
pydle Documentation
Release 0.9.2

Shiz

Aug 15, 2019

Contents

1 Features 3

2 Contents 5
2.1 Introduction to pydle . 5
2.2 Using pydle . 6
2.3 Features . 10
2.4 API reference . 15
2.5 Licensing . 20

Python Module Index 23

Index 25

i

ii

pydle Documentation, Release 0.9.2

pydle is a compact, flexible and standards-abiding IRC library for Python 3, written out of frustration with existing
solutions.

Contents 1

pydle Documentation, Release 0.9.2

2 Contents

CHAPTER 1

Features

• Well-organized, easily extensible

Thanks to the modular setup, pydle’s functionality is seperated in modules according to the standard they were
defined in. This makes specific functionality trivial to find and decreases unwanted coupling, as well as allowing
users to pick-and-choose the functionality they need.

No spaghetti code.

• Compliant

pydle contains modules, or “features” in pydle terminology, for almost every relevant IRC standard:

– RFC1459: The standard that defines the basic functionality of IRC - no client could live without.

– TLS: Support for chatting securely using TLS encryption.

– CTCP: The IRC Client-to-Client Protocol, allowing clients to query eachother for data.

– ISUPPORT: A method for the server to indicate non-standard or extended functionality to a client, and for
clients to activate said functionality if needed.

– WHOX: Easily query status information for a lot of users at once.

– IRCv3.1: An ongoing effort to bring the IRC protocol to the twenty-first century, featuring enhancements
such as extended capability negotiation and SASL authentication.

– IRCv3.2 (in progress): The next, in-development iteration of IRCv3. Features among others advanced
message tagging, a generalized metadata system, and online status monitoring.

No half-assing functionality.

• Asynchronous

IRC is an asychronous protocol; it only makes sense a clients that implements it is asynchronous as well. Built
on top of the wonderful asyncio library, pydle relies on proven technologies to deliver proper high-performance
asynchronous functionality and primitives. pydle allows using Futures to make asynchronous programming just
as intuitive as doing regular blocking operations.

No callback spaghetti.

3

https://tools.ietf.org/html/rfc1459.html
https://tools.ietf.org/html/rfc5246
http://www.irchelp.org/irchelp/rfc/ctcpspec.html
https://tools.ietf.org/html/draft-hardy-irc-isupport-00
https://hg.quakenet.org/snircd/file/tip/doc/readme.who
http://ircv3.org/
http://ircv3.org/
https://docs.python.org/3/library/asyncio.html

pydle Documentation, Release 0.9.2

• Liberally licensed

The 3-clause BSD license ensures you can use pydle whenever, for what purpose you want.

No arbitrary restrictions.

4 Chapter 1. Features

CHAPTER 2

Contents

2.1 Introduction to pydle

2.1.1 What is pydle?

pydle is an IRC library for Python 3.5 and up.

Although old and dated on some fronts, IRC is still used by a variety of communities as the real-time communication
method of choice, and the most popular IRC networks can still count on tens of thousands of users at any point during
the day.

pydle was created out of perceived lack of a good, Pythonic, IRC library solution that also worked with Python 3. It
attempts to follow the standards properly, while also having functionality for the various extensions to the protocol
that have been made over the many years.

2.1.2 What isn’t pydle?

pydle is not an end-user IRC client. Although a simple client may be trivial to implement using pydle, pydle itself
does not seek out to be a full-fledged client. It does, however, provide the building blocks to which you can delegate
most, if not all, of your IRC protocol headaches.

pydle also isn’t production-ready: while the maintainers try their utmost best to keep the API stable, pydle is still in
heavy development, and APIs are prone to change or removal at least until version 1.0 has been reached.

2.1.3 Requirements

Most of pydle is written in pure, portable Python that only relies on the standard library. Optionally, if you plan to use
pydle’s SASL functionality for authentication, the excellent pure-sasl library is required.

All dependencies can be installed using the standard package manager for Python, pip, and the included requirements
file:

5

https://github.com/thobbs/pure-sasl

pydle Documentation, Release 0.9.2

pip install -r requirements.txt

2.1.4 Compatibility

pydle works in any interpreter that implements Python 3.5 or higher. Although mainly tested in CPython, the standard
Python implementation, there is no reason why pydle itself should not work in alternative implementations like PyPy,
as long as they support the Python 3.5 language requirements.

2.2 Using pydle

Note: This section covers basic use of pydle. To see the full spectrum of what pydle is capable of, refer to the API
reference.

2.2.1 A simple client

The most basic way to use pydle is instantiating a pydle.Client object, connecting it to a server and having
it handle messages forever using pydle.Client.handle_forever(). pydle will automatically take care of
ensuring that the connection persists, and will reconnect if for some reason disconnected unexpectedly.

import pydle

client = pydle.Client('MyBot')
Client.connect() is a coroutine.
await client.connect('irc.freenode.net', tls=True)
client.handle_forever()

2.2.2 Adding functionality

Of course, the above client doesn’t really do much, except idling and error recovery. To truly start adding functionality
to the client, subclass pydle.Client and override one or more of the IRC callbacks.

import pydle

class MyClient(pydle.Client):
""" This is a simple bot that will greet people as they join the channel. """

async def on_connect(self):
await super().on_connect()
Can't greet many people without joining a channel.
await self.join('#kochira')

async def on_join(self, channel, user):
await super().on_join(channel, user)
await self.message(channel, 'Hey there, {user}!', user=user)

client = MyClient('MyBot')
await client.connect('irc.freenode.net', tls=True)
client.handle_forever()

6 Chapter 2. Contents

https://python.org
http://pypy.org

pydle Documentation, Release 0.9.2

This trivial example shows a few things:

1. pydle.Client.on_connect() is a callback that gets invoked as soon as the client is fully connected to
the server.

2. pydle.Client.on_join() is a callback that gets invoked whenever a user joins a channel.

3. Trivially enough, we can use pydle.Client.join() to instruct the client to join a channel.

4. Finally, we can use pydle.Client.message() to send a message to a channel or to a user; it will even
format the message for us according to advanced string formatting.

Hint: It is recommended to call the callbacks of the parent class using super(), to make sure whatever functionality
implemented by your parent classes gets called too: pydle will gracefully handle the call even if no functionality was
implemented or no callbacks overridden.

2.2.3 Authentication

Pydle can also handle authenticating against IRC services by default, all you need to do is tell it what its credentials
are.

Note: the server must support SASL based authentication.

SASL(Username + password)

To authenticate, pydle simply needs to be provided with a set of credentials to present during the connection process,
the most common type being a username+password pair

import pydle

client = pydle.Client(
nickname="my_irc_bot[bot]",
sasl_username = "username",
sasl_password = "my_secret_bot_password",
sasl_identity = "account_to_identify_against",
)

External authentication (Certificate)

As an alternative to using passwords for credentials, certificates can also be used via the SASL (External) authentica-
tion method.

All you need to do is tell pydle where it can find the certificate, which it will then present during the TLS handshake
when connecting to the server.

import pydle

client = pydle.Client(
nickname="my_irc_bot[bot]",
sasl_mechanism = "EXTERNAL",
tls_client_cert = "/path/to/client_certificate"
)

2.2. Using pydle 7

http://legacy.python.org/dev/peps/pep-3101/

pydle Documentation, Release 0.9.2

Note: this authentication mode only works over TLS connections

2.2.4 Multiple servers, multiple clients

Any pydle client instance can only be connected to a single server. That doesn’t mean that you are restricted to only
being active on a single server at once, though. Using a pydle.ClientPool, you can instantiate multiple clients,
connect them to different servers using pydle.ClientPool.connect(), and handle them within a single loop.

import pydle

class MyClient(pydle.Client):
""" This is a simple bot that will greet people as they join the channel. """

async def on_connect(self):
await super().on_connect()
Can't greet many people without joining a channel.
await self.join('#kochira')

async def on_join(self, channel, user):
await super().on_join(channel, user)
await self.message(channel, 'Hey there, {user}!', user=user)

Setup pool and connect clients.
pool = pydle.ClientPool()
servers = ['irc.freenode.net', 'irc.rizon.net', 'irc.esper.net']

for server in servers:
client = MyClient('MyBot')
pool.connect(client, server, tls=True)

Handle all clients in the pool at once.
pool.handle_forever()

Warning: While multiple pydle.ClientPool instances can be created and ran, you should ensure a client is
only active in a single pydle.ClientPool at once. Being active in multiple pools can lead to strange things
like receiving messages twice, or interleaved outgoing messages.

2.2.5 Mixing and matching

Thanks to pydle’s modular “feature” system, you don’t have to support everything you want to support. You can
choose just to select the options you think you need for your client by using pydle.featurize() to create a base
class out of the featured you need.

import pydle

Create a client that just supports the base RFC1459 spec, CTCP and an IRC services-
→˓style account system.
MyBaseClient = pydle.featurize(pydle.features.RFC1459Support, pydle.features.
→˓CTCPSupport, pydle.features.AccountSupport)

(continues on next page)

8 Chapter 2. Contents

pydle Documentation, Release 0.9.2

(continued from previous page)

class MyClient(MyBaseClient):
...

A list of all available built-in features and their use can be found at the API reference.

In addition to this, you can of course also write your own features. Feature writing is discussed thoroughly in the
feature section. Once you have written a feature, you can just featurize it on top of an existing client class.

import pydle
import vendor

Add vendor feature on top of the base client.
MyBaseClient = pydle.featurize(pydle.Client, vendor.VendorExtensionSupport)

class MyClient(MyBaseClient):
...

2.2.6 Asynchronous functionality

Some actions inevitably require blocking and waiting for a result. Since pydle is an asynchronous library where a client
runs in a single thread, doing this blindly could lead to issues like the operation blocking the handling of messages
entirely.

Fortunately, pydle utilizes asyncio coroutines which allow you to handle a blocking operation almost as if it were
a regular operation, while still retaining the benefits of asynchronous program flow. Coroutines allow pydle to be
notified when a blocking operation is done, and then resume execution of the calling function appropriately. That way,
blocking operations do not block the entire program flow.

In order for a function to be declared as a coroutine, it has to be declared as an async def function or decorated
with the asyncio.coroutine() decorator. It can then call functions that would normally block using Python’s
await operator. Since a function that calls a blocking function is itself blocking too, it has to be declared a coroutine
as well.

Hint: As with a lot of things, documentation is key. Documenting that your function does blocking operations lets the
caller know how to call the function, and to include the fact that it calls blocking operations in its own documentation
for its own callers.

For example, if you are implementing an administrative system that works based off nicknames, you might want
to check if the users are identified to NickServ. However, WHOISing a user using pydle.Client.whois()
would be a blocking operation. Thanks to coroutines and pydle.Client.whois() being a blocking operation
compatible with coroutines, the act of WHOISing will not block the entire program flow of the client.

import pydle
ADMIN_NICKNAMES = ['Shiz', 'rfw']

class MyClient(pydle.Client):
"""
This is a simple bot that will tell you if you're an administrator or not.
A real bot with administrative-like capabilities would probably be better off

→˓maintaining a cache
that would be invalidated upon parting, quitting or changing nicknames.
"""

(continues on next page)

2.2. Using pydle 9

https://en.wikipedia.org/wiki/Coroutine

pydle Documentation, Release 0.9.2

(continued from previous page)

async def on_connect(self):
await super().on_connect()
self.join('#kochira')

await def is_admin(self, nickname):
"""
Check whether or not a user has administrative rights for this bot.
This is a blocking function: use a coroutine to call it.
See pydle's documentation on blocking functionality for details.
"""
admin = False

Check the WHOIS info to see if the source has identified with NickServ.
This is a blocking operation, so use yield.
if source in ADMIN_NICKNAMES:

info = await self.whois(source)
admin = info['identified']

return admin

async def on_message(self, target, source, message):
await super().on_message(target, source, message)

Tell a user if they are an administrator for this bot.
if message.startswith('!adminstatus'):

admin = await self.is_admin(source)

if admin:
self.message(target, '{source}: You are an administrator.',

→˓source=source)
else:

self.message(target, '{source}: You are not an administrator.',
→˓source=source)

Writing your own blocking operation that can work with coroutines is trivial: Simply use the existing asyncio apis:
https://docs.python.org/3.7/library/asyncio-task.html#coroutines-and-tasks

2.3 Features

pydle’s main IRC functionality is divided into separate modular components called “features”. These features allow
you to mix and match your client to fit exactly to your requirements, as well as provide an easy way to extend pydle
yourself, without having to dive into the source code.

2.3.1 Built-in features

The following features are packaged with pydle and live in the pydle.features namespace.

RFC1459

API: pydle.features.RFC1459Support

10 Chapter 2. Contents

https://docs.python.org/3.7/library/asyncio-task.html#coroutines-and-tasks

pydle Documentation, Release 0.9.2

RFC1459 is the bread and butter of IRC: it is the standard that defines the very base concepts of the IRC protocol,
ranging from what a channel is to the basic commands to channel limits. If you want your client to have actually any
useful IRC functionality, it is recommend to include this feature.

Transport Layer Security (TLS)

API: pydle.features.TLSSupport

Support for secure connections to the IRC server using Transport Layer Security.

This allows, if the server supports it, for encrypted connections between the server and the client, to prevent snooping
and provide two-way authentication: both for the server to ensure its identity to the client, and for the client to ensure
its identity to the server. The latter can also be used in certain service packages to automatically identify to the user
account.

In order to connect to a TLS-enabled server, supply tls=True to pydle.features.TLSSupport.
connect().

Hint: pydle does not verify server-side TLS certificates by default; to enable certificate verification, supply
tls_verify=True to pydle.features.TLSSupport.connect() as well.

In order to supply a client certificate, pydle.features.TLSSupport takes 3 additional constructor parameters:

• tls_client_cert: A path to the TLS client certificate.

• tls_client_cert_key: A path to the TLS client certificate key.

• tls_client_cert_password: The optional password for the certificate key.

Client-to-Client Protocol (CTCP)

API: pydle.features.CTCPSupport

Support for encapsulation of out-of-band features into standard IRC messages using the Client-to-Client Protocol.

This allows you to send meta-messages to other users, requesting e.g. their local time, client version, and more, and
respond to such requests. It adds pydle.Client.ctcp(target, query, contents=None), which allows you to send a CTCP
request to a target, and pydle.Client.ctcp_reply(target, query, contents=None), which allows you to respond to CTCP
requests.

In addition, it registers the pydle.Client.on_ctcp(from, query, contents) hook, which allows you to act upon any CTCP
request, and a per-type hook in the form of pydle.Client.on_ctcp_<type>(from, contents), which allows you to act
upon CTCP requests of type type. type will always be lowercased. A few examples of type can be: action, time,
version.

Finally, it registers the pydle.Client.on_ctcp_reply(from, queyr, contents) hook, which acts similar to the above hook,
except it is triggered when the client receives a CTCP response. It also registers pydle.Client.on_ctcp_<type>_reply,
which works similar to the per-type hook described above.

Server-side Extension Support (ISUPPORT)

API: pydle.features.ISUPPORTSupport

Support for IRC protocol extensions using the ISUPPORT message.

2.3. Features 11

https://tools.ietf.org/html/rfc1459.html
https://tools.ietf.org/html/rfc5246
http://www.irchelp.org/irchelp/rfc/ctcpspec.html
http://tools.ietf.org/html/draft-hardy-irc-isupport-00

pydle Documentation, Release 0.9.2

This feature allows pydle to support protocol extensions which are defined using the non-standard ISUPPORT (005)
message. It includes built-in support for a number of popular ISUPPORT-based extensions, like CASEMAPPING,
CHANMODES, NETWORK and PREFIX.

It also provides the generic pydle.Client.on_isupport_type(value) hook, where type is the type of ISUPPORT-based
extension that the server indicated support for, and value is the optional value of said extension, or None if no value
was present.

Account System

API: pydle.features.AccountSupport

Support for a generic IRC account system.

Most IRC networks have some kind of account system that allows users to register and manage their nicknames and
personas. This feature provides additional support in pydle for this idea and its integration into the networks.

Currently, all it does is set the identified and account fields when doing a WHOIS query (pydle.Client.whois(user)) on
someone, which indicate if the target user has identified to their account, and if such, their account name, if available.

Extended User Tracking

API: pydle.features.WHOXSupport

Support for better user tracking using WHOX.

This feature allows pydle to perform more accurate tracking of usernames, idents and account names, using the WHOX
IRC extension. This allows pydle’s internal user database to be more accurate and up-to-date.

IRCv3

API: pydle.features.IRCv3Support

A shortcut for IRCv3.1 and IRCv3.2 support; see below.

IRCv3.1

API: pydle.features.IRCv3_1Support

IRCv3.1 support.

The ‘IRCv3 Working Group‘_ is a working group organized by several network, server author, and client author
representatives with the intention to standardize current non-standard IRC practices better, and modernize certain
parts of the IRC protocol. The IRCv3 standards are specified as a bunch of extension specifications on top of the last
widely-used IRC version, IRC v2.7, also known as RFC1459.

The IRCv3.1 specification adds useful features to IRC from a client perspective, including SASL authentication,
support for indicating when a user identified to their account, and indicating when a user went away from their PC.

Including this feature entirely will activate all IRCv3.1 functionality for pydle. You can also opt-in to only select the
two major features of IRCv3.1, the capability negotiation framework and SASL authentication support, as described
below, by only including their features.

12 Chapter 2. Contents

http://hg.quakenet.org/snircd/file/tip/doc/readme.who
http://hg.quakenet.org/snircd/file/tip/doc/readme.who
https://tools.ietf.org/html/rfc1459.html
http://ircv3.org
http://ircv3.org/extensions/sasl-3.1
http://ircv3.org/extensions/account-notify-3.1
http://ircv3.org/extensions/away-notify-3.1

pydle Documentation, Release 0.9.2

Capability Negotiation Support

API: pydle.features.ircv3.CapabilityNegotiationSupport

Support for capability negotiation for IRC protocol extensions.

This feature enables support for a generic framework for negotiating IRC protocol extension support between the client
and the server. It was quickly found that ISUPPORT alone wasn’t sufficient, as it only advertises support from the
server side instead of allowing the server and client to negotiate. This is a generic base feature: enabling it on its own
won’t do much, instead other features like the IRCv3.1 support feature, or the SASL authentication feature will rely
on it to work.

This feature adds three generic hooks for feature authors whose features makes use of capability negotiation:

• pydle.Client.on_capability_<cap>_available(value): Called when the server indicates capability cap is available.
Is passed a value as given by the IRC server, or None if no value was given Should return either a boolean
indicating whether or not to request the capability, or a string indicating to request the capability with the
returned value.

• pydle.Client.on_capability_<cap>_enabled(): Called when the server has acknowledged the request of capability cap, and it
has been enabled. Should return one of three values: pydle.CAPABILITY_NEGOTIATING when the capa-
bility will be further negotiated, pydle.CAPABILITY_NEGOTIATED when the capability has been negoti-
ated successfully, or pydle.CAPABILITY_FAILED when negotiation of the capability has failed. If the func-
tion returned pydle.CAPABILITY_NEGOTIATING, it has to call pydle.Client.capability_negotiated(cap,
success=True) when negotiating is finished.

• pydle.Client.on_capability_<cap>_disabled(): Called when a previously-enabled capability
cap has been disabled.

User Authentication Support (SASL)

API: pydle.features.ircv3.SASLSupport

Support for user authentication using SASL.

This feature enables users to identify to their network account using the SASL protocol and practices. Three extra
arguments are added to the pydle.Client constructor:

• sasl_username: The SASL username.

• sasl_password: The SASL password.

• sasl_identity: The identity to use. Default, and most common, is ''.

• sasl_mechanism: The SASL mechanism to force. Default involves auto-selection from server-supported
mechanism, or a PLAIN‘ fallback.

These arguments are also set as attributes.

Currently, pydle’s SASL support requires on the Python pure-sasl package and is thus limited to the mechanisms it
supports. The EXTERNAL mechanism is also supported without, however.

IRCv3.2

API: pydle.features.IRCv3_2Support

Support for the IRCv3.2 specification.

2.3. Features 13

https://tools.ietf.org/html/rfc4422
https://github.com/thobbs/pure-sasl

pydle Documentation, Release 0.9.2

The IRCv3.2 specification is the second iteration of specifications from the ‘IRCv3 Working Group‘_. This set of
specification is still under development, and may change at any time. pydle’s support is conservative, likely incomplete
and to-be considered experimental.

pydle currently supports the following IRCv3.2 extensions:

• IRCv3.2 improved capability negotiation.

• Indication of changed ident/host using CHGHOST.

• Indication of ident and host in RFC1459’s /NAMES command response.

• Monitoring of a user’s online status using MONITOR.

• Message tags to add metadata to messages.

• Arbitrary key/value storage using METADATA.

As with the IRCv3.1 features, using this feature enables all of pydle’s IRCv3.2 support. A user can also opt to only
use individual large IRCv3.2 features by using the features below.

Online Status Monitoring

API: pydle.features.ircv3.MonitoringSupport

Support for monitoring a user’s online status.

This feature allows a client to monitor the online status of certain nicknames. It adds the py-
dle.Client.monitor(nickname) and pydle.Client.unmonitor(nickname) APIs to add and remove nicknames from the
monitor list.

If a monitored user comes online, pydle.Client.on_user_online(nickname) will be called. Similarly, if a user disappears
offline, pydle.Client.on_user_offline(nickname) will be called.

Tagged Messages

API: pydle.features.ircv3.TaggedMessageSupport

Support for message metadata using tags.

This feature allows pydle to parse message metadata that is transmitted using ‘tags’. Currently, this has no impact on
any APIs or hooks for client developers.

Metadata

API: pydle.features.ircv3.MetadataSupport

Support for user and channel metadata.

This allows you to set and unset arbitrary key-value information on yourself and on channels, as well as retrieve such
values from other users and channels.

14 Chapter 2. Contents

http://ircv3.net
http://ircv3.net/specs/core/capability-negotiation-3.2.html
http://ircv3.net/specs/extensions/chghost-3.2.html
http://ircv3.net/specs/core/monitor-3.2.html
http://ircv3.net/specs/core/message-tags-3.2.html
http://ircv3.net/specs/core/metadata-3.2.html

pydle Documentation, Release 0.9.2

2.3.2 Writing features

2.4 API reference

2.4.1 Client API

class pydle.Client
pydle.Client implements the featureset of pydle.BasicClient with all the features in the pydle.
features namespace added. For the full reference, check the pydle.BasicClient documentation and
the Feature API reference.

class pydle.MinimalClient
pydle.MinimalClient implements the featureset of pydle.BasicClient with some vital features in
the pydle.features namespace added, namely:

• pydle.features.RFC1459Support

• pydle.features.TLSSupport

• pydle.features.CTCPSupport

• pydle.features.ISUPPORTSupport

• pydle.features.WHOXSupport

For the full reference, check the pydle.BasicClient documentation and the Feature API reference.

class pydle.ClientPool(clients=None, eventloop=None)
A pool of clients that are ran and handled in parallel.

connect(client: pydle.client.BasicClient, *args, **kwargs)
Add client to pool.

disconnect(client)
Remove client from pool.

handle_forever()
Main loop of the pool: handle clients forever, until the event loop is stopped.

pydle.featurize(*features)
Put features into proper MRO order.

class pydle.BasicClient(nickname, fallback_nicknames=[], username=None, realname=None,
eventloop=None, **kwargs)

Base IRC client class. This class on its own is not complete: in order to be able to run properly, _has_message,
_parse_message and _create_message have to be overloaded.

users

A dict mapping a username to a dict with general information about that user. Available keys in
the information dict:

• nickname: The user’s nickname.

• username: The user’s reported username on their source device.

• realname: The user’s reported real name (GECOS).

• hostname: The hostname where the user is connecting from.

2.4. API reference 15

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pydle Documentation, Release 0.9.2

channels

A dict mapping a joined channel name to a dict with information about that channel. Available
keys in the information dict:

• users: A set of all users currently in the channel.

connect(hostname=None, port=None, reconnect=False, **kwargs)
Connect to IRC server.

connected
Whether or not we are connected.

disconnect(expected=True)
Disconnect from server.

handle_forever()
Handle data forever.

in_channel(channel)
Check if we are currently in the given channel.

is_channel(chan)
Check if given argument is a channel name or not.

is_same_channel(left, right)
Check if given channel names are equal.

is_same_nick(left, right)
Check if given nicknames are equal.

on_connect()
Callback called when the client has connected successfully.

on_raw(message)
Handle a single message.

on_unknown(message)
Unknown command.

raw(message)
Send raw command.

rawmsg(command, *args, **kwargs)
Send raw message.

run(*args, **kwargs)
Connect and run bot in event loop.

2.4.2 Features API

RFC1459

class pydle.features.RFC1459Support(nickname, fallback_nicknames=[], username=None, re-
alname=None, eventloop=None, **kwargs)

Basic RFC1459 client.

away(message)
Mark self as away.

back()
Mark self as not away.

16 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set

pydle Documentation, Release 0.9.2

ban(channel, target, range=0)
Ban user from channel. Target can be either a user or a host. This command will not kick: use kickban()
for that. range indicates the IP/host range to ban: 0 means ban only the IP/host, 1+ means ban that many
‘degrees’ (up to 3 for IP addresses) of the host for range bans.

connect(hostname=None, port=None, password=None, **kwargs)
Connect to IRC server.

cycle(channel)
Rejoin channel.

is_channel(chan)
Check if given argument is a channel name or not.

is_same_channel(left, right)
Check if given nicknames are equal in the server’s case mapping.

is_same_nick(left, right)
Check if given nicknames are equal in the server’s case mapping.

join(channel, password=None)
Join channel, optionally with password.

kick(channel, target, reason=None)
Kick user from channel.

kickban(channel, target, reason=None, range=0)
Kick and ban user from channel.

message(target, message)
Message channel or user.

notice(target, message)
Notice channel or user.

on_channel_message(target, by, message)
Callback received when the client received a message in a channel.

on_channel_notice(target, by, message)
Callback called when the client received a notice in a channel.

on_connect()
Callback called when the client has connected successfully.

on_invite(channel, by)
Callback called when the client was invited into a channel by someone.

on_join(channel, user)
Callback called when a user, possibly the client, has joined the channel.

on_kick(channel, target, by, reason=None)
Callback called when a user, possibly the client, was kicked from a channel.

on_kill(target, by, reason)
Callback called when a user, possibly the client, was killed from the server.

on_message(target, by, message)
Callback called when the client received a message.

on_mode_change(channel, modes, by)
Callback called when the mode on a channel was changed.

on_nick_change(old, new)
Callback called when a user, possibly the client, changed their nickname.

2.4. API reference 17

pydle Documentation, Release 0.9.2

on_notice(target, by, message)
Callback called when the client received a notice.

on_part(channel, user, message=None)
Callback called when a user, possibly the client, left a channel.

on_private_message(target, by, message)
Callback called when the client received a message in private.

on_private_notice(target, by, message)
Callback called when the client received a notice in private.

on_quit(user, message=None)
Callback called when a user, possibly the client, left the network.

on_topic_change(channel, message, by)
Callback called when the topic for a channel was changed.

on_user_invite(target, channel, by)
Callback called when another user was invited into a channel by someone.

on_user_mode_change(modes)
Callback called when a user mode change occurred for the client.

part(channel, message=None)
Leave channel, optionally with message.

quit(message=None)
Quit network.

set_mode(target, *modes)
Set mode on target. Users should only rely on the mode actually being changed when receiving an
on_{channel,user}_mode_change callback.

set_nickname(nickname)
Set nickname to given nickname. Users should only rely on the nickname actually being changed when
receiving an on_nick_change callback.

set_topic(channel, topic)
Set topic on channel. Users should only rely on the topic actually being changed when receiving an
on_topic_change callback.

unban(channel, target, range=0)
Unban user from channel. Target can be either a user or a host. See ban documentation for the range
parameter.

whois(nickname)
Return information about user. This is an blocking asynchronous method: it has to be called from a
coroutine, as follows:

info = await self.whois(‘Nick’)

whowas(nickname)
Return information about offline user. This is an blocking asynchronous method: it has to be called from
a coroutine, as follows:

info = await self.whowas(‘Nick’)

18 Chapter 2. Contents

pydle Documentation, Release 0.9.2

Transport Layer Security

class pydle.features.TLSSupport(*args, tls_client_cert=None, tls_client_cert_key=None,
tls_client_cert_password=None, **kwargs)

TLS support.

Pass tls_client_cert, tls_client_cert_key and optionally tls_client_cert_password to have pydle send a client
certificate upon TLS connections.

connect(hostname=None, port=None, tls=False, **kwargs)
Connect to a server, optionally over TLS. See pydle.features.RFC1459Support.connect for misc parame-
ters.

whois(nickname)
Return information about user. This is an blocking asynchronous method: it has to be called from a
coroutine, as follows:

info = await self.whois(‘Nick’)

Client-to-Client Protocol

class pydle.features.CTCPSupport(nickname, fallback_nicknames=[], username=None, real-
name=None, eventloop=None, **kwargs)

Support for CTCP messages.

ctcp(target, query, contents=None)
Send a CTCP request to a target.

ctcp_reply(target, query, response)
Send a CTCP reply to a target.

on_ctcp(by, target, what, contents)
Callback called when the user received a CTCP message. Client subclasses can override on_ctcp_<type>
to be called when receiving a message of that specific CTCP type, in addition to this callback.

on_ctcp_reply(by, target, what, response)
Callback called when the user received a CTCP response. Client subclasses can override
on_ctcp_<type>_reply to be called when receiving a reply of that specific CTCP type, in addition to this
callback.

Account

class pydle.features.AccountSupport(nickname, fallback_nicknames=[], username=None, re-
alname=None, eventloop=None, **kwargs)

whois(nickname)
Return information about user. This is an blocking asynchronous method: it has to be called from a
coroutine, as follows:

info = await self.whois(‘Nick’)

2.4. API reference 19

pydle Documentation, Release 0.9.2

ISUPPORT

class pydle.features.ISUPPORTSupport(nickname, fallback_nicknames=[], username=None,
realname=None, eventloop=None, **kwargs)

ISUPPORT support.

Extended WHO

class pydle.features.WHOXSupport(nickname, fallback_nicknames=[], username=None, real-
name=None, eventloop=None, **kwargs)

2.5 Licensing

2.5.1 pydle license

Copyright (c) 2014-2016, Shiz
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL SHIZ BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

pydle optionally relies on pure-sasl to provide SASL authentication methods; its license is printed in verbatim below.

2.5.2 pure-sasl license

http://www.opensource.org/licenses/mit-license.php

Copyright 2007-2011 David Alan Cridland

(continues on next page)

20 Chapter 2. Contents

https://github.com/thobbs/pure-sasl

pydle Documentation, Release 0.9.2

(continued from previous page)

Copyright 2011 Lance Stout
Copyright 2012 Tyler L Hobbs

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
→˓merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
→˓persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
→˓or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
→˓PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
→˓LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

2.5. Licensing 21

pydle Documentation, Release 0.9.2

22 Chapter 2. Contents

Python Module Index

p
pydle.client, 15
pydle.features, 16

23

pydle Documentation, Release 0.9.2

24 Python Module Index

Index

A
AccountSupport (class in pydle.features), 19
away() (pydle.features.RFC1459Support method), 16

B
back() (pydle.features.RFC1459Support method), 16
ban() (pydle.features.RFC1459Support method), 16
BasicClient (class in pydle), 15

C
ClientPool (class in pydle), 15
connect() (pydle.BasicClient method), 16
connect() (pydle.ClientPool method), 15
connect() (pydle.features.RFC1459Support method),

17
connect() (pydle.features.TLSSupport method), 19
connected (pydle.BasicClient attribute), 16
ctcp() (pydle.features.CTCPSupport method), 19
ctcp_reply() (pydle.features.CTCPSupport method),

19
CTCPSupport (class in pydle.features), 19
cycle() (pydle.features.RFC1459Support method), 17

D
disconnect() (pydle.BasicClient method), 16
disconnect() (pydle.ClientPool method), 15

F
featurize() (in module pydle), 15

H
handle_forever() (pydle.BasicClient method), 16
handle_forever() (pydle.ClientPool method), 15

I
in_channel() (pydle.BasicClient method), 16
is_channel() (pydle.BasicClient method), 16
is_channel() (pydle.features.RFC1459Support

method), 17

is_same_channel() (pydle.BasicClient method), 16
is_same_channel() (py-

dle.features.RFC1459Support method), 17
is_same_nick() (pydle.BasicClient method), 16
is_same_nick() (pydle.features.RFC1459Support

method), 17
ISUPPORTSupport (class in pydle.features), 20

J
join() (pydle.features.RFC1459Support method), 17

K
kick() (pydle.features.RFC1459Support method), 17
kickban() (pydle.features.RFC1459Support method),

17

M
message() (pydle.features.RFC1459Support method),

17

N
notice() (pydle.features.RFC1459Support method),

17

O
on_channel_message() (py-

dle.features.RFC1459Support method), 17
on_channel_notice() (py-

dle.features.RFC1459Support method), 17
on_connect() (pydle.BasicClient method), 16
on_connect() (pydle.features.RFC1459Support

method), 17
on_ctcp() (pydle.features.CTCPSupport method), 19
on_ctcp_reply() (pydle.features.CTCPSupport

method), 19
on_invite() (pydle.features.RFC1459Support

method), 17
on_join() (pydle.features.RFC1459Support method),

17

25

pydle Documentation, Release 0.9.2

on_kick() (pydle.features.RFC1459Support method),
17

on_kill() (pydle.features.RFC1459Support method),
17

on_message() (pydle.features.RFC1459Support
method), 17

on_mode_change() (py-
dle.features.RFC1459Support method), 17

on_nick_change() (py-
dle.features.RFC1459Support method), 17

on_notice() (pydle.features.RFC1459Support
method), 17

on_part() (pydle.features.RFC1459Support method),
18

on_private_message() (py-
dle.features.RFC1459Support method), 18

on_private_notice() (py-
dle.features.RFC1459Support method), 18

on_quit() (pydle.features.RFC1459Support method),
18

on_raw() (pydle.BasicClient method), 16
on_topic_change() (py-

dle.features.RFC1459Support method), 18
on_unknown() (pydle.BasicClient method), 16
on_user_invite() (py-

dle.features.RFC1459Support method), 18
on_user_mode_change() (py-

dle.features.RFC1459Support method), 18

P
part() (pydle.features.RFC1459Support method), 18
pydle.Client (class in pydle.client), 15
pydle.client (module), 15
pydle.features (module), 16
pydle.MinimalClient (class in pydle.client), 15

Q
quit() (pydle.features.RFC1459Support method), 18

R
raw() (pydle.BasicClient method), 16
rawmsg() (pydle.BasicClient method), 16
RFC1459Support (class in pydle.features), 16
run() (pydle.BasicClient method), 16

S
set_mode() (pydle.features.RFC1459Support

method), 18
set_nickname() (pydle.features.RFC1459Support

method), 18
set_topic() (pydle.features.RFC1459Support

method), 18

T
TLSSupport (class in pydle.features), 19

U
unban() (pydle.features.RFC1459Support method), 18

W
whois() (pydle.features.AccountSupport method), 19
whois() (pydle.features.RFC1459Support method), 18
whois() (pydle.features.TLSSupport method), 19
whowas() (pydle.features.RFC1459Support method),

18
WHOXSupport (class in pydle.features), 20

26 Index

	Features
	Contents
	Introduction to pydle
	Using pydle
	Features
	API reference
	Licensing

	Python Module Index
	Index

