

PyDePr

[image: https://github.com/drericstrong/pydepr/blob/master/images/pydepr_small.jpg?raw=true]
PyDePr (“pie-deeper”) is a toolkit designed to facilitate the preprocessing and validation of
machine learning models.

	1. Introduction
	Package Organization

	2. Getting Started
	Installation

	Python Requirements

	Python Version Support

	Importing PyDePr

	3. Regression
	Regression Curve

	Model Validation

	Equation Building

	4. Inference
	Evidence

	Counter Evidence

	Conclusion

	FuzzyStates

	Change Log
	Version 0.11

	Version 0.12

	Version 0.13

	Version 0.14

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

PyDePr (“pie-deeper”) is a toolkit designed to facilitate the preprocessing and validation of
machine learning models. What does that mean? Machine learning models are often
specialized, requiring years of experience to correctly configure. The hardest
step is often preprocessing the dataset to be analyzed. An old joke in machine
learning is that 90% of the work is cleaning the dataset, while only 10% is
actual data analysis.

Keeping that in mind, PyDePr is meant to ease the initial step of model-building
by automatically preprocessing some very specific types of machine learning models.
PyDePr is not meant to build machine learning models for you (there are plenty of
Python libraries for that purpose), and it is not meant to be some sort of
catch-all solution for all types of machine learning models. However, support for
additional model types will be added as PyDePr is developed.

Package Organization

PyDePr is organized into several namespaces, including:

	regression

	inference

	waveform

The regression namespace handles all preprocessing and validation for regression
models, including a visualization of results. The inference namespace is meant
for Bayesian inference, where accumulated evidence points to a conclusion.

2. Getting Started

Installation

If Python is already installed on your computer, PyDePr can be installed using
PyPI by opening a command window and typing:

pip install pydepr

Upgrading to a new version of PyDePr can be accomplished by:

pip install pydepr –upgrade

The source code of PyDePr is hosted on GitHub at:

https://github.com/drericstrong/pydepr

Python Requirements

Required modules: matplotlib, numpy, pandas, seaborn, scipy, scikit-learn, sympy, statsmodels

PyDePr is integrated tightly with PyeDNA, with static helper functions for
pulling data directly from eDNA. PyeDNA is not required for most functions
in PyDePr, but it will be loaded if necessary.

A requirements.txt document is located in the GitHub repository, and all
package requirements can be installed using the following line in a
command window:

pip install -r requirements.txt

Python Version Support

Currently, PyDePr only supports Python 3.2+ and is not compatible with
Python 2. If Python 2 support is important to you, please make a pull
request at:

https://github.com/drericstrong/pydepr

The package maintainer welcomes collaboration.

Importing PyDePr

Modules in PyDePr are usually imported into a script using the following lines:

import pydepr.regression as regr

import pydepr.inference as infer

3. Regression

PyDePr supports the construction of regression models, with built-in
visual model validation. The following features are available:

	Supply data from either a pandas DataFrame or eDNA

	Automatically perform Ridge Regression, Lasso, LassoLars, and ElasticNet

	Calculate model performance metrics

	Build the model equation in a user-friendly form

	Create a series of plots for model validation and visualization

All code in this section assumes that you have imported PyDePr like:

import pydepr.regression as regr

Regression Curve

The base class in this namespace is the RegressionCurve class. You can
initialize a RegressionCurve by supplying it with a model type:

curve = regr.RegressionCurve(model_type=”ridge”)

Possible values for the model_type parameter are “Lasso”, “ElasticNet”,
“Ridge”, and “LassoLars”. The default value is “Ridge”.

Next, provide the model with inputs (x data) and outputs (y data),
using the add_input and add_output methods, respectively:

curve.add_input(x_data)

curve.add_output(y_data)

If x data already exists, it will merge the new data with the existing
data using an outer join, by default. However, only one y variable
may be specified, so the add_output function will overwrite all the
existing y_data.

Optionally, you can specify data filters using the add_filter method:

curve.add_filter(filter_data, low_value, high_value)

The x and y data will be filtered based on when the filter_data is
greater than or equal to the low_value, and less than or equal to the
high_value.

Next, the “run” function will automatically create a Ridge Regression
model using the x and y data:

curve.run()

Once the regression curve has been run, the model validation metrics
can be found (next section).

Model Validation

PyDePr will generate a plot which can be used for validation of the
regression model, using the following function:

f = curve.plot_validation()

Warning and alarm limits (based on standard deviations) can also be
supplied to the plots:

f = curve.plot_validation(warn=2, alarm=3)

The validation metrics generated for the above plot can also be
found directly:

metrics = curve.calculate_metrics()

Equation Building

The RegressionCurve class will automatically build equations based
on the results from the Ridge Regression:

eq, corr_eq = curve.build_equation()

The first value returned will be the full regression model equation,
while the second value returned will be the “corrected” equation
(more explanation below).

The regular equation is of the format (for ease of import into eDNA):

Value = AX + BZ

The corrected equation is of the format:

Value = BZ - Y

4. Inference

Inference can be accomplished using time-series evidence within this
PyDePr module.

	Assign evidence to a conclusion

	Use fuzzy logic to interpolate between conclusions

Evidence

Conclusions are made using Bayesian inference based on the assigned Evidence.
This class defines an Evidence input to a Conclusion. Any symptom which indicates
the Conclusion may be used as an Evidence input.

The following parameters may be supplied:

	thresholds: A list of thresholds in order: [normal, warning, alarm, danger, extreme danger]

	cpt: the conditional probability table for the evidence, which specifies the marginal probability distribution of the truth of the failure mode, depending on selected state. Must be an array of length 4. For example: [0.1, 0.2, 0.3, 0.4]

	name: an optional description or identifier.

	default_state: the default state of the evidence if bad input is received. 0 defaults to the prior, 1 defaults to Normal, 2 defaults to Warning, 3 defaults to Alarm, and 4 defaults to Danger. Recommended values are either 0 or 1.

Counter Evidence

This class defines a contrary evidence input to a Conclusion. Any symptom which will
excuplate the occurrence of a Conclusion can be used as a ContraryEvidence node.

The following parameters may be supplied:

	thresholds: A list of 4 thresholds in order: [normal, undetermined, abnormal, contradictory]

	priors: an array of updated priors for the Conclusion, based on the selected ContraryEvidence state. Must be length 4.

	name: an optional description or identifier.

Conclusion

This is the primary class that will be used in this model. Defines a Conclusion
in terms of evidence and counter evidence.

The following parameters may be supplied:

	name: an optional description or identifier

	prior: the prior probability of occurrence

	evidence: an array of “Evidence” class nodes which define symptoms associated with the Conclusion. At least 1 must exist.

	contrary: a single “ContraryEvidence” class node which contradicts the Conclusion. A maximum of 1 may exist.

FuzzyStates

This class is not meant to be used standalone, but it provides backend functionality
for the above classes.

FuzzyStates uses a fuzzy linear interpolation between the four user-defined states.
Warning- the supplied values must be the “midpoints”, or the thresholds at which
the fuzzy membership for the state should be equal to 100%. Total membership across
all four states must always be equal to 100%.

The following parameters may be supplied:

	normal: signal value under normal behavior.

	warning: signal value that begins to indicate an anomaly.

	alarm: onset of significant poor behavior.

	danger: signal strongly indicates the Conclusion.

	steps: an optional parameter for the # of steps of the range of fuzzy values. Must be at least 100.

Change Log

Version 0.11

	Initial release

	Regression models can now pull data using PyeDNA

Version 0.12

	Release of the inference module

Version 0.13

	New and improved documentation

	Minor work on the waveform module

Version 0.14

	Significant refactoring of the regression model

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pydepr	

 	
 	
 pydepr.regression	

 	
 	
 pydepr.waveform	

Index

 A
 | B
 | C
 | L
 | P
 | R
 | W

A

 	
 	add_filter() (pydepr.regression.RegressionCurve method)

 	add_filter_edna() (pydepr.regression.RegressionCurve method)

 	add_input() (pydepr.regression.RegressionCurve method)

 	
 	add_input_edna() (pydepr.regression.RegressionCurve method)

 	add_output() (pydepr.regression.RegressionCurve method)

 	add_output_edna() (pydepr.regression.RegressionCurve method)

B

 	
 	build_equation() (pydepr.regression.RegressionCurve method)

C

 	
 	calculate_metrics() (pydepr.regression.RegressionCurve method)

L

 	
 	list_from_edna() (pydepr.waveform.Waveform static method)

P

 	
 	plot_validation() (pydepr.regression.RegressionCurve method)

 	pydepr (module)

 	
 	pydepr.regression (module)

 	pydepr.waveform (module)

R

 	
 	RegressionCurve (class in pydepr.regression)

 	
 	run() (pydepr.regression.RegressionCurve method)

W

 	
 	Waveform (class in pydepr.waveform)

pydepr

	pydepr package
	Submodules

	pydepr.regression module
	pydepr.regression

	pydepr.waveform module
	pydepr.waveform

	Module contents
	pydepr

pydepr package

Submodules

pydepr.regression module

pydepr.regression

PyDePr is a set of tools for processing machine learning models for
inferring equipment degradation. This module is meant to preprocess and
develop regression models.

	copyright:	
	2017 Eric Strong.

	license:	Refer to LICENSE.txt for more information.

	
class pydepr.regression.RegressionCurve(model_type='ridge')

	Bases: object

	
add_filter(data, low, high, merge_type='outer')

	Adds data filters. If a filter already exists, it will merge the new
data with the existing data using an outer join, by default.

	Parameters:	
	data – A pandas DataFrame of filter data.

	low – Values below the “low” parameter will be filtered out

	high – Values above the “high” parameter will be filtered out

	merge_type – If data already exists, it will be merged with
an ‘inner’ or ‘outer’ join. Refers to pandas.concat
for more information about this behavior.

	
add_filter_edna(tag, start_date, end_date, low, high, desc_as_label=True, custom_label=None, merge_type='outer')

	Adds data filters. If a filter already exists, it will merge the new
data with the existing data using an outer join, by default.

This helper function will pull data from eDNA, to be used as filters
to the RegressionCurve. It is strongly recommended that you use the
same start_date and end_date for all data, and that you ensure that
data actually exists during the time period of interest.

	Parameters:	
	tag – The full Site.Service.Tag eDNA tagname

	start_date – must be in format mm/dd/yy hh:mm:ss

	end_date – must be in format mm/dd/yy hh:mm:ss

	low – Values below the “low” parameter will be filtered out

	high – Values above the “high” parameter will be filtered out

	desc_as_label – If true, use the eDNA description as the label
of the variable in the pandas DataFrame

	custom_label – Supply a custom variable label, as a string

	merge_type – If data already exists, it will be merged with
an ‘inner’ or ‘outer’ join. Refers to pandas.concat
for more information about this behavior.

	
add_input(data, merge_type='outer')

	Adds values to the X data. If x data already exists, it will merge
the new data with the existing data using an outer join, by default.

	Parameters:	
	data – A pandas DataFrame of input data.

	merge_type – If data already exists, it will be merged with
an ‘inner’ or ‘outer’ join. Refers to pandas.concat
for more information about this behavior.

	
add_input_edna(tag, start_date, end_date, desc_as_label=True, custom_label=None, merge_type='outer')

	Adds values to the X data. If x data already exists, it will merge
the new data with the existing data using an outer join, by default.

This helper function will pull data from eDNA, to be used as inputs
to the RegressionCurve. It is strongly recommended that you use the
same start_date and end_date for all data, and that you ensure that
data actually exists during the time period of interest.

	Parameters:	
	tag – The full Site.Service.Tag eDNA tagname

	start_date – must be in format mm/dd/yy hh:mm:ss

	end_date – must be in format mm/dd/yy hh:mm:ss

	desc_as_label – If true, use the eDNA description as the label
of the variable in the pandas DataFrame

	custom_label – Supply a custom variable label, as a string

	merge_type – If data already exists, it will be merged with
an ‘inner’ or ‘outer’ join. Refers to pandas.concat
for more information about this behavior.

	
add_output(data)

	Adds values to the Y data. WARNING- if y data already exists, it will
be overwritten by the new data. Only one Y variable is supported,
currently.

	Parameters:	data – A pandas DataFrame of output data.

	
add_output_edna(tag, start_date, end_date, desc_as_label=True, custom_label=None)

	Adds values to the Y data. WARNING- if y data already exists, it will
be overwritten by the new data. Only one Y variable is supported,
currently.

This helper function will pull data from eDNA, to be used as outputs
to the RegressionCurve. It is strongly recommended that you use the
same start_date and end_date for all data, and that you ensure that
data actually exists during the time period of interest.

	Parameters:	
	tag – The full Site.Service.Tag eDNA tagname

	start_date – must be in format mm/dd/yy hh:mm:ss

	end_date – must be in format mm/dd/yy hh:mm:ss

	desc_as_label – If true, use the eDNA description as the label
of the variable in the pandas DataFrame

	custom_label – Supply a custom variable label, as a string

	
build_equation()

	Builds an equation and corrected equation based on the results from
the constructed model. WARNING- “run” must be called first.

	Returns:	A tuple containing the equation and the y-corrected equation.

	
calculate_metrics(warn=3, alarm=4)

	Calculates performance metrics for the performance curve.
Warning- “run” must be called first.

	Parameters:	
	warn – # of standard deviations for the warning limit

	alarm – # of standard deviations for the alarm limit

	Returns:	an array of: [R^2, MAE, EV, Warn limit, Alarm limit]

	
plot_validation(warn=3, alarm=4, title=None, save_fig=False, fig_size=(20, 15))

	Creates a multi-plot to be used for model validation. WARNIGN- “run”
must be called first.

Plot descriptions:
1. Residuals vs. Time
2. Residuals vs. Primary Explanatory Factor
3. Y vs. Yhat Plot
4. Histogram of the Residuals
5. Actual Y vs. X
6. Corrected Y vs. X
7. Histogram of Actual Y
8. Histogram of Corrected Y

	Parameters:	
	warn – # of standard deviations for the warning limit

	alarm – # of standard deviations for the alarm limit

	title – an optional title for the plot

	save_fig – if True, the figure will be saved to a file with a
filename the same as the title

	fig_size – the size of the plot

	Returns:	either a figure plotted in the console, or a figure that is
saved to a file

	
run(model_type=None)

	This method will run the performance curve analysis for the
initialized data.

	Parameters:	model_type – Overwrite the regression model chosen during
initialization. Choices include Lasso, ElasticNet, Ridge, LassoLars

pydepr.waveform module

pydepr.waveform

PyDePr is a set of tools for processing degradation models. This module
contains tools for processing and validating waveforms.

	copyright:	
	2017 Eric Strong.

	license:	Refer to LICENSE.txt for more information.

	
class pydepr.waveform.Waveform(data)

	Bases: object

	
static list_from_edna(tag, start_date, end_date, start_val=-7291290)

	Returns a list of waveforms from eDNA.

	Parameters:	
	tag – the eDNA tag to pull the waveform

	start_date – the beginning of the data pull

	end_date – the end of the data pull

	start_val – value in history that defines the start of the array

	Returns:	a pandas DataFrame, with each row as a single array

Module contents

pydepr

PyDePr is a set of tools for processing degradation models.

	copyright:	
	2017 by Eric Strong.

	license:	Refer to LICENSE.txt for more information.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		PyDePr

 		1. Introduction

 		Package Organization

 		2. Getting Started

 		Installation

 		Python Requirements

 		Python Version Support

 		Importing PyDePr

 		3. Regression

 		Regression Curve

 		Model Validation

 		Equation Building

 		4. Inference

 		Evidence

 		Counter Evidence

 		Conclusion

 		FuzzyStates

 		Change Log

 		Version 0.11

 		Version 0.12

 		Version 0.13

 		Version 0.14

