

 Navigation

 	
 index

 	pyclstm latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/pyclstm/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/pyclstm/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	pyclstm latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		pyclstm latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		pyclstm latest documentation »

clstm

CLSTM is an implementation of the LSTM recurrent neural network
model in C++, using the Eigen library for numerical computations.

TODO

		TensorFlow bindings

		more recurrent network types

		more 2D LSTM support

		multicore support

		better GPU support

Getting Started

There is a full set of tests in the current version of clstm; just
run them with:

./run-tests

This will check:

		gradient checkers for layers and compute steps

		training a simple model through the C++ API

		training a simple model through the Python API

		checking the command line training tools, including loading and saving

To build a standalone C library, run

scons
sudo scons install

Prerequisites:

		scons, Eigen

		protocol buffer library and compiler

Optional: HDF5, ZMQ, Python

On Ubuntu 15.04, this means:

sudo apt-get install mercurial\
hdf5-helpers libhdf5-8 libhdf5-cpp-8 libhdf5-dev python-h5py \
libprotobuf-dev libprotobuf9 protobuf-compiler \
libzmq3-dev libzmq3 libzmqpp-dev libzmqpp3 libpng12-dev
cd /usr/local/include && hg clone http://bitbucket.org/eigen/eigen eigen3 && hg up tensorflow_fix && cd -

There are a bunch of options:

		debug=1 build with debugging options, no optimization

		display=1 build with display support for debugging (requires ZMQ, Python)

		prefix=... install under a different prefix (untested)

		eigen=... where to look for Eigen include files (should contain Eigen/Eigen)

		hdf5lib=hdf5 what HDF5 library to use; enables HDF5 command line
programs (may need hdf5_serial in some environments)

After building the executables, you can run two simple test runs as follows:

		run-cmu will train an English-to-IPA LSTM

		run-uw3-500 will download a small OCR training/test set and train an OCR LSTM

To build the Python extension, run

python setup.py build
sudo python setup.py install

(this is currently broken)

Documentation / Examples

You can find some documentation and examples in the form of iPython notebooks in the misc directory
(these are version 3 notebooks and won’t open in older versions).

You can view these notebooks online here:
http://nbviewer.ipython.org/github/tmbdev/clstm/tree/master/misc/

C++ API

The clstm library operates on the Sequence type as its fundamental
data type, representing variable length sequences of fixed length vectors.
The underlying Sequence type is a rank 4 tensor with accessors for
individual rank-2 tensors at different time steps.

Networks are built from objects implementing the INetwork interface.
The INetwork interface contains:

struct INetwork {
 Sequence inputs, d_inputs; // input sequence, input deltas
 Sequence outputs, d_outputs; // output sequence, output deltas
 void forward(); // propagate inputs to outputs
 void backward(); // propagate d_outputs to d_inputs
 void update(); // update weights from the last backward() step
 void setLearningRate(Float,Float); // set learning rates
 ...
};

Network structures can be hierarchical and there are some network
implementations whose purpose it is to combine other networks into more
complex structures.

struct INetwork {
 ...
 vector<shared_ptr<INetwork>> sub;
 void add(shared_ptr<INetwork> net);
 ...
};

At its lowest level, layers are created by:

		create an instance of the layer with make_layer

		set any parameters (including ninput and noutput) as
attributes

		add any sublayers to the sub vector

		call initialize()

There are three different functions for constructing layers and networks:

		make_layer(kind) looks up the constructor and gives you an uninitialized layer

		layer(kind,ninput,noutput,args,sub) performs all initialization steps in sequence

		make_net(kind,args) initializes a whole collection of layers at once

		make_net_init(kind,params) is like make_net, but parameters are given in string form

The layer(kind,ninput,noutput,args,sub) function will perform
these steps in sequence.

Layers and networks are usually passed around as shared_ptr<INetwork>;
there is a typedef of this calling it Network.

This can be used to construct network architectures in C++ pretty
easily. For example, the following creates a network that stacks
a softmax output layer on top of a standard LSTM layer:

Network net = layer("Stacked", ninput, noutput, {}, {
 layer("LSTM", ninput, nhidden,{},{}),
 layer("SoftmaxLayer", nhidden, noutput,{},{})
});

Note that you need to make sure that the number of input and
output units are consistent between layers.

In addition to these basic functions, there is also a small implementation
of CTC alignment.

The C++ code roughly follows the lstm.py implementation from the Python
version of OCRopus. Gradients have been verified for the core LSTM
implementation, although there may be still be bugs in other parts of
the code.

There is also a small multidimensional array class in multidim.h; that
isn’t used in the core LSTM implementation, but it is used in debugging
and testing code, for plotting, and for HDF5 input/output. Unlike Eigen,
it uses standard C/C++ row major element order, as libraries like
HDF5 expect. (NB: This will be replaced with Eigen::Tensor.)

LSTM models are stored in protocol buffer format (clstm.proto),
although adding new formats is easy. There is an older HDF5-based
storage format.

Python API

The clstm.i file implements a simple Python interface to clstm, plus
a wrapper that makes an INetwork mostly a replacement for the lstm.py
implementation from ocropy.

Comand Line Drivers

There are several command line drivers:

		clstmfiltertrain training-data test-data learns text filters;
		input files consiste of lines of the form “inputoutput“

		clstmfilter applies learned text filters

		clstmocrtrain training-images test-images learns OCR (or image-to-text) transformations;
		input files are lists of text line images; the corresponding UTF-8 ground truth is expected in the corresponding .gt.txt file

		clstmocr applies learned OCR models

In addition, you get the following HDF5-based commands:

		clstmseq learns sequence-to-sequence mappings

		clstmctc learns sequence-to-string mappings using CTC alignment

		clstmtext learns string-to-string transformations

Note that most parameters are passed through the environment:

lrate=3e-5 clstmctc uw3-dew.h5

See the notebooks in the misc/ subdirectory for documentation on the parameters and examples of usage.

(You can find all parameters via grep 'get.env' *.cc.)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

TODO.html

 Navigation

 		
 index

 		pyclstm latest documentation »

 TODO:

		2D primitives: switch_batch_time, stack_neighbors

		2D command line

		single mat option

		implement GRU, RNN, IIR+log

		implement per-class or per-step weights

		OMP parallel training

		add convolutional layers

Experiments:

		different initializations

		other update rules

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

