

pydftools

[image: https://img.shields.io/pypi/v/pydftools.svg]
 [https://pypi.python.org/pypi/pydftools][image: https://img.shields.io/travis/steven-murray/pydftools.svg]
 [https://travis-ci.org/steven-murray/pydftools][image: Documentation Status]
 [https://pydftools.readthedocs.io/en/latest/?badge=latest]A pure-python port of the dftools R package.

This package attempts to imitate the dftools package (repo: https://github.com/obreschkow/dftools) quite closely,
while being as Pythonic as possible. Do note that 2D+ models are not yet implemented in this Python port, and neither
are non-parametric models. Hopefully they will be along soon.

From dftool‘s description:

This package can find the most likely P parameters of a D-dimensional distribution function (DF) generating
N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects
are galaxies, it can fit a MF (P=1), a mass-size distribution (P=2) or the mass-spin-morphology distribution (P=3).
Unlike most common fitting approaches, this method accurately accounts for measurement is uncertainties and complex
selection functions. A full description of the algorithm can be found in Obreschkow et al. (2017).

In short, clean out Eddington bias from your fits:

[image: https://user-images.githubusercontent.com/1272030/31757852-60cb6ebc-b4dd-11e7-8ce9-32b3232e8f94.png]

	Free software: MIT license

	Documentation: https://pydftools.readthedocs.io.

Features

	Simple and fast parameter fitting for generative distribution functions

	Several examples (with astronomical applications in mind)

	Several plotting routines so that you can go from nothing to a plot in minutes

	A mockdata() function which can produce data to fit.

	Support for arbitrary 1D models, several kinds of selection functions, jackknife and bootstrap resampling, Gaussian
error estimation and more.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Contents

	Installation
	Stable release

	From sources

	Examples
	Basic Example

	Tutorial 1

	Example With Large-Scale Structure (LSS)

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2017-10-25)

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install pydftools, run this command in your terminal:

$ pip install pydftools

This is the preferred method to install pydftools, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for pydftools can be downloaded from the Github repo [https://github.com/steven-murray/pydftools].

You can either clone the public repository:

$ git clone git://github.com/steven-murray/pydftools

Or download the tarball [https://github.com/steven-murray/pydftools/tarball/master]:

$ curl -OL https://github.com/steven-murray/pydftools/tarball/master

Once you have a copy of the source, you can install it from the top-level directory with:

$ pip install .

Examples

To help get you started using pydftools, we’ve compiled a few simple examples.
Other examples can be found in the API documentation for each object or by looking at some of the tests.

	Basic Example

	Tutorial 1

	Example With Large-Scale Structure (LSS)

Basic Example

This example is a basic introduction to using pydftools. It mimics
example 1 of dftools.

In [1]:

Import relevant libraries
%matplotlib inline

import pydftools as df
import time

 # Make figures a little bigger in the notebook
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 120

For displaying equations
from IPython.display import display, Markdown

Choose some parameters to use throughout

In [2]:

n = 1000
seed = 1234
sigma = 0.5
model =df.model.Schechter()
p_true = model.p0

Generate mock data with observing errors:

In [3]:

data, selection, model, other = df.mockdata(n = n, seed = seed, sigma = sigma, model=model, verbose=True)

Number of sources in the mock survey (expected): 1000.000
Number of sources in the mock survey (selected): 1000

Create a fitting object (the fit is not performed until the fit
object is accessed):

In [4]:

survey = df.DFFit(data=data, selection=selection, model=model)

Perform the fit and get the best set of parameters:

In [5]:

start = time.time()
print(survey.fit.p_best)
print("Time for fitting: ", time.time() - start, " seconds")

[-2.04370588 11.12540248 -1.29867552]
Time for fitting: 0.47102880477905273 seconds

Plot the covariances:

In [6]:

fig = df.plotting.plotcov([survey], p_true=p_true, figsize=1.3)

[image: ../_images/example_notebooks_basic_example_11_0.png]

Plot the mass function itself:

In [7]:

fig, ax = df.mfplot(survey, xlim=(1e7,2e12), ylim=(1e-4,2), p_true = p_true, bin_xmin=7.5, bin_xmax=12)

[image: ../_images/example_notebooks_basic_example_13_0.png]

Write out fitted parameters with (Gaussian) uncertainties:

In [8]:

display(Markdown(survey.fit_summary(format_for_notebook=True)))

\(\frac{dN}{dVdx} = \log(10) \phi_\star \mu^{\alpha+1} \exp(-\mu)\),
where
\(\mu = 10^{x - \log_{10} M_\star}\)\(\log_{10} \phi_\star\)
= -2.044 (+-0.066)\(\log_{10} M_\star\) = 11.125
(+-0.082)\(\alpha\) = -1.299 (+-0.021)

Tutorial 1

This is a direct port of the R ``dftools``
`tutorial <http://rpubs.com/obreschkow/312101>`__ to Python.

Objective of tutorial: Illuystrate the basic functionality of
pydftools by reproducing the HI mass function in Fig. 7 of Westmeier
et al. 2017 (https://arxiv.org/pdf/1709.00780.pdf).

Load the relevant libraries:

In [1]:

%matplotlib inline

import pydftools as df
from pydftools.plotting import mfplot
import numpy as np
from urllib.request import Request, urlopen # For getting the data online

from IPython.display import display, Math, Latex, Markdown, TextDisplayObject

Download the HI-mass data of Westmeier et al. 2017:

In [2]:

req = Request('http://quantumholism.com/dftools/westmeier2017.txt', headers={'User-Agent': 'Mozilla/5.0'})
data = urlopen(req)

data = np.genfromtxt(data, skip_header=1)

There are 31 galaxies in this sample, hence the array has 31 rows. This
data can be recast into the log-masses \(x\), normally used by
pydftools. We assume the mass uncertainties to be normal in
\(x\) and determine their amplitude using linear error propagation.
We also define the vector of effective volumes:

In [3]:

x = np.log10(data[:,0])
x_err = data[:,1]/data[:,0]/np.log(10)
veff_values = data[:,2]

Now fit these data. We first must create a Data and Selection object:

In [4]:

data = df.Data(x = x, x_err=x_err)
selection = df.selection.SelectionVeffPoints(veff=veff_values, xval = x, xmin = 5, xmax = 13)

Warning: xmin returns Veff(xmin)=0, setting xmin, xmax to 6.63363363363, 13.0

In [5]:

survey = df.DFFit(data = data, selection=selection, grid_dx = 0.01)

In [6]:

mfplot(survey, xlim=(10**6.63, 5e10), ylim=(1e-3, 1), show_bias_correction=False);

/home/steven/Documents/Projects/DFTOOLS/pydftools/pydftools/plotting.py:401: RuntimeWarning: divide by zero encountered in true_divide
 bin['gdf_input'] = np.bincount(x_bins, weights=1 / bin['dx'] / v)
/home/steven/Documents/Projects/DFTOOLS/pydftools/pydftools/dffit.py:871: RuntimeWarning: invalid value encountered in true_divide
 self.grid.effective_counts = rho_unbiased ** 2 / rho_unbiased_sqr # this equation gives the effective number of sources per bin
/home/steven/anaconda2/envs/dftools/lib/python3.6/site-packages/matplotlib/axes/_axes.py:2951: RuntimeWarning: invalid value encountered in double_scalars
 low = [thisx - thiserr for (thisx, thiserr)

[image: ../_images/example_notebooks_tutorial_1_11_1.png]

and show the fitted parameters:

In [7]:

display(Markdown(survey.fit_summary(format_for_notebook=True)))

\(\frac{dN}{dVdx} = \log(10) \phi_\star \mu^{\alpha+1} \exp(-\mu)\),
where
\(\mu = 10^{x - \log_{10} M_\star}\)\(\log_{10} \phi_\star\)
= -1.315 (+-0.275)\(\log_{10} M_\star\) = 9.540
(+-0.307)\(\alpha\) = -1.102 (+-0.147)

The dashed line in the bottom panel shows the effective volume as a
function of mass, recovered from the 31 values of veff. By default
an effective volume of 0 for masses smaller than the smallest observed
mass, and identical to the maximum volume for masses larger than the
largest observed mass. If a better model is available from
survey-specific considerations, then this information can be exploited
to improve the fit. In this example, we replace the assumption of
veff=0 for x<xmin, by veff=max(0,(x−6.53)∗75):

In [8]:

def veff_extrap(x):
 veff_max = np.max(veff_values)
 return np.clip((x-6.53)*75, 0,veff_max)

selection = df.selection.SelectionVeffPoints(veff=veff_values, xval = x, veff_extrap=veff_extrap, xmin = 5, xmax = 13)

Warning: xmin returns Veff(xmin)=0, setting xmin, xmax to 6.53753753754, 13.0

Now fit again:

In [9]:

survey = df.DFFit(data = data, selection=selection, grid_dx = 0.01)

and see the best fit solution:

In [10]:

display(Markdown(survey.fit_summary(format_for_notebook=True)))

\(\frac{dN}{dVdx} = \log(10) \phi_\star \mu^{\alpha+1} \exp(-\mu)\),
where
\(\mu = 10^{x - \log_{10} M_\star}\)\(\log_{10} \phi_\star\)
= -1.308 (+-0.272)\(\log_{10} M_\star\) = 9.535
(+-0.305)\(\alpha\) = -1.097 (+-0.146)

As can be seen the parameters have change very slightly due to the
modified effecive volume at the lowest masses. The printed parameters
have symmetric Gaussian uncertainties, determined in the Lapace
approximation (i.e. by inverting the Hessian matrix of the modified
likelihood function). To allow for non-Gaussian parameter posteriors, we
now refit the data while bootstrapping it 10^3 times:

In [11]:

survey.resample(n_bootstrap = 1000)

Finally, let’s produce the plot with 68% and 95% confidence regions
around the best fit. Also change fit color to red, change data color to
black, remove posterior data, remove effective volume line, and adjust
binning of input data. Then, add HIPASS and ALFALFA lines.

In [17]:

fig, ax = mfplot(survey,xlim=(2e6,5e10),ylim=(1e-3,1),uncertainty_type=3,
 col_fit='red',col_data='black',show_posterior_data=False,
 ls_veff='none', nbins=6,bin_xmin=6.5,bin_xmax=9.5,
 show_bias_correction=False,
 xpower10=True)
x = survey.grid.x[0]

ax[0].plot(10**x, survey.model.gdf(x,[np.log10(6.0e-3),9.80,-1.37]), ls='--',lw=1.5, color='C0', label="HIPASS")
ax[0].plot(10**x, survey.model.gdf(x,[np.log10(4.8e-3),9.96,-1.33]), ls='--',lw=1.5, color='C1', label="ALFALFA")
ax[0].legend()

Out[17]:

<matplotlib.legend.Legend at 0x7ff160e0bf60>

[image: ../_images/example_notebooks_tutorial_1_23_1.png]

and write the bes-fitting parameters:

In [18]:

display(Markdown(survey.fit_summary(format_for_notebook=True)))

\(\frac{dN}{dVdx} = \log(10) \phi_\star \mu^{\alpha+1} \exp(-\mu)\),
where
\(\mu = 10^{x - \log_{10} M_\star}\)\(\log_{10} \phi_\star\)
= -1.308 (+0.251 -0.266)\(\log_{10} M_\star\) = 9.535 (+0.152
-0.175)\(\alpha\) = -1.097 (+0.181 -0.140)

Note that there are marginal differences to the uncertainty ranges
quoted in the publication, due to a difference in the bootstrapping
technique used in the publication (parametric bootstrapping) and the
current version of dftools (non-parametric bootstrapping).

Example With Large-Scale Structure (LSS)

This example shows how pydftools deals with LSS. It mimics example
(2) of dftools::dfexample.

In [10]:

Import relevant libraries
%matplotlib inline

import pydftools as df
from scipy.special import erf
import numpy as np

import time

import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['figure.dpi'] = 120 # Make figures a little bigger in the notebook

from IPython.display import display, Markdown

In [2]:

Survey parameters
sigma = 0.3
seed = 1

Let us create a selection function which involves LSS. We define a dew
functions, namely, f, which is the selection function which gives
the fraction of objects observed at any given combination of
\((x,r)\), dVdr, which is the radial derivative of the volume
(typically proportional to \(r^2\)), and g, which is the
relative over-/under- abundance of objects at distance \(r\) due to
cosmic fluctuations:

In [3]:

dmax = lambda x : 1e-3/np.sqrt(10) * np.sqrt(10**x)
f = lambda x, r : erf((dmax(x) - r)/dmax(x)*20)*0.5 + 0.5
dVdr = lambda r : 0.2 * r**2
g = lambda r : 1 + 0.9*np.sin((r/100)**0.6*2*np.pi)

Now create our selection function object:

In [11]:

selection = df.selection.SelectionRdep(xmin = 5, xmax = 13, rmin = 0, rmax = 100, f=f, dvdr=dVdr, g=g)

Warning: xmin returns Veff(xmin)=0, setting xmin, xmax to 5.45645645646, 13.0

Use a Schechter distribution function:

In [13]:

model = df.model.Schechter()
p_true = model.p0

In [14]:

data, selection, model, other = df.mockdata(seed = seed, sigma = sigma, model=model, selection=selection, verbose=True)

Number of sources in the mock survey (expected): 561.057
Number of sources in the mock survey (selected): 561

Fit mock daa without any bias correction:

In [15]:

selection_without_lss = df.selection.SelectionRdep(xmin = 5, xmax = 13, rmin = 0, rmax = 100, f=f, dvdr=dVdr)
survey1 = df.DFFit(data = data, selection = selection_without_lss, ignore_uncertainties=True)

Warning: xmin returns Veff(xmin)=0, setting xmin, xmax to 5.45645645646, 13.0

Fit mock data while correcting for observational errors (Eddington
bias):

In [16]:

survey2 = df.DFFit(data = data, selection = selection_without_lss)

Fit mock data while correcting observational errors and LSS. We create a
new (identical) Selection object, both to keep them conceptually
different, and also because the object is mutable, and is changed when
estimating the LSS function. If we use the same Selection object, the
previous objects will be modified when fitting the following object.

In [17]:

selection_est_lss = df.selection.SelectionRdep(xmin = 5, xmax = 13, rmin = 0, rmax = 100, f=f, dvdr=dVdr)
survey3 = df.DFFit(data = data, selection = selection_est_lss, correct_lss_bias = True, lss_weight= lambda x : 10**x)

Warning: xmin returns Veff(xmin)=0, setting xmin, xmax to 5.45645645646, 13.0

Recall that the fitting is not actually performed until the fit
attribute is accessed. Let’s plot the effective volume functions for
each of our models before fitting:

In [18]:

x = np.linspace(7, 12, 100)

plt.plot(10**x, selection.Veff(x), label="Input model with LSS used to generate the data")
plt.plot(10**x, survey1.selection.Veff(x), label="Model without LSS")
plt.plot(10**x, survey3.selection.Veff(x), ls= '--', label="Model with estimated LSS (before estimation)")

plt.xscale('log')
plt.yscale('log')
plt.legend()

Out[18]:

<matplotlib.legend.Legend at 0x7f7940477c88>

[image: ../_images/example_notebooks_example_lss_18_1.png]

Now let’s perform the fit and plot the fitted mass functions:

In [23]:

fig, ax = df.mfplot(survey1, fit_label="Uncorrected", p_true=p_true, xlim=(1e8,2e12),ylim=(1e-5,5),nbins=20,bin_xmin=8,bin_xmax=12,col_fit='C1',col_data='C1',show_data_histogram = True, show_bias_correction = False, show_posterior_data=False)
fig, ax = df.mfplot(survey2, fit_label="Including Mass Errors", nbins=20, bin_xmin=8,bin_xmax=12,col_fit='C2',col_posterior='C2',show_input_data=False,show_data_histogram = False, fig=fig, ax0=ax[0],ax1=ax[1], show_bias_correction=False)
fig, ax = df.mfplot(survey3, fit_label="Including errors + LSS", nbins=20, bin_xmin=8,bin_xmax=12,col_fit='C0',col_posterior='C0',show_input_data=False,show_data_histogram = False, fig=fig, ax0=ax[0],ax1=ax[1], show_bias_correction=False)

ax[0].text(10**11.3, 5e-1, r"Observing error ($\pm \sigma$)",horizontalalignment='center')
ax[0].plot([10**(11.3 -sigma), 10**(11.3+sigma)], [2e-1, 2e-1], color='k')
ax[0].scatter([10**11.3], [2e-1], color='k', s=20)

[image: ../_images/example_notebooks_example_lss_20_0.png]

And again, have a look at the effective volumes (post-fitting):

In [12]:

plt.plot(10**x, selection.Veff(x), label="Input model with LSS used to generate the data")
plt.plot(10**x, survey1.selection.Veff(x), label="Model without LSS")
plt.plot(10**x, survey3.selection.Veff(x), ls= '--', label="Recovered model from data used for fit")

plt.xscale('log')
plt.yscale('log')
plt.ylim(1e-2,)
plt.legend()

Out[12]:

<matplotlib.legend.Legend at 0x7fbbd888a4e0>

[image: ../_images/example_notebooks_example_lss_22_1.png]

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/steven-murray/pydftools/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pydftools could always use more documentation, whether as part of the
official pydftools docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/steven-murray/pydftools/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pydftools for local development.

	Fork the pydftools repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pydftools.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pydftools
$ cd pydftools/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pydftools tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/steven-murray/pydftools/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_pydftools

Credits

Development Lead

	Steven Murray <steven.murray@curtin.edu.au>

Contributors

	Danail Obreschkow <danail.obreschkow@gmail.com>

History

0.1.0 (2017-10-25)

	First release on PyPI.

	All basic examples working as expected

	TravisCI, Readthedocs set up.

	Does not have multi-dimension support, or non-parametric support.

Index

 _static/comment.png

_static/down.png

_images/example_notebooks_tutorial_1_23_1.png
o

10°

Mua)

10°

0

HET)

100

_images/example_notebooks_basic_example_13_0.png
Counts

M([M)

_images/example_notebooks_example_lss_22_1.png
105 4

104 4

1024

1024

10t

100

10-14

1072

—— Input model with LSS used to generate the data
—— Model without LSS
—-- Recovered model from data used for fit

107

10 10° 101 10t 10%2

_images/example_notebooks_tutorial_1_11_1.png
o

10°

HETS)

100

Mua)

10°

1w

_images/example_notebooks_example_lss_18_1.png
105 4

104 4

1024

1024

1014

1004

10-14

~—— Input model with LSS used to generate the data
—— Model without LSS
- Model with estimated LSS (before estimation)

107

10 10° 101 101 10%2

_images/example_notebooks_basic_example_11_0.png
logyg 6. = —2.043 £ 0.067

logyo M, = 11.138%9.07

— 0.024
o= —13017502

T

'

'

'

'

'

'

'

'

'

'
o D D
PN N \"?

_images/example_notebooks_example_lss_20_0.png
¢[Mpc3dex~']

Observing error (+0)

. —_—
10141
10724
1024 — Uncorrected
Input
10-44 — Including Mass Errors
—— Including errors + LSS
1075
2
=
5
8
10 10° 101 10t 10%2

MIMo]

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		pydftools

 		Installation

 		Stable release

 		From sources

 		Examples

 		Basic Example

 		Tutorial 1

 		Example With Large-Scale Structure (LSS)

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.1.0 (2017-10-25)

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

