import (
absolute_import,
print_function,
unicode_literals,

)

Unicode Data

• All stream data is assumed to be a UTF-8 bytestream unless specified otherwise. What this means is that when
you are writing test cases for a particular function, any input data you define which would have otherwise have
come from a file source must be encoded as UTF-8.

Release process

PyDocX adheres to Semantic versioning v2.0.0.

1. Update CHANGELOG.

2. Bump the version number in __init__.py on master.

3. Tag the version.

4. Push to PyPI

make release

7.5. Coding Standards 19

http://legacy.python.org/dev/peps/pep-0008
http://semver.org/spec/v2.0.0.html
https://github.com/CenterForOpenScience/pydocx/blob/master/CHANGELOG.rst
https://github.com/CenterForOpenScience/pydocx/blob/master/pydocx/__init__.py


PyDocX Documentation, Release dev

20 Chapter 7. Development



CHAPTER 8

Plugins

You may find yourself needing a feature in PyDocX that doesn’t exist in the core library.

If it’s something that should exist, the PyDocX project is always open to new contributions. Details of how to contibute
can be found in Development.

For things that don’t fit in the core library, it’s easy to build a plugin based on the Extending PyDocX and Export
Mixins sections.

If you do build a plugin, edit this documentation and add it below so that other developers can find it.

Available Plugins

Plugin Description
pydocx-resize-images Resizes large images to the dimensions they are in the docx file
pydocx-s3-images Uploads images to S3 instead of returning Data URIs

21

https://github.com/jhubert/pydocx-resize-images
https://github.com/jhubert/pydocx-s3-images


PyDocX Documentation, Release dev

22 Chapter 8. Plugins



CHAPTER 9

Release Notes

dev

• Internal links and anchors are now retained. Thanks, sunu! #222

0.9.10

• No longer error when processing margin positions with decimal points.

0.9.9

• Rect elements now correctly handle image data

0.9.8

• Textboxes can now contain tables.

• Pict elements can now contain Rect elements.

0.9.7

• Text colors other than black and white are no longer ignored

• Textboxes have been implemented. We no longer lose the content inside of them.

• Markup compatibility has been implemented. We always use the Fallback for AlternateContent tags.

0.9.6

• Fixed issue in PyDocX CLI tool and added new test cases for the same

0.9.5

• Simple and Complex field hyperlinks now support bookmarks / internal anchors

0.9.4

• Faked lists inside tables are correctly converted to real lists

0.9.3

• Headings inside a complex field no longer fail to ignore styles

0.9.2

23

https://github.com/CenterForOpenScience/pydocx/pull/222


PyDocX Documentation, Release dev

• Fixed issue where multiple complex fields in the same paragraph would cause content to disappear.

0.9.1

• Added EmbeddedObject support with Shape

0.9.0

• Implemented complex and simple field hyperlinks.

• This includes a significant change to the API. The export methods are now all called twice. The results are
discarded in the first pass. In first pass (self.first_pass == True), you can now track information
that will be used to make decisions in the second pass. The notable example where this technique is used
is implementing complex fields. Because the export methods are called twice, some exporter extensions that
perform lossly operations on the document structure may need to ignore processing during the first pass.

• The function signature of the get_hyperlink_tag has changed. It previously accepted a Hyperlink
instance. Now it only accepts target_uri.

0.8.5

• Styled whitespace is no longer ignored. Previously, this would result in certain configurations with words
grouped together without spaces.

0.8.4

• Headings now preserve italic, webHidden and vanish styles

0.8.3

• Decimal font sizes are now handled properly

0.8.2

• Paragraphs that have numbering definitions with a level number format of None are no longer considered list
items.

0.8.1

• Headings in lists no longer break numbering. By default, in the HTML exporter, headings in lists are represented
using the “strong” tag, regardless of the heading level.

0.8.0

• Note: This release consists of significant changes to the internal API and is not backwards compatible with prior
versions

• Removed ConvertRootUpperRomanListToHeadingMixin

• Fixed issue where the same image referenced multiple times would not display correctly after the first instance

• Removed the preprocessor and re-implemented the functionality into the exporter

• Re-implemented the exporter into a top-down generator algorithm

• Implemented the necessary object classes for each element type (Paragraph, Run, Text, etc)

• Implemented enumerated list detection and conversion to numbering lists

0.7.0

• Added support for python 3.4

• Added support for pypy

• No longer adding list-style-type attribute to ordered list tags. We are now using a class to indicate these.

24 Chapter 9. Release Notes



PyDocX Documentation, Release dev

• Faked sub/super handling is no longer handled by default. Instead, that handling is implemented in a new mixin
class. See pydocx.export.mixins

• pydocx.wordml and pydocx.openxml have been merged into pydocx.openxml.packaging to bet-
ter mirror the MS implementation structure.

• pydocx.models.styles has been moved to pydocx.openxml.wordprocessing.*

• pydocx.managers.styles has been merged into pydocx.openxml.wordprocessing.
style_definition_part

• Added XmlCollection field type, now used by openxml.wordprocessing.styles.Style

• Implemented several model classes for Numbering.

• Added numbering property to the numbering definitions part.

• XmlModels now define their own tags

• Simplified importing PyDocX

• Header processing now occurs in the exporter rather than the pre-processor

• PyDocXExporter.heading signature has changed from accepting heading_level which was an HTML tag to
accepting heading_style_name which is the raw style name of the heading.

• The convert_root_level_upper_roman option has been replaced with an optional mixin pydocx.
export.mixins.ConvertRootUpperRomanListToHeadingMixin.

• Preprocessor no longer manages table membership. Instead, that is handled in the base iterative parser.

• ConvertRootUpperRomanListToHeadingMixin would fail for paragraphs that had no properties.

0.6.0

• Moved parsers to export module

• Renamed DocxParser to PyDocXExporter

• Renamed Docx2Html to PyDocXHTMLExporter

• Eliminated all improper usages of the find_first utility function

• Added support for NumberingDefinitionsPart to the WordprocessingDocumentFactory

0.5.1

• Fixed issue #116 - Don’t assume the first sz of an rPr actually is a direct child of that rPr.

0.5.0

• Moved CLI to __main__

• Moved tests to root-level module

0.4.4

• Specify charset in rendered HTML

• Added support for using defusedxml to mitigate XML vulnerabilities.

0.4.3

• Allow a file-like object to be passed into the DocXParser constructor.

• Added basic support for footnotes.

0.4.2

• Fixed a problem with calculating image sizes

25



PyDocX Documentation, Release dev

0.4.01

• Take into account run position and size to apply superscript and subscript tags to runs that would look like they
have superscript and subscript tags but are being faked due to positioning and sizing.

0.4.00

• External images are now handled. This causes a backwards incompatible change with all handers related to
images.

0.3.23

• Added support for style basedOn property

0.3.22

• Fixed a bug in which the run paragraph mark properties were used as run properties (pPr > rPr within a style
definition)

• Fixed a bug in which the run paragraph properties defined a global style identifier, any of those styles defined
globally were ignored.

• Fixed a bug which allowed run properties to reference paragraph properties, and paragraph properties to refer-
ence run properties. Such instances are now ignored.

0.3.21

• We are once again supporting files that are missing images.

0.3.20

• Fixed a problem with list nesting. We were marking list items as the first list item in error.

0.3.19

• Added support for python 3.3

• Fixed a problem with list nesting with nested sublists that have the same ilvl.

0.3.18

• Fixed an issue with marking runs as underline when they were not supposed to be.

0.3.17

• Fixed path issue on Windows for Zip archives

• Fixed attribute typo when attempting to generate an error message for a missing required resource

0.3.16

• CHANGELOG.md was missing from the MANIFEST in 0.3.15 which would cause the setup to fail.

0.3.15

• Use inline span to define styles instead of div

• Use ems for HTML widths instead of pixels

• If a property value is off, it is now considered disabled

0.3.14

• Use paths from _rels/.rels instead of hardcoding

0.3.13

• Significant performance gains for documents with a large number of table cells.

• Significant performance gains for large documents.

26 Chapter 9. Release Notes



PyDocX Documentation, Release dev

0.3.12

• Added command line support to convert from docx to either html or markdown.

0.3.11

• The non breaking hyphen tag was not correctly being imported. This issue has been fixed.

0.3.10

• Found and optimized a fairly large performance issue with tables that had large amounts of content within a
single cell, which includes nested tables.

0.3.9

• We are now respecting the <w:tab/> element. We are putting a space in everywhere they happen.

• Each styling can have a default defined based on values in styles.xml. These default styles can be over-
written using the rPr on the actual r tag. These default styles defined in styles.xml are actually being
respected now.

0.3.8

• If zipfile fails to open the passed in file, we are now raising MalformedDocxException instead of
BadZipFIle.

0.3.7

• Some inline tags (most notably the underline tag) could have a val of none and that would signify that the
style is disabled. A val of none is now correctly handled.

0.3.6

• It is possible for a docx file to not contain a numbering.xml file but still try to use lists. Now if this happens
all lists get converted to paragraphs.

0.3.5

• Not all docx files contain a styles.xml file. We are no longer assuming they do.

0.3.4

• It is possible for w:t tags to have text set to None. This no longer causes an error when escaping that text.

0.3.3

• In the event that cElementTree has a problem parsing the document, a MalformedDocxException is
raised instead of a SyntaxError

0.3.2

• We were not taking into account that vertical merges should have a continue attribute, but sometimes they do
not, and in those cases word assumes the continue attribute. We updated the parser to handle the cases in which
the continue attribute is not there.

• We now correctly handle documents with unicode character in the namespace.

• In rare cases, some text would be output with a style when it should not have been. This issue has been fixed.

0.3.1

• Added support for several more OOXML tags including:

– caps

– smallCaps

– strike

27



PyDocX Documentation, Release dev

– dstrike

– vanish

– webHidden

More details in the README.

0.3.0

• We switched from using stock xml.etree.ElementTree to using xml.etree.cElementTree. This
has resulted in a fairly significant speed increase for python 2.6

• It is now possible to create your own pre processor to do additional pre processing.

• Superscripts and subscripts are now extracted correctly.

0.2.1

• Added a changelog

• Added the version in pydocx.__init__

• Fixed an issue with duplicating content if there was indentation or justification on a p element that had multiple
t tags.

28 Chapter 9. Release Notes


	Installation
	Python & OS Support
	Install using pip
	Upgrade using pip

	Usage
	Converting files using the command line interface
	Converting files using the library directly
	Currently Supported HTML elements
	HTML Styles
	Exceptions

	Conformance
	17.9 Numbering
	Deviations

	Extending PyDocX
	Customizing the HTML Exporter
	Implementing a new exporter

	Export Mixins
	Detect faked superscript and subscript

	Enumerated List Detection
	Supported enumeration sequences
	Supported enumeration patterns
	How to disable enumerated list detection

	Development
	Installing requirements
	Building the documentation locally
	Running tests
	Getting involved
	Coding Standards
	Release process

	Plugins
	Available Plugins

	Release Notes

