

Welcome to pycoalaip’s documentation!

Important

Development Status: Alpha

Contents:

	pycoalaip
	Features

	TODO

	Packaging

	Credits

	Installation
	Stable release

	From sources

	Usage
	Quickstart

	Reference

	Plugins
	Available Plugins

	Writing a Plugin

	Library Reference
	coalaip

	entities

	models

	data formats

	exceptions

	plugin

	About this Documentation
	Building the documentation

	Viewing the documentation

	Making changes

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.0.3 (2017-05-06)

	0.0.2 (2017-05-05)

	0.0.1 (2017-02-17)

	0.0.1.dev3 (2016-12-06)

	0.0.1.dev2 (2016-08-31)

	0.0.1.dev1 (2016-08-31)

Indices and tables

	Index

	Module Index

	Search Page

pycoalaip

[image: _images/coalaip.svg]
 [https://pypi.python.org/pypi/coalaip][image: _images/pycoalaip.svg]
 [https://travis-ci.org/bigchaindb/pycoalaip][image: _images/master.svg]
 [https://codecov.io/github/bigchaindb/pycoalaip?branch=master][image: Documentation Status]
 [https://pycoalaip.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/bigchaindb/pycoalaip/]Python reference implementation for COALA IP [https://github.com/coalaip/specs].

	Development Status: Alpha

	Free software: Apache Software License 2.0

	Documentation: https://pycoalaip.readthedocs.io

Features

	CoalaIp.generate_user(): Create a user representation suitable for use
with coalaip

	CoalaIp.register_manifestation(): Registering a Manifestation (and
along with it, an associated parent Work and a Copyright of the
Manifestation)

	CoalaIp.derive_right(): Derivation of a Right from an allowing source
Right or Copyright

	CoalaIp.transfer_right(): Transfer of a Right or Copyright from
the current owner to a new owner

	Querying the ownership history of an COALA IP entity

To learn more about how to use these features, you may be interested in the
usage section of the docs [https://pycoalaip.readthedocs.io/en/latest/usage.html].

TODO

	Host COALA IP JSON-LD definitions and set <coalaip placeholder> to the
purl for the definitions.

	Support IPLD serialization

Packaging

Bumping versions:

$ bumpversion patch

Releasing to pypi:

$ make release
$ twine upload dist/*

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install pycoalaip, run this command in your terminal:

$ pip install coalaip

This is the preferred method to install pycoalaip, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for pycoalaip can be downloaded from the Github repo [https://github.com/bigchaindb/pycoalaip].

You can either clone the public repository:

$ git clone git://github.com/bigchaindb/pycoalaip

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use pycoalaip in a project:

import coalaip

Quickstart

To get started with coalaip, you should first pick a persistence layer (and
an accompanying plugin) to use. For a list of available persistence layer
plugins, see here.

Once you’ve configured your chosen plugin, the main workflow to follow is:

1. Create an instance of CoalaIp;
1. Generate users for yourself and other parties;
1. Register a Manifestation entity (and its accompanying Work and
Copyright entities) for your IP;
1. Derive a specific Right from your IP’s Copyright (or another
Right that pertains to your IP); and
1. If desired, transfer the specific Right to another party, to record a
legal transaction relating to the Right (e.g. a transfer of ownership,
a loan, etc).

Note

Each of CoalaIp.register_manifestation(), CoalaIp.derive_right(),
and CoalaIp.transfer_right() have optional arguments to cover alternate
use cases that are not explained here.

You may be interested in looking at the library reference
for their complete documentation.

Warning

In the current implementation, operations that use the persistence layer
are NOT ensured to succeed, and you may find that some operations need
to be repeated.

A good example of this is if a storage requiring non-neglible consensus
(e.g. BigchainDB) is used: the implementation assumes that everything has
succeeded if it was able to write to the storage rather than confirming
(later) that what it wrote was actually accepted.

Creating an instance of CoalaIp

Let’s assume you have an instance of a persistence layer plugin ready.

from coalaip import CoalaIp

plugin = Plugin(...)
coalaip = CoalaIp(plugin)

Generating users

Representations of users are defined by the persistence layer plugin. You can
generate a user compatible with your chosen persistence layer by:

Note that the plugin may dictate that you need to provide extra arguments
to this function
user = coalaip.generate_user()

Registering a Manifestation

Upon initial registration of a Manifestation, a Work (if not provided)
and Copyright are automatically generated.

manifestation_data = {...}
registration_result = coalaip.register_manifestation(manifestation_data,
 copyright_holder=user)
manifestation = registration_result['manifestation']
work = registration_result['work']
copyright = registration_result['copyright']

Deriving a specific Right

You can create more specific Rights from source Rights or
Copyrights if you are the current holder of the source Right.

copyright = ...
right_data = {...}
right = coalaip.derive_right(right_data, current_holder=user,
 source_right=copyright)

Transferring a Right

Transfers of a Right will change ownership of the entity from the current
holder to a new holder. A RightsAssignment entity can also be encoded in a
transfer, holding more specific information about the particular details
related to the transaction, such as a agreed-upon contract between the two
parties, the time of the transaction, and etc.

right = ...
current_holder = ... # user representation
new_holder = ... # user representation
rights_assignment_data = {...}
rights_assignment = coalaip.transfer_right(right, rights_assignment_data,
 current_holder=current_holder,
 to=new_holder)

Querying for an Entity’s ownership history

Each entity returned has a .history() method and .current_owner
property defined, in case you’re interested in finding out the ownership
history of the entity.

Obtaining an instance of an Entity

If you know you have COALA IP entities persisted, but don’t have them in an
Entity class (e.g. you saved the entities’ IDs in a database, and now want
to use them), you can load an instance of an Entity by using the static
.from_persist_id() method of that entity type.

from coalaip.entities import Manifestation

manifestation_id = '...'
manifestation = Manifestation.from_persist_id(manifestation_id,
 plugin=plugin)

Doing so will generate a lazy-loaded entity for you to use. Accessing the
entity’s data for the first time will load the entity from the persistence
layer (which may error); if you’d like to load it immediately, you can either
call .load() or use the force_load flag in .from_persist_id():

manifestation = Manifestation.from_persist_id(manifestation_id,
 plugin=plugin)
manifestation.load()

Or
manifestation = Manifestation.from_persist_id(manifestation_id,
 force_load=True,
 plugin=plugin)

Reference

See the library reference for a complete reference of all
available classes and functions.

Plugins

pycoalaip requires a persistence layer plugin to be used in order to
persist COALA IP entities to a distributed ledger, database, or file storage
system.

Available Plugins

	BigchainDB [https://github.com/bigchaindb/pycoalaip-bigchaindb]

Writing a Plugin

Writing a plugin for pycoalaip is relatively simple. We use the
pycoalaip-{plugin_name} naming scheme for plugin packages.

A plugin is expected to subclass from AbstractPlugin
and implement all the abstract methods and properties, following the API laid
out in the AbstractPlugin’s documentation.

To make your plugin discoverable by name to pycoalaip, you should also set
an entry point in your setup.py for the coalaip_plugin namespace.
Taking the BigchainDB plugin as an example, this may look something like:

setup(
 ...
 entry_points={
 'coalaip_plugin': 'bigchaindb = coalaip_bigchaindb.plugin:Plugin'
 },
 ...
)

Library Reference

coalaip

High-level functions for interacting with COALA IP entities

	
class coalaip.coalaip.CoalaIp(plugin)

	High-level, plugin-bound COALA IP functions.

Instantiated with an subclass implementing the ledger plugin
interface (AbstractPlugin) that will automatically be
bound to all top-level functions:

	generate_user()

	register_manifestation()

	derive_right()

	transfer_right()

	
plugin

	Plugin – Bound persistence layer plugin.

	
__init__(plugin) → None

	Initialize self. See help(type(self)) for accurate signature.

	
derive_right(right_data, *, current_holder, source_right=None, right_entity_cls=<class 'coalaip.entities.Right'>, **kwargs)

	Derive a new Right from an existing source_right (a
Right or subclass) for the current_holder of
the source_right. The newly registered Right can then be
transferred to other Parties.

	Parameters

	
	right_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Model data for the right_entity_cls.
See the given right_entity_cls for requirements.
If source is provided in the dict, the
source_right parameter is ignored.

	current_holder (any, keyword) – The current holder of the
source_right; must be specified in the format
required by the persistence layer

	source_right (Right, keyword, optional) – An
already persisted Right that the new Right is allowed by.
Must be using the same plugin that CoalaIp was
instantiated with.
Ignored if source is provided in right_data.

	right_entity_cls (subclass of Right, keyword, optional) – The class that must be instantiated for the newly
derived right.
Defaults to Right.

	**kwargs – Keyword arguments passed through to the
right_entity_cls’s create method (e.g.
create()’s data_format)

	Returns

	A registered right_entity_cls Right (by default a
Right)

	Raises

	
	ModelDataError – If the right_data
contains invalid or is missing required properties.

	EntityNotYetPersistedError – If the
source_right is not associated with an id on the
persistence layer (persist_id) yet

	EntityCreationError – If the Right fails to be
created on the persistence layer

	PersistenceError – If any other error occurred with
the persistence layer

	
generate_user(*args, **kwargs)

	Generate a new user for the backing persistence layer.

	Parameters

	
	*args – Argument list passed to the plugin’s
generate_user()

	**kwargs – Keyword arguments passed to the plugin’s
generate_user()

	Returns

	A representation of a user, based on the persistence layer
plugin

	Raises

	PersistenceError – If a user couldn’t be generated
on the persistence layer

	
register_manifestation(manifestation_data, *, copyright_holder, existing_work=None, work_data=None, create_work=True, create_copyright=True, **kwargs)

	Register a Manifestation and automatically assign its
corresponding Copyright to the given user.

Unless specified (see existing_work), also registers a
new Work for the Manifestation.

	Parameters

	
	manifestation_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Model data for the
Manifestation.
See Manifestation for requirements.
If manifestationOfWork is provided in the dict, the
existing_work and work_data parameters are
ignored and no Work is registered.

	copyright_holder (any, keyword) – The user to hold the
corresponding Copyright of the registered Manifestation;
must be specified in the format required by the
persistence layer

	existing_work (Work, keyword, optional) – An
already persisted Work that the Manifestation is derived
from.
Must be using the same plugin that CoalaIp was
instantiated with.
If specified, the work_data parameter is ignored
and no Work is registered.

	work_data (dict [https://docs.python.org/3/library/stdtypes.html#dict], keyword, optional) – Model data for the Work
that will automatically generated for the Manifestation
if no existing_work was specified.
See Work for requirements.
If not specified, the Work will be created using only
the name of the Manifestation.

	create_work (bool [https://docs.python.org/3/library/functions.html#bool], keyword, optional) – To allow for the creation
of a Manifestation without attaching a Work. Default is True.

	create_copyright (bool [https://docs.python.org/3/library/functions.html#bool], keyword, optional) – To allow for the
creation of a Manifestation without attaching a Copyright.
Default is True.

	**kwargs – Keyword arguments passed through to each model’s
create() (e.g. data_format).

	Returns

	A namedtuple
containing the Coypright of the registered Manifestation,
the registered Manifestation, and the Work as named fields:

(
 'copyright': (:class:`~.Copyright`),
 'manifestation': (:class:`~.Manifestation`),
 'work': (:class:`~.Work`),
)

If manifestationOfWork was provided in
manifestation_data, None will be returned for the
Work; otherwise, the given existing_work or
automatically created Work will be returned.

	Return type

	RegistrationResult

	Raises

	
	ModelDataError – If the manifestation_data
or work_data contain invalid or are missing
required properties.

	IncompatiblePluginError – If the
existing_work is not using a compatible plugin

	EntityNotYetPersistedError – If the
existing_work is not associated with an id on the
persistence layer (persist_id) yet

	EntityCreationError – If the manifestation, its
copyright, or the automatically created work (if no
existing work is given) fail to be created on the
persistence layer

	PersistenceError – If any other error occurred with
the persistence layer

	
register_work(work_data, *, copyright_holder, **kwargs)

	Register a work

	
transfer_right(right, rights_assignment_data=None, *, current_holder, to, **kwargs)

	Transfer a Right to another user.

	Parameters

	
	right (Right) – An already persisted Right to
transfer

	rights_assignment_data (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Model data for the
generated RightsAssignment that will be
associated with the transfer

	current_holder (any, keyword) – The current holder of the
right; must be specified in the format
required by the persistence layer

	to (any, keyword) – The new holder of the right; must be
specified in the format required by the persistence
layer.
If the specified user format includes private
information (e.g. a private key) but is not required by
the persistence layer to identify a transfer recipient,
then this information may be omitted in this argument.

	**kwargs – keyword arguments passed through to the
right’s transfer method (e.g.
transfer()’s rights_assignment_format)

	Returns

	the RightsAssignment entity
associated with this transfer

	Return type

	RightsAssignment

	Raises

	
	EntityNotYetPersistedError – If the right
has not been persisted yet

	EntityNotFoundError – If the right was not
found on the persistence layer

	EntityTransferError – If the right fails to
be transferred on the persistence layer

	PersistenceError – If any other error occurred with
the persistence layer

entities

Entities mirroring COALA IP’s entity model.

Requires usage with a persistence layer plugin (see
AbstractPlugin) for the creation and transfer of entities.
JSON, JSON-LD, and IPLD data formats are supported.

Note

This module should not be used directly to generate entities,
unless you are extending the built-ins for your own
extensions. Instead, use the high-level functions
(coalaip) that return instances of these entities.

Warning

The immutability guarantees given in this module are
best-effort. There is no general way to achieve
immutability in Python, but we try our hardest to make it
so.

Core Entities

Note

Most of these core entity classes have their functionality
implemented through Entity. See Entity
for an overview of the base functionality of each of these
core entities.

	
class coalaip.entities.Work(model, plugin)

	COALA IP’s Work entity.

A distinct, abstract Creation whose existence is revealed through
one or more Manifestation entities.

Work entities are always of @type ‘AbstractWork’.

	
classmethod generate_model(*args, **kwargs)

	Generate a Work model.

See generate_model() for more details.

Ignores the given ld_type as Work entities
always have @type ‘AbstractWork’.

	
class coalaip.entities.Manifestation(model, plugin)

	COALA IP’s Manifestation entity.

A perceivable manifestation of a Work.

Manifestation entities are by default of @type
‘CreativeWork’.

	
classmethod generate_model(*args, **kwargs)

	Generate a Manifestation model.

See generate_model() for more details.

	
class coalaip.entities.Right(model, plugin)

	COALA IP’s Right entity. Transferrable.

A statement of entitlement (i.e. “right”) to do something in
relation to a Work or Manifestation.

More specific rights, such as PlaybackRights, StreamRights,
etc should be implemented as subclasses of this class.

By default, Rights entities are of @type ‘Right’ and
only include the COALA IP context, as Rights are not dependent on
schema.org.

	
classmethod generate_model(*args, **kwargs)

	Generate a Work model.

See generate_model() for more details.

	
transfer(rights_assignment_data=None, *, from_user, to_user, rights_assignment_format='jsonld')

	Transfer this Right to another owner on the backing
persistence layer.

	Parameters

	
	rights_assignment_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Model data for the resulting
RightsAssignment

	from_user (any, keyword) – A user based on the model specified
by the persistence layer

	to_user (any, keyword) – A user based on the model specified
by the persistence layer

	rights_assignment_format (str [https://docs.python.org/3/library/stdtypes.html#str], keyword, optional) – Data
format of the created entity; must be one of:

	’jsonld’ (default)

	’json’

	’ipld’

	Returns

	The RightsAssignment entity
created from this transfer

	Return type

	RightsAssignment

	Raises

	See transfer()

	
class coalaip.entities.Copyright(model, plugin)

	COALA IP’s Copyright entity. Transferrable.

The full entitlement of Copyright to a Work or
Manifestation.

Copyright entities are always of @type ‘Copyright’ and by
default only include the COALA IP context, they are not dependent on
schema.org.

	
classmethod generate_model(*args, **kwargs)

	Generate a Work model.

See generate_model() for more details.

Ignores the given ld_type as Copyright are
always ‘Copyright’s.

	
class coalaip.entities.RightsAssignment(model, plugin)

	COALA IP’s RightsAssignment entity.

The assignment (e.g. transfer) of a Right to someone.

RightsAssignment entities may only be persisted in the
underlying persistence layer through transfer operations, and hence
cannot be created normally through create().

RightsAssignment entities are always of @type
‘RightsAssignment’ and by default only include the COALA IP context,
as Copyrights are not dependent on schema.org.

	
create(*args, **kwargs)

	Removes the ability to persist a RightsAssignment
normally. Raises PersistenceError if called.

	
classmethod generate_model(*args, **kwargs)

	Generate a Work model.

See generate_model() for more details.

Ignores the given ld_type as RightsAssignment
entities always have @type ‘RightsTransferAction’s.

Base Entities

Base functionality for the models above. These should never be instantiated;
prefer one of the Core Entities instead.

	
class coalaip.entities.Entity(model, plugin)

	Abstract base class of all COALA IP entity models.

Immutable (see :class:`~.PostInitImmutable`).

Implements base functionality for all COALA IP entities, including
entity creation (create()) and status queries (status)
on the backing persistence layer provided by plugin.

Subclasses must implement their own generate_model();
generate_model() determines the semantics behind
model (its creation and validation).

	
model

	Model or LazyLoadableModel – Model
of the entity. Holds the data and Linked Data (JSON-LD)
specifics.

	
plugin

	subclass of AbstractPlugin – Persistence
layer plugin used by the Entity

	
persist_id

	str – Id of this entity on the persistence layer, if
saved to one. Initially None.
Not initable.
Note that this attribute is only immutable after it’s been
set once after initialization (e.g. after create()).

	
create(user, data_format=<DataFormat.jsonld: 'jsonld'>)

	Create (i.e. persist) this entity to the backing persistence
layer.

	Parameters

	
	user (any) – A user based on the model specified by the
persistence layer

	data_format (DataFormat or str) – Data format used
in persisting the entity; must be a member of
DataFormat or a string equivalent.
Defaults to jsonld.

	Returns

	Id of this entity on the persistence layer

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntityCreationError – If an error occurred during
the creation of this entity that caused it to
NOT be persisted. Contains the original error from
the persistence layer, if available.

	EntityPreviouslyCreatedError – If the entity has
already been persisted. Contains the existing id of the
entity on the persistence layer.

	PersistenceError – If any other unhandled error
in the plugin occurred

	
current_owner

	any – A user based on the model specified by the persistence
layer if a current owner exists, otherwise None.
In the case where the user model contains secret information,
the returned user may omit this information.

	Raises

	
	EntityNotFoundError – If the entity is persisted,
but could not be found on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

	
data

	dict – A copy of the basic data held by this entity model.
Does not include any JSON-LD or IPLD specific information.

If the entity was generated through from_persist_id(), the
first access of this property may also load the entity’s data
from the persistence layer (see load() for potentially
raised exceptions)

	
classmethod from_data(data, *, data_format=<DataFormat.jsonld: 'jsonld'>, plugin)

	Generic factory for instantiating cls entities
from their model data. Entities instantiated from this factory
have yet to be created on the backing persistence layer; see
create() on persisting an entity.

Based on the data_format, the following are considered
special keys in data and will have different behaviour
depending on the data_type requested in later methods (e.g.
create()):

	
	jsonld:

	
	‘@type’ denotes the Linked Data type of the entity

	‘@context’ denotes the JSON-LD context of the entity

	‘@id’ denotes the JSON-LD identity of the entity

	
	Otherwise:

	
	‘type’ denotes the Linked Data type of the entity

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Model data for the entity

	data_format (DataFormat or str) – Data format of
data; must be a member of DataFormat
or a string equivalent.
Defaults to jsonld.

	plugin (subclass of AbstractPlugin, keyword) – Persistence layer plugin used by generated cls

	Returns

	A generated cls entity from
data

	Return type

	cls

	Raises

	ModelDataError – if data fails model
validation

	
classmethod from_persist_id(persist_id, *, force_load=False, plugin)

	Generic factory for creating cls entity instances
from their persisted ids.

Note: by default, instances generated from this factory
lazily load their data upon first access (accessing
data()), which may throw under various conditions. In
general, most usages of Entity and its subclasses do not
require access to their data (including internal methods), and
thus the data does not usually need to be loaded unless you
expect to explicitly use data() or one of the
transformation methods, e.g. to_json(). If you know you
will be using the data and want to avoid raising unexpected
exceptions upon access, make sure to set force_load or
use load() on the returned entity before accessing
data().

	Parameters

	
	persist_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Id of the entity on the persistence
layer (see Entity.plugin)

	force_load (bool [https://docs.python.org/3/library/functions.html#bool], keyword, optional) – Whether to load the
entity’s data immediately from the persistence layer
after instantiation.
Defaults to false.

	plugin (subclass of AbstractPlugin, keyword) – Persistence layer plugin used by generated cls

	Returns

	A generated entity based on persist_id

	Return type

	cls

	Raises

	
	If force_load is True, see load() for the

	list of possible exceptions.

	
classmethod generate_model(*, data, ld_type, ld_context, model_cls)

	Generate a model instance for use with the current
cls.

Must be implemented by subclasses of Entity.

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict], keyword) – Model data

	ld_type (str [https://docs.python.org/3/library/stdtypes.html#str], keyword) – @type of the entity.

	ld_context (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or [str|dict], keyword) – “@context”
for the entity as either a string URL or array of string
URLs or dictionaries. See the JSON-LD spec on contexts [https://www.w3.org/TR/json-ld/#the-context] for more
information.

	model_cls (class, keyword) – Model class to use the
generated model. See models.

	Returns

	A model instance

	Raises

	ModelDataError – if data fails model
validation

	
history

	list of dict – A list containing the ownership history of this
entity. Each item in the list is a dict containing a user based
on the model specified by the persistence layer and a reference
id for the event (e.g. transfer). The ownership events are
sorted starting from the beginning of the entity’s history
(i.e. creation).
In the case where the user model contains secret information,
the returned user may omit this information.

	Raises

	
	EntityNotFoundError – If the entity is persisted,
but could not be found on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

	
load()

	Load this entity from the backing persistence layer, if
possible.

When used by itself, this method is most useful in ensuring that
an entity generated from from_persist_id() is actually
available on the persistence layer to avoid errors later.

	Raises

	
	EntityNotYetPersistedError – If the entity is not
associated with an id on the persistence layer
(persist_id) yet

	EntityNotFoundError – If the entity has a
persist_id but could not be found on
the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

	ModelDataError – If the loaded entity’s data fails
validation or its type or context differs from their
expected values

	
status

	The current status of this entity in the backing persistence
layer, as defined by Entity.plugin. Initially None.

	Raises

	
	EntityNotFoundError – If the entity is persisted,
but could not be found on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

	
to_ipld()

	Output this entity’s data as an IPLD-serializable dict.

The entity’s @type is represented as ‘type’ and the @context is
ignored.

	
to_json()

	Output this entity as a JSON-serializable dict.

The entity’s @type is represented as ‘type’ and the @context is
ignored.

	
to_jsonld()

	Output this entity as a JSON-LD-serializable dict.

Adds the @type, @context, and @id as-is. If no @id was given, an
empty @id is used by default to refer to the current
persist_id document.

	
class coalaip.entities.TransferrableEntity(model, plugin)

	Base class for transferable COALA IP entity models.

Provides functionality for transferrable entities through
transfer()

	
transfer(transfer_payload=None, *, from_user, to_user)

	Transfer this entity to another owner on the backing
persistence layer

	Parameters

	
	transfer_payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Payload for the transfer

	from_user (any) – A user based on the model specified by the
persistence layer

	to_user (any) – A user based on the model specified by the
persistence layer

	Returns

	Id of the resulting transfer action on the persistence
layer

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntityNotYetPersistedError – If the entity being
transferred is not associated with an id on the
persistence layer (persist_id) yet

	EntityNotFoundError – If the entity could not be
found on the persistence layer

	EntityTransferError – If the entity fails to be
transferred on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

models

Low level data models for COALA IP entities.

Encapsulates the data modelling of COALA IP entities. Supports
model validation and the loading of data from a backing persistence
layer.

Note

This module should not be used directly to generate models,
unless you are extending the built-ins for your own
extensions. Instead, use the models that are contained in the
entities (entities) returned from the high-level
functions (coalaip).

Warning

The immutability guarantees given in this module are
best-effort. There is no general way to achieve
immutability in Python, but we try our hardest to make it
so.

	
class coalaip.models.Model(data, ld_type, ld_id='', ld_context=NOTHING, validator=<instance_of validator for type <class 'mappingproxy'>>)

	Basic data model class for COALA IP entities. Includes Linked
Data (JSON-LD) specifics.

Immutable (see :class:`~.PostInitImmutable` and attributes).

Initialization may throw if attribute validation fails.

	
data

	dict – Model data. Uses validator for validation.

	
ld_type

	str – @type of the entity

	
ld_id

	str – @id of the entity

	
ld_context

	str or dict or [str|dict], keyword – “@context” for
the entity as either a string URL or array of string URLs or
dictionaries. See the JSON-LD spec on contexts [https://www.w3.org/TR/json-ld/#the-context] for more
information.

	
validator

	callable – A validator complying to attr’s
validator API [https://attrs.readthedocs.io/en/stable/examples.html#validators]
that will validate data

	
__init__(data, ld_type, ld_id='', ld_context=NOTHING, validator=<instance_of validator for type <class 'mappingproxy'>>) → None

	Initialize self. See help(type(self)) for accurate signature.

	
class coalaip.models.LazyLoadableModel(ld_type, ld_id=None, ld_context=None, validator=<instance_of validator for type <class 'mappingproxy'>>, data=None)

	Lazy loadable data model class for COALA IP entities.

Immutable (see :class:`.PostInitImmutable` and attributes).

Similar to Model, except it allows the model data to be
lazily loaded afterwards from a backing persistence layer through a
plugin.

	
loaded_model

	Model – Loaded model from a backing
persistence layer. Initially None.
Not initable.
Note that this attribute is only immutable after it’s been
set once after initialization (e.g. after load()).

	
ld_type

	See ld_type

	
ld_context

	See ld_context

	
validator

	See validator

	
__init__(ld_type, ld_id=None, ld_context=None, validator=<instance_of validator for type <class 'mappingproxy'>>, data=None)

	Initialize a LazyLoadableModel instance.

If a data is provided, a Model is generated
as the instance’s loaded_model using
the given arguments.

Ignores ld_id, see the ld_id() property instead.

	
data

	dict – Model data.

Raises ModelNotYetLoadedError if the data has not been
loaded yet.

	
ld_id

	str – @id of the entity.

Raises ModelNotYetLoadedError if the data has not been
loaded yet.

	
load(persist_id, *, plugin)

	Load the loaded_model of this
instance. Noop if model was already loaded.

	Parameters

	
	persist_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Id of this model on the persistence layer

	plugin (subclass of AbstractPlugin) – Persistence
layer plugin to load from

	Raises

	
	ModelDataError – If the loaded entity’s data fails
validation from validator
or its type or context differs from their expected
values

	EntityNotFoundError – If the entity could not be
found on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

data formats

Utilities for data formats supported by pycoalaip.

	
class coalaip.data_formats.DataFormat

	Enum of supported data formats.

exceptions

Custom exceptions for COALA IP

	
class coalaip.exceptions.CoalaIpError

	Base class for all Coala IP errors.

	
class coalaip.exceptions.IncompatiblePluginError

	Raised when entities with incompatible plugins are used together.
Should contain a list of the incompatible plugins as the first
argument.

	
class coalaip.exceptions.ModelError

	Base class for all model errors.

	
class coalaip.exceptions.ModelDataError

	Raised if there is an error with the model’s data.

	
class coalaip.exceptions.ModelNotYetLoadedError

	Raised if the lazily loaded model has not been loaded from the
backing persistence layer yet.

	
class coalaip.exceptions.PersistenceError(message='', error=None)

	Base class for all persistence-related errors.

	
message

	str – Message of the error

	
error

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – Original exception, if available

	
class coalaip.exceptions.EntityCreationError(message='', error=None)

	Raised if an error occured during the creation of an entity on the
backing persistence layer.
Should contain the original error that caused the failure, if
available.

	
class coalaip.exceptions.EntityNotFoundError(message='', error=None)

	Raised if the entity could not be found on the backing persistence
layer

	
class coalaip.exceptions.EntityNotYetPersistedError(message='', error=None)

	Raised when an action requiring an entity to be available on the
persistence layer is attempted on an entity that has not been
persisted yet.

	
class coalaip.exceptions.EntityPreviouslyCreatedError(existing_id, *args, **kwargs)

	Raised when attempting to persist an already persisted entity.
Should contain the existing id of the entity.

	
existing_id

	str – Currently existing id of the entity on the
persistence layer

	
See :exc:`.PersistenceError` for other attributes.

	

	
class coalaip.exceptions.EntityTransferError(message='', error=None)

	Raised if an error occured during the transfer of an entity on the
backing persistence layer.
Should contain the original error that caused the failure, if
available.

plugin

	
class coalaip.plugin.AbstractPlugin

	Abstract interface for all persistence layer plugins.

	Expects the following to be defined by the subclass:

	
	type (as a read-only property)

	generate_user()

	get_status()

	save()

	transfer()

	
generate_user(*args, **kwargs)

	Generate a new user on the persistence layer.

	Parameters

	
	*args – argument list, as necessary

	**kwargs – keyword arguments, as necessary

	Returns

	A representation of a user (e.g. a tuple with the user’s
public and private keypair) on the persistence layer

	Raises

	PersistenceError – If any other unhandled error
in the plugin occurred

	
get_history(persist_id)

	Get the ownership history of an entity on the persistence
layer.

	Parameters

	persist_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Id of the entity on the persistence layer

	Returns

	The ownership history of the entity, sorted
starting from the beginning of the entity’s history
(i.e. creation). Each dict is of the form:

{
 'user': A representation of a user as specified by the
 persistence layer (may omit secret details, e.g. private keys),
 'event_id': A reference id for the ownership event (e.g. transfer id)
}

	Return type

	list of dict

	Raises

	
	EntityNotFoundError – If the entity could not be
found on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

	
get_status(persist_id)

	Get the status of an entity on the persistence layer.

	Parameters

	persist_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Id of the entity on the persistence layer

	Returns

	Status of the entity, in any format.

	Raises

	
	EntityNotFoundError – If the entity could not be
found on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

	
is_same_user(user_a, user_b)

	Compare the given user representations to see if they mean
the same user on the persistence layer.

	Parameters

	
	user_a (any) – User representation

	user_b (any) – User representation

	Returns

	Whether the given user representations are the same
user.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
load(persist_id)

	Load the entity from the persistence layer.

	Parameters

	persist_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Id of the entity on the persistence layer

	Returns

	The persisted data of the entity

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	EntityNotFoundError – If the entity could not be
found on the persistence layer

	PersistenceError – If any other unhandled error
in the plugin occurred

	
save(entity_data, *, user)

	Create the entity on the persistence layer.

	Parameters

	
	entity_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The entity’s data

	user (any, keyword) – The user the entity should be assigned
to after creation. The user must be represented in the
same format as generate_user()’s output.

	Returns

	Id of the created entity on the persistence layer

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntityCreationError – If the entity failed to be
created

	PersistenceError – If any other unhandled error
in the plugin occurred

	
transfer(persist_id, transfer_payload, *, from_user, to_user)

	Transfer the entity whose id matches persist_id on
the persistence layer from the current user to a new owner.

	Parameters

	
	persist_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Id of the entity on the persistence layer

	transfer_payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The transfer’s payload

	from_user (any, keyword) – The current owner, represented in the
same format as generate_user()’s output

	to_user (any, keyword) – The new owner, represented in the same
format as generate_user()’s output.
If the specified user format includes private
information (e.g. a private key) but is not required by
the persistence layer to identify a transfer recipient,
then this information may be omitted in this argument.

	Returns

	Id of the transfer action on the persistence layer

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	EntityNotFoundError – If the entity could not be
found on the persistence layer

	EntityTransferError – If the entity failed to be
transferred

	PersistenceError – If any other unhandled error
in the plugin occurred

	
type

	A string denoting the type of plugin (e.g. BigchainDB).

About this Documentation

This section contains instructions to build and view the documentation locally.

If you do not have a clone of the repo, you need to get one.

Building the documentation

To build the docs, simply run

$ make docs

Viewing the documentation

You can either start a little web server locally, or open the HTML files with
your browser.

To start a web server at http://localhost:5555/

In project root, after making the docs
$ cd docs/_build/html/ && python -m SimpleHTTPServer 5555

Alternatively, open the docs/_build/html/index.html file in your web browser.

Making changes

Rebuild the docs and refresh the page on your web browser.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/bigchaindb/pycoalaip/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pycoalaip could always use more documentation, whether as part of the
official pycoalaip docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/bigchaindb/pycoalaip/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up coalaip for local development.

	Fork the coalaip repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/coalaip.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv coalaip
$ cd coalaip/
$ pip install -r requirements_dev.txt

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and
the tests, including testing other Python versions with tox:

$ flake8 coalaip tests
$ pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.4 and 3.5. Check
https://travis-ci.org/bigchaindb/pycoalaip/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_coalaip

To run tests with debugging:

$ pytest -s

To run tests and break on errors:

$ pytest --pdb

Credits

Development Lead

	BigchainDB <dev@bigchaindb.com>

Contributors

None yet. Why not be the first?

History

0.0.3 (2017-05-06)

Some changes during the OMI hackfest!

	Make creation of Work and Copyright optional when registering
a Manifestation.

0.0.2 (2017-05-05)

Some changes during the OMI hackfest!

Some highlights:

	Add register_work method to enable registering a work without
necessarily registering a manifestation.

0.0.1 (2017-02-17)

First alpha release on PyPI.

Additional features added with no backwards-incompatible interface changes.
COALA IP models are backwards-incompatible to previous versions due to upgrades
related to spec changes.

Some highlights:

	Queryability of an Entity’s ownership history and current owner

	Entities can be given a custom @id

	Additional sanity checks employed when deriving Rights, to ensure that a
correct source Right and current holder are given

	Update COALA IP models to latest spec

	Added usage documentation

0.0.1.dev3 (2016-12-06)

Lots of changes and revisions from 0.0.1.dev2. Totally incompatible from
before.

Some highlights:

	Implemented Rights derivation (from existing Rights and Copyrights)

	Implemented Rights transfers

	Entities are now best-effort immutable

	Support for loading Entities from a connected persistence layer

0.0.1.dev2 (2016-08-31)

	Fix packaging on PyPI

0.0.1.dev1 (2016-08-31)

	Development (pre-alpha) release on PyPI.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 coalaip	

 	
 	
 coalaip.coalaip	

 	
 	
 coalaip.data_formats	

 	
 	
 coalaip.entities	

 	
 	
 coalaip.exceptions	

 	
 	
 coalaip.models	

 	
 	
 coalaip.plugin	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (coalaip.coalaip.CoalaIp method)

 	(coalaip.models.LazyLoadableModel method)

 	(coalaip.models.Model method)

A

 	
 	AbstractPlugin (class in coalaip.plugin)

C

 	
 	CoalaIp (class in coalaip.coalaip)

 	coalaip (module)

 	coalaip.coalaip (module)

 	coalaip.data_formats (module)

 	coalaip.entities (module)

 	coalaip.exceptions (module)

 	
 	coalaip.models (module)

 	coalaip.plugin (module)

 	CoalaIpError (class in coalaip.exceptions)

 	Copyright (class in coalaip.entities)

 	create() (coalaip.entities.Entity method)

 	(coalaip.entities.RightsAssignment method)

 	current_owner (coalaip.entities.Entity attribute)

D

 	
 	data (coalaip.entities.Entity attribute)

 	(coalaip.models.LazyLoadableModel attribute)

 	(coalaip.models.Model attribute)

 	
 	DataFormat (class in coalaip.data_formats)

 	derive_right() (coalaip.coalaip.CoalaIp method)

E

 	
 	Entity (class in coalaip.entities)

 	EntityCreationError (class in coalaip.exceptions)

 	EntityNotFoundError (class in coalaip.exceptions)

 	EntityNotYetPersistedError (class in coalaip.exceptions)

 	
 	EntityPreviouslyCreatedError (class in coalaip.exceptions)

 	EntityTransferError (class in coalaip.exceptions)

 	error (coalaip.exceptions.PersistenceError attribute)

 	existing_id (coalaip.exceptions.EntityPreviouslyCreatedError attribute)

F

 	
 	from_data() (coalaip.entities.Entity class method)

 	
 	from_persist_id() (coalaip.entities.Entity class method)

G

 	
 	generate_model() (coalaip.entities.Copyright class method)

 	(coalaip.entities.Entity class method)

 	(coalaip.entities.Manifestation class method)

 	(coalaip.entities.Right class method)

 	(coalaip.entities.RightsAssignment class method)

 	(coalaip.entities.Work class method)

 	
 	generate_user() (coalaip.coalaip.CoalaIp method)

 	(coalaip.plugin.AbstractPlugin method)

 	get_history() (coalaip.plugin.AbstractPlugin method)

 	get_status() (coalaip.plugin.AbstractPlugin method)

H

 	
 	history (coalaip.entities.Entity attribute)

I

 	
 	IncompatiblePluginError (class in coalaip.exceptions)

 	
 	is_same_user() (coalaip.plugin.AbstractPlugin method)

L

 	
 	LazyLoadableModel (class in coalaip.models)

 	ld_context (coalaip.models.LazyLoadableModel attribute)

 	(coalaip.models.Model attribute)

 	ld_id (coalaip.models.LazyLoadableModel attribute)

 	(coalaip.models.Model attribute)

 	
 	ld_type (coalaip.models.LazyLoadableModel attribute)

 	(coalaip.models.Model attribute)

 	load() (coalaip.entities.Entity method)

 	(coalaip.models.LazyLoadableModel method)

 	(coalaip.plugin.AbstractPlugin method)

 	loaded_model (coalaip.models.LazyLoadableModel attribute)

M

 	
 	Manifestation (class in coalaip.entities)

 	message (coalaip.exceptions.PersistenceError attribute)

 	Model (class in coalaip.models)

 	
 	model (coalaip.entities.Entity attribute)

 	ModelDataError (class in coalaip.exceptions)

 	ModelError (class in coalaip.exceptions)

 	ModelNotYetLoadedError (class in coalaip.exceptions)

P

 	
 	persist_id (coalaip.entities.Entity attribute)

 	PersistenceError (class in coalaip.exceptions)

 	
 	plugin (coalaip.coalaip.CoalaIp attribute)

 	(coalaip.entities.Entity attribute)

R

 	
 	register_manifestation() (coalaip.coalaip.CoalaIp method)

 	register_work() (coalaip.coalaip.CoalaIp method)

 	
 	Right (class in coalaip.entities)

 	RightsAssignment (class in coalaip.entities)

S

 	
 	save() (coalaip.plugin.AbstractPlugin method)

 	
 	status (coalaip.entities.Entity attribute)

T

 	
 	to_ipld() (coalaip.entities.Entity method)

 	to_json() (coalaip.entities.Entity method)

 	to_jsonld() (coalaip.entities.Entity method)

 	transfer() (coalaip.entities.Right method)

 	(coalaip.entities.TransferrableEntity method)

 	(coalaip.plugin.AbstractPlugin method)

 	
 	transfer_right() (coalaip.coalaip.CoalaIp method)

 	TransferrableEntity (class in coalaip.entities)

 	type (coalaip.plugin.AbstractPlugin attribute)

V

 	
 	validator (coalaip.models.LazyLoadableModel attribute)

 	(coalaip.models.Model attribute)

W

 	
 	Work (class in coalaip.entities)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to pycoalaip’s documentation!

 		
 pycoalaip

 		
 Features

 		
 TODO

 		
 Packaging

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Quickstart

 		
 Creating an instance of CoalaIp

 		
 Generating users

 		
 Registering a Manifestation

 		
 Deriving a specific Right

 		
 Transferring a Right

 		
 Querying for an Entity’s ownership history

 		
 Obtaining an instance of an Entity

 		
 Reference

 		
 Plugins

 		
 Available Plugins

 		
 Writing a Plugin

 		
 Library Reference

 		
 coalaip

 		
 entities

 		
 Core Entities

 		
 Base Entities

 		
 models

 		
 data formats

 		
 exceptions

 		
 plugin

 		
 About this Documentation

 		
 Building the documentation

 		
 Viewing the documentation

 		
 Making changes

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.0.3 (2017-05-06)

 		
 0.0.2 (2017-05-05)

 		
 0.0.1 (2017-02-17)

 		
 0.0.1.dev3 (2016-12-06)

 		
 0.0.1.dev2 (2016-08-31)

 		
 0.0.1.dev1 (2016-08-31)

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

