

Pycinga 1.0.0 Documentation

Overview

Pycinga is a Python library for writing Icinga [http://www.icinga.com/]
plug-ins. Writing an Icinga plug-in typically involves conforming to a
large list of guidelines [https://www.monitoring-plugins.org/doc/guidelines.html],
and this library removes the boilerplate necessary in writing your own
plug-ins.

	Tutorial

	Start here for a quick start guide.

	API Documentation

	The complete API documentation, organized by module.

Issues

If any issues are found with the library, please file an issue with the
Pycinga issue tracker [https://github.com/hurricanelabs/pycinga]. Tickets are
triaged quickly and you should receive a prompt response.

Contributing

Pycinga is an open source project which welcomes contributions which
can be anything from simple documentation fixes to new features. To contribute,
fork the project on GitHub [https://github.com/hurricanelabs/pycinga] and send a
pull request.

Indices and tables

	Index

	Module Index

	Search Page

API Documentation

Pycinga contains one main top-level package, pycinga.

	pycinga – Python Library for Writing Icinga Plugins
	perf_data – Performance Data Classes

	plugin – Plugin Class

	response - Response Class

	range - Tools for Working with Icinga Ranges

	status - Icinga Status Objects

pycinga – Python Library for Writing Icinga Plugins

This package provides all the modules for writing an Icinga plugin
with Python. The package file itself exports the constants used
throughout the library.

	
pycinga.version = '1.0.0'

	Current version of Pycinga

	
pycinga.PerfData

	Alias for pycinga.perf_data.PerfData

	
pycinga.Plugin

	Alias for pycinga.plugin.Plugin

	
pycinga.Range

	Alias for pycinga.range.Range

	
pycinga.Response

	Alias for pycinga.response.Response

	
pycinga.Status

	Alias for pycinga.status.Status

	
pycinga.OK

	A Status object representing the OK
response status.

	
pycinga.WARNING

	A Status object representing the WARNING
response status.

	
pycinga.CRITICAL

	A Status object representing the CRITICAL
response status.

	
pycinga.UNKNOWN

	A Status object representing the UNKNOWN
response status.

Sub-modules:

	perf_data – Performance Data Classes

	plugin – Plugin Class

	response - Response Class

	range - Tools for Working with Icinga Ranges

	status - Icinga Status Objects

perf_data – Performance Data Classes

Tools for creating performance data for Icinga plugin responses.
If you’re adding performance data to a Response
object, then set_perf_data() can be
called instead of having to create an entire PerfData object.

	
class pycinga.perf_data.PerfData(label, value[, uom=None[, warn=None[, crit=None[, minval=None[, maxval=None]]]]])

	Creates a new object representing a single performance data
item for an Icinga response.

Performance data is extra key/value data that can be returned
along with a response. The performance data is not used immediately
by Icinga itself, but can be extracted by 3rd party tools and can
often be helpful additional information for system administrators
to view. The label can be any string, but value must be a
numeric value.

Raises ValueError if any of the parameters are invalid.
The exact nature of the error is in the human readable message
attribute of the exception.

	Parameters

	
	label: Label for the performance data. This must be a
string.

	value: Value of the data point. This must be a number whose
characters are in the class of [-0-9.]

	uom (optional): Unit of measure. This must only be %, s
for seconds, c for continous data, or a unit of bit space
measurement (“b”, “kb”, etc.)

	warn (optional): Warning range for this metric.

	crit (optional): Critical range for this metric.

	minval (optional): Minimum value possible for this metric,
if one exists.

	maxval (optional): Maximum value possible for this metric,
if one exists.

	
value

	The value of this metric.

	
warn

	The warning range of this metric. This return value of this
will always be a Range object, even
if it was set with a string.

	
crit

	The critical range of this metric. This return value of this
will always be a Range object,
even if it was set with a string.

	
minval

	The minimum value possible for this metric. This doesn’t make
a lot of sense if the uom is “%”, since that is obviously going
to be 0, but this will return whatever was set.

	
maxval

	The maximum value possible for this metric. This doesn’t make
a lot of sense if the uom is “%”, since that is obviously going
to be 100, but this will return whatever was set.

	
uom

	The unit of measure (UOM) for this metric.

	
__str__()

	Returns the proper string format that should be outputted
in the plugin response string. This format is documented in
depth in the Icinga developer guidelines, but in general looks
like this:

‘label’=value[UOM];[warn];[crit];[min];[max]

plugin – Plugin Class

This module provides the Plugin class, which is the basic
class which encapsulates a single plugin. This is the class
which should be subclassed when creating new plugins.

	
class pycinga.plugin.Plugin([argv=sys.argv])

	Instantiates a plugin, setting up the options and arguments state.
Initialization by itself shouldn’t do much, since the plugin should run
when check() is called.

This init method will parse the arguments given in args and will
set the results on the options attribute. If no args are given,
the command line arguments given to the whole Python application will
be used.

All plugins parse standard command line arguments that are required
by the Icinga developer guidelines:

	hostname - Set via -H or --hostname, this should be the
host that this check targets, if applicable.

	warning - Set via -w or --warning, this should be a valid
range in which the value of the plugin is considered to be a warning.

	critical - Set via -c or --critical, this should be a
valid range in which the value is considered to be critical.

	timeout - Set via -t or --timeout, this is an int value
for the timeout of this check.

	verbosity - Set via -v, where additional v means more
verbosity. Example: -vvv will set options.verbosity to 3.

Subclasses can define additional options by creating Action instances
and assigning them to class attributes. The easiest way to make an
Action is to use Python’s built-in argparse methods. The following
is an example plugin which adds a simple string argument::

class MyPlugin(Plugin):
 parser = ArgumentParser()
 parser.add_argument("--your-name", dest="your_name", type="string")

Instantiating the above plugin will result in the value of the new
argument being available in options.your_name.

	
options

	Dictionary of parsed command line options and their values. As an
example, to get the hostname passed in via the command line::

options.hostname

	
args

	Array of additional positional arguments passed in via the command
line. For example, if you call the plugin with ./plugin 1 2 3,
then options.args will return [1,2,3].

	
check()

	This method is what should be called to run this plugin and return
a proper Response object. Subclasses
are expected to implement this.

	
response_for_value(value, message=None)

	This method is meant to be used by plugin implementers to return a
valid Response object for the given value.
The status of this response is determined based on the warning and
critical ranges given via the command line, which the plugin automatically
parses.

An optional message argument may be provided to set the message
for the Response object. Note that this can easily be added later as well
by simply setting the message attribute on the response object returned.

Creating a response using this method from check() makes it
trivial to calculate the value, grab a response, set some performance
metrics, and return it.

response - Response Class

Contains the class which represents a response for Icinga. This
encapsulates the response format that Icinga expects.

	
class pycinga.response.Response([status=None[, message=None]])

	Icinga responses are expected to be in a very specific format, and
this class allows these responses to easily be built up and extracted
in the proper format.

This class makes it easy to set the status, message, and performance
data for a response.

	Parameters

	
	status (optional): A Status object
representing the status of the response.

	message (optional): An information message to include with the
output.

	
set_perf_data(label, value, uom=None, warn=None, crit=None, minval=None, maxval=None)

	Adds performance data to the response. Performance data is shown
in the Icinga GUI and can be used by 3rd party programs to build
graphs or other informational output. There are many options to this
method. They are the same as the initialization parameters for a
PerfData object.

See also

PerfData

	
exit()

	This prints out the response to stdout and exits with the
proper exit code.

	
__str__()

	The string format of this object is the valid Icinga output
format. The response format is expected to be the following:

status: information|performance data

An example of realistic output:

OK: 27 users logged in|users=27;0:40;0:60;0;

range - Tools for Working with Icinga Ranges

Contains a class to represent a range that adheres to the range
format defined by Icinga.

	
class pycinga.range.Range(value)

	Initializes an Icinga range with the given value. The value should be
in the Icinga range format, which is the following:

[@]start:end

Notes:

	start must be less than or equal to end

	Ranges by default are exclusive. A range of 10:20 will match values
that are < 10 OR >20.

	@ means the range is inclusive. So @10:20 is valid in the
case that the value is >= 10 AND <= 20.

	If start or end is ~, this value is negative or positive
inifinity, respectively. A range of ~:20 will match values that
are > 20 only.

	If start is not given, then it is assumed to be 0.

	If end is not given, but a : exists, then end is assumed
to be infinity. Example: 5: would match < 5.

	
in_range(value)

	Tests whether value is in this range.

	
__str__()

	Turns this range object back into a valid range string which can
be passed to another plugin or used for debug output. The string returned
from here should generally be equivalent to the value given to the
constructor, but sometimes it can be slightly different. However,
it will always be functionally equivalent.

Examples:

>> str(Range("@10:20")) == "@10:20"
>> str(Range("10")) == "10"
>> str(Range("10:")) == "10:~"

	
class pycinga.range.RangeValueError

	This exception is raised when an invalid value is passed to
Range. The message of this exception will contain a
human readable explanation of the error.

status - Icinga Status Objects

This module provides the Status class, which encapsulates
a status code for Icinga.

	
class pycinga.status.Status(name, exit_code)

	Creates a new status object for Icinga with the given name and
exit code.

Note: In general, this should never be called since the standard
statuses are exported from pycinga.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pycinga	
 Python library for writing Icinga plugins.

 	
 	
 pycinga.perf_data	

 	
 	
 pycinga.plugin	

 	
 	
 pycinga.range	

 	
 	
 pycinga.response	

 	
 	
 pycinga.status	

Index

 _
 | A
 | C
 | E
 | I
 | M
 | O
 | P
 | R
 | S
 | U
 | V
 | W

_

 	
 	__str__() (pycinga.perf_data.PerfData method)

 	(pycinga.range.Range method)

 	(pycinga.response.Response method)

A

 	
 	args (pycinga.plugin.Plugin attribute)

C

 	
 	check() (pycinga.plugin.Plugin method)

 	
 	crit (pycinga.perf_data.PerfData attribute)

 	CRITICAL (in module pycinga)

E

 	
 	exit() (pycinga.response.Response method)

I

 	
 	in_range() (pycinga.range.Range method)

M

 	
 	maxval (pycinga.perf_data.PerfData attribute)

 	
 	minval (pycinga.perf_data.PerfData attribute)

O

 	
 	OK (in module pycinga)

 	
 	options (pycinga.plugin.Plugin attribute)

P

 	
 	PerfData (class in pycinga.perf_data)

 	(in module pycinga)

 	Plugin (class in pycinga.plugin)

 	(in module pycinga)

 	pycinga (module)

 	
 	pycinga.perf_data (module)

 	pycinga.plugin (module)

 	pycinga.range (module)

 	pycinga.response (module)

 	pycinga.status (module)

R

 	
 	Range (class in pycinga.range)

 	(in module pycinga)

 	RangeValueError (class in pycinga.range)

 	
 	Response (class in pycinga.response)

 	(in module pycinga)

 	response_for_value() (pycinga.plugin.Plugin method)

S

 	
 	set_perf_data() (pycinga.response.Response method)

 	
 	Status (class in pycinga.status)

 	(in module pycinga)

U

 	
 	UNKNOWN (in module pycinga)

 	
 	uom (pycinga.perf_data.PerfData attribute)

V

 	
 	value (pycinga.perf_data.PerfData attribute)

 	
 	version (in module pycinga)

W

 	
 	warn (pycinga.perf_data.PerfData attribute)

 	
 	WARNING (in module pycinga)

Tutorial

This tutorial will provide an introduction and examples for writing
Icinga plugins using Pycinga.

Prerequisites

Before beginning, make sure that Pycinga is installed.
To verify this, the following should run without raising an exception:

>>> import pycinga

Since Icinga plug-ins are simply executable applications, Icinga itself is not
required to develop plug-ins.

A Simple Plugin

All plugins must inherit from the Plugin class.
Icinga plug-ins are expected to conform to a standard set of command line
arguments (in addition to any custom arguments that may be added), and the
Pycinga Plugin class already knows how to read and process these arguments.

After inheriting from the class, check()
should be implemented, which should perform whatever check the plugin does,
and return a Response object.

Here is a basic Icinga script:

import pycinga
from pycinga import Plugin, Response

class MyCheck(Plugin):
 def check(self):
 return Response(pycinga.OK, "Everything is ok!")

if __name__ == "__main__":
 # Instantiate the plugin, check it, and then exit
 MyCheck().check().exit()

Save this to a Python file and run it, and you should see the following
output:

$ python my_check.py
OK: Everything is ok!

And the exit status will be 0, meaning everything is good.

This is the most basic Icinga plug-in that can be created. Now, let’s
create one that is more feature-complete.

Returning Proper Responses

In the first example, we simply returned pycinga.OK on every
check. Realistically, we would get a value and return OK, WARNING,
or CRITICAL depending on that value. According to the Icinga developer
guidelines, the warning and critical ranges must be able to be set via
the command line via -w and -c, respectively. Pycinga plugins
do this for you automatically, as we shall see in this section.

Let’s enhance our check to use a value, and return a proper response status
for that value:

import pycinga
from pycinga import Plugin

class MyCheck(Plugin):
 def check(self):
 # Static for this example, but imagine in a real world plugin
 # that this would be calculated.
 value = 27

 # Return a response for that value
 return self.response_for_value(value)

This check now has some numeric value which we’ve set to a static 27
for the purpose of this example. The important piece is that the plugin
calls response_for_value() to generate
a response based on that value. This method takes into account the warning
and critical ranges set by the plugin and the command line.

Since we didn’t set any defaults for the warning and critical range,
we’ll find that the check will be OK by default:

$ python my_check.py
OK:

By introducing some ranges, we can see that the plugin automatically
works. In this case, 27 is outside of the warning range, but still not
critical. The plugin properly returns WARN:

$ python my_check.py -w 10:20 -c 0:30
WARN:

And again, if we modify the ranges slightly, we can get the plugin to
consider the value critical:

$ python my_check.py -w 5:10 -c 0:20
CRIT:

Note on ranges: If you’re unfamiliar with Icinga ranges, it may not be
clear how exactly they’re working. Ranges default to exclusive, meaning
a range of 10:20 means that a value is included in this range if the
value is < 10 OR > 20. For more details on Icinga range format, it is
fully documented in the Range documentation.

Adding Performance Data

Icinga plug-ins can also output metrics which are useful for 3rd party
applications and can also be read on the Icinga dashboard. Pycinga
provides an easy way to add performance data to responses. Extending our
example once again:

import pycinga
from pycinga import Plugin

class MyCheck(Plugin):
 def check(self):
 # Static for this example, but imagine in a real world plugin
 # that this would be calculated.
 value = 27

 # Return a response for that value
 result = self.response_for_value(value)
 result.set_perf_data("some_key", value)
 result.set_perf_data("zero", 0)
 return result

The set_perf_data() function can be used
to set performance data on the response. If we run the check now, we should
see output similar to the following:

$ python my_check.py
OK:|some_key=27;;;; zero=0;;;;

Note that the extra semicolons are in order to comply with the standard
performance data format and can contain additional information. See
PerfData for more information.

Custom Command-line Options and Arguments

Often checks can require additional command line options. Since Pycinga
plugins parse the command line on their own, you should define additional
options on the plugin itself, rather than attempting to use your own command
line parser. Pycinga uses Python’s built-in argparse library.

We’ll extend our example to add an option to multiply the value by the
given option value::

import pycinga
from pycinga import Plugin, make_option

class MyCheck(Plugin):
 multiply_by = make_option("--multiply-by", type="int")

 def check(self):
 # Static for this example, but imagine in a real world plugin
 # that this would be calculated.
 value = 27

 # Multiply the value if we were given the flag
 if self.options.multiply_by:
 value = value * self.options.multiply_by

 return self.response_for_value(value, str(value))

We’ve added the option multiply_by. If we run the check without the
option, we see the normal output:

$ python my_check.py
OK: 27

But by adding a number to multiply by, we’ll get different output:

$ python my_check.py --multiply-by 10
OK: 270

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Pycinga 1.0.0 Documentation

_static/up-pressed.png

_static/up.png

_static/plus.png

