

PyChimera

[image: Travis CI status]
 [https://travis-ci.org/insilichem/pychimera][image: AppVeyor status]
 [https://ci.appveyor.com/project/jaimergp/pychimera][image: Documentation status]
 [http://pychimera.readthedocs.io/en/latest/?badge=latest][image: Citation DOI]
 [http://dx.doi.org/10.1093/bioinformatics/bty021]
Use UCSF Chimera [https://www.cgl.ucsf.edu/chimera/] packages in any Python 2.7 interpreter

[image: _images/pychimera.png]
With PyChimera you can…

	Run scripts depending on chimera from CLI with pychimera script.py.

	Enable import chimera in interactive coding sessions outside UCSF Chimera,
including IPython and Jupyter Notebooks.

	Launch a standard UCSF Chimera instance, with the benefit of importing all
your conda or virtualenv packages with pychimera --gui.

[image: _images/pychimera.gif]

Projects using PyChimera

	GaudiMM [https://github.com/insilichem/gaudi]

	InsiliChem Tangram [https://github.com/insilichem/tangram]

	@jrjhealey [https://github.com/jrjhealey]’s chimera scripts [https://github.com/jrjhealey/chimera] & bioinfo-tools [https://github.com/jrjhealey/bioinfo-tools]

User Guide

	Quickstart
	Why?

	Usage

	Multiplatform compatibility

	Installation
	Recommended steps

	Alternative procedure

	Extra packages

	FAQ & Known issues
	Numpy problems

	PyChimera GUI has ugly fonts

	Setuptools problems

	Chimera reports problems with libgfxinfo.so and pcrecpp

	dateutil version

	For developers
	Quick API

	Alternative methods

	How does it work?

Indices and tables

	Index

	Module Index

	Search Page

Acknowledgments

Largely based on ideas by Greg Couch at chimera-users [http://www.cgl.ucsf.edu/pipermail/chimera-users/2015-January/010647.html].

Citation

[image: _images/da042ef71df11864f474dd520ca16dff8a42dc0c.svg]
 [http://dx.doi.org/10.1093/bioinformatics/bty021]PyChimera is scientific software, funded by public research grants
(Spanish MINECO’s project CTQ2014-54071-P, Generalitat de Catalunya’s
project 2014SGR989 and research grant 2017FI_B2_00168, COST Action CM1306).
If you make use of PyChimera in scientific publications, please cite it. It will help
measure the impact of our research and secure future funding!

@article{pychimera2018,
 author = {Rodríguez-Guerra Pedregal, Jaime and Maréchal, Jean-Didier},
 title = {PyChimera: use UCSF Chimera modules in any Python 2.7 project},
 journal = {Bioinformatics},
 volume = {34},
 number = {10},
 pages = {1784-1785},
 year = {2018},
 doi = {10.1093/bioinformatics/bty021},
 URL = {http://dx.doi.org/10.1093/bioinformatics/bty021},
 eprint = {/oup/backfile/content_public/journal/bioinformatics/34/10/10.1093_bioinformatics_bty021/1/bty021.pdf}
}

Quickstart

PyChimera lets you use the full UCSF Chimera codebase in any Python 2.7 project.

Why?

UCSF Chimera is an extensible molecular visualization tool with a vast collection
of modules gathered after years of development. These tools allow you to perform
serious molecular modelling jobs even without Python knowledge (they also offer
a very versatile text interface with custom commands [https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/framecommand.html]).

However, all this code is only available if you use the bundled Python 2.7 interpreter
to run your scripts, like this:

chimera --nogui --script "path/to/my/script.py arg1 arg2 ..."

Or, using the GUI command line toolbar, by running runscript path/to/my/script.py
arg1 arg2 This is less desirable than simply running python script.py arg1 arg2

With PyChimera, you can run pychimera script.py and forget about using the UCSF Chimera
interpreter or not. It just works. Additionally, it offers some more features:

	Interactive sessions in the Python interpreter where you can just run import chimera,
like it should be.

	Full compatibility with IPython and Jupyter Notebooks (read Extra packages).

	Simple API to run your Chimera-dependent script with any python interpreter.

	Conda recipes for UCSF Chimera and UCSF Chimera headless, for automated testing and deployment.

If you want more details, be sure to check the paper (already submitted, once published, it
will be linked here).

Usage

Run pychimera -h for quick help. Basically:

Running code

To execute a script:

pychimera script.py

To launch a module that uses UCSF Chimera internally:

pychimera -m this

To execute any Python statement:

pychimera -c 'import chimera'

To know which UCSF Chimera instance is being loaded:

pychimera --path

Interactive sessions

To start an interactive Python session with importable UCSF Chimera modules:

pychimera # start the standard Python interpreter
pychimera -i some_file.py # run a script and stay in the standard Python interpreter
pychimera -im module # same, but with a Python module
pychimera -ic "string" # same, but with a command
pychimera ipython # launch IPython interpreter
pychimera notebook # launch IPython notebook

To launch the UCSF Chimera GUI with custom packages (check InsiliChem Plume [https://github.com/insilichem/plume] as an example!):

pychimera --gui

Multiplatform compatibility

[image: _images/pychimera.svg]
 [https://travis-ci.org/insilichem/pychimera][image: _images/master.svg]
 [https://ci.appveyor.com/project/jaimergp/pychimera]UCSF Chimera is available for Linux, Mac OS X and Windows. PyChimera does its best to
provide the same compatibility for all three platforms and each release is continuously
tested in Travis CI [https://travis-ci.org/insilichem/pychimera] (Linux, Mac OS X) and AppVeyor [https://ci.appveyor.com/project/jaimergp/pychimera] (Windows). Despite our efforts,
some features might not be as polished in some platforms. The table below summarizes
the current state of implementation:

	Features

	Platforms

	Linux

	Mac OS X

	Windows*

	pychimera

	Y

	Y

	N

	pychimera script.py

	Y

	Y

	Y

	pychimera ipython

	Y

	Y

	Y**

	pychimera notebook

	Y

	Y

	Y

	pychimera --gui

	Y

	Y

	Y

	pychimera -c

	Y

	Y

	Y

	pychimera -i

	Y

	Y

	Y

	pychimera -m

	Y

	Y

	Y

* In Windows, use python -m pychimera, not pychimera.

** Only with qtconsole installed.

PyChimera has been successfully installed and tested in the following 64-bit systems:

	
	Linux

	
	Arch Linux with UCSF Chimera 1.10, 1.11, 1.12

	Ubuntu 14.04 with UCSF Chimera 1.10, 1.11, 1.12 (Travis CI’s)

	CentOS 6.3 with UCSF Chimera 1.11.2

	
	Mac OS X

	
	10.11 El Capitan with UCSF Chimera 1.12

	10.10 (Xcode 6.4) with UCSF Chimera 1.12 (Travis CI’s)

	
	Windows

	
	7 SP1 with UCSF Chimera 1.12

	Windows Server 2012 R2 with UCSF Chimera 1.12 (AppVeyor’s)

Installation

PyChimera is a wrapper around UCSF Chimera, so it makes sense that you have
to install it beforehand. Additionally, to reduce compatibility problems,
PyChimera is best used within a conda environment.

Recommended steps

1. Install Miniconda

Anaconda [https://www.anaconda.com/] is a Python distribution that bundles all the scientific packages
you will ever need. It also provides a fancy package manager to update and
install more if you need it. A stripped-down version of Anaconda that only
includes the package manager (conda) and the essential Python packages,
called Miniconda, is also available and it’s the one we will use here.

Go the Miniconda [https://conda.io/miniconda.html] webpage and download the installer for your platform. For
the sake of simplicity, choose the Python 2.7 version. You can use the 3.6
version if you really want, but you will need to create a Python 2.7
environment later.

Once you have downloaded the installer, run it. Depending on the platform,
you have to do it differently.

Linux and Mac OS X

Just run bash ~/Downloads/Miniconda*.sh and follow the wizard. Make
sure to answer yes when the installer asks about modifying your .bashrc.
When you are done, close the terminal and reopen it to apply the changes.

Note

The installer requires chimera to be in $PATH. In Linux, you can symlink $CHIMERA_INSTALL_DIR/bin/chimera to any location of your $PATH (ie, ~/.local/bin). In OSX, make sure to use the binary located in /Applications/Chimera.app/Contents/Resources/bin/chimera. There are alternative locations in the same Chimera.app directory that might not work!

Windows

Double-click on the .exe and follow the steps. Make sure to add Miniconda
to your %PATH% when you are asked about it.

2. Install UCSF Chimera

If you haven’t already, install UCSF Chimera. If you already have it installed,
skip to step 3, but make sure you satisfy the requirements detailed in step 4.

PyChimera has been tested on UCSF Chimera 1.10 and above on Linux, Mac OS X and Windows.
See Multiplatform compatibility for more details. Go to the UCSF Chimera download [https://www.cgl.ucsf.edu/chimera/download.html]
page and get the latest installer for your platform (1.12 at the time of writing).
You probably want the 64bit version.

Once you have it in disk, run it. Depending on the platform, this is performed differently:

Linux

You need to run these commands in a terminal:

cd ~/Downloads # or whatever it is in your system
chmod +x chimera*.bin
./chimera*.bin

At the final step, you will be asked to create a symlink in one of the places specified
in your $PATH. Choose the one that refers to the Miniconda installation.

Windows

Just double click on the .exe and follow the steps of the installation wizard.

3. Install PyChimera

With conda and UCSF Chimera in your system, this step is really easy!

conda install -c insilichem pychimera

If you installed Miniconda 3.6 or want to use a separate environment, use these ones:

conda create -n pychimera -c insilichem python=2.7 pychimera
source activate pychimera # Linux and Mac OS x
activate pychimera # Windows only

4. Make sure chimera can be found

If you followed all the steps, you should be able to run pychimera --path and obtain
the UCSF Chimera installation directory as a result. However, if you used a different
installation path and did not symlink the binary to somewhere in your PATH, pychimera
won’t be able to locate it. There’s a workaround for this! Just set an environment variable
called CHIMERADIR pointing to the UCSF Chimera installation directory.

In Linux and Mac OS X, this can be done in your .bashrc or equivalent.

export CHIMERADIR="~/.local/UCSF-Chimera" # point to the actual location in your system

In Windows, you have to search “Environment variables” in the Start menu and create a new
user environment variable in the popup dialog. Remember, the variable name is CHIMERADIR
and the value should be something like C:\Program Files\Chimera 1.12.

Alternative procedure

If you don’t want (or can’t) use conda, you can also install PyChimera with pip:

pip install pychimera

or directly from source:

With git
git clone https://github.com/insilichem/pychimera.git
cd pychimera
python setup.py install

With wget
wget https://github.com/insilichem/pychimera/archive/master.zip
unzip pychimera*.zip
cd pychimera-master
python setup.py install

While this should work in an ideal environment, it would probably have some rough edges
due to the libraries installed in your system being different than the ones provided by
UCSF Chimera. The pychimera conda package has been finetuned to work with the correct
versions so, if possible use that. Otherwise, refer to the conda recipe [https://github.com/insilichem/pychimera/blob/master/conda-recipe/meta.yaml] to identify
the correct versions.

Extra packages

So far, you have a barebones pychimera installation. If you want to make use of all
the Jupyter compatibility features, you will need to install some extra packages. Namely:

	IPython support: ipython (in Windows, qtconsole is also required).

	Notebook support: jupyter, notebook.

	Interactive molecule depiction: nglview.

This is easily installed with conda:

First, activate your environment if necessary
source activate pychimera
In Windows, it would be:
activate pychimera
conda install ipython jupyter notebook
In Windows, you will also need:
conda install qtconsole
For interactive visualization in the notebook:
conda install -c bioconda nglview
might need:
jupyter-nbextension enable nglview --py --sys-prefix

FAQ & Known issues

Numpy problems

UCSF Chimera bundles its own distribution of some popular packages, like
numpy, and those are loaded before your env packages for compatibility
reasons. Be warned if you use specific versions for your project,
because you can face strange bugs if you don’t take this into account.

For example:

RuntimeError: module compiled against API version 9 but this version of numpy is 7

In some platforms (Linux), this can be worked around with some work on
the precendence of paths in sys.path, but in some of them is not as easy (OS X).
The easiest and most robust way to fix this is by upgrading UCSF Chimera’s numpy:

pip install --upgrade numpy -t "$(pychimera --path)/lib/python2.7/site-packages"

Take into account that this action will prevent outdated extensions from working again. As a far as we know, these are affected, but there might be more (please report it so we can update this list!):

	MMTK-dependent extensions: MD, Energy minimization

	AutoDock-dependent extensions: AutoDock Vina

If you use those often enough, you should have a separate, unmodified UCSF Chimera installation.

PyChimera GUI has ugly fonts

Anaconda-provided tk package is not built with truetype support (for several reasons; read here [https://github.com/ContinuumIO/anaconda-issues/issues/776] and here [https://github.com/ContinuumIO/anaconda-issues/issues/6833]). Chimera does ship its own one (with correct font support), but since PyChimera loads its own Python interpreter, it ends up being replaces with conda’s one. All conda environments are created with tk by default, so if the fonts really bother you, you can uninstall it with conda remove --force tk and it will fallback to system’s one if needed.

Setuptools problems

If you are using the development versions of pychimera, Chimera’s setuptools will
complain about the versioning scheme (ie, pychimera==0.1.11+6.gc2e1fbb.dirty). As before,
the fix is to upgrade the package. You might have to remove it manually beforehand, though:

rm -r $(pychimera --path)/lib/python2.7/site-packages/setuptools-3.1*
pip install --upgrade setuptools -t "$(pychimera --path)/lib/python2.7/site-packages"

Chimera reports problems with libgfxinfo.so and pcrecpp

The error traceback ends with:

libgfxinfo.so: undefined symbol: _ZN7pcrecpp2RE4InitERKSsPKNS_10RE_OptionsE

This is due to an incompatibility between Chimera’s pcre libraries and those loaded by PyChimera. Depending on how you installed PyChimera, these will be:

	Installed with conda (or with pip but inside a conda environment): the libraries will correspond to the pcre package in the conda environment. To make sure it works, you would probably have to downgrade to version 8.39 with conda install pcre=8.39.

	Installed with pip (outside a conda environment): the loaded library will be the system’s one. If you can afford to downgrade to version 8.39 system-wide, do it. You will probably not, so the best option is to create a conda environment to execute PyChimera properly: conda create -n pychimera -c insilichem pychimera.

	If nothing else works, you can try (as a last resort!) to remove the pcre package altogether. This can have some unexpected side effects in your environment, but if you only installed one of our projects (e.g. gaudi), you should be fine. Do it like this: conda remove --force pcre.

dateutil version

As Numpy, the dateutil version shipped with Chimera is old, which can cause problems with some modern libaries. The solution is the same: upgrade the package built in Chimera.

pip install -U -t $(pychimera --path)/lib/python2.7/site-packages python-dateutil

For developers

Quick API

PyChimera provides access to UCSF Chimera’s modules from any Python 2.x
interpreter. This is achieved in two steps:

	patch_environ() patches environment variables with proper paths
(packages and libraries). Since the original sys.path is exported
to PYTHONPATH, you can use all your virtualenv/conda packages
with Chimera. This call restarts Python to inject a new
os.environ with os.execve.

	enable_chimera() initializes Chimera. This is done through their
own routines (chimeraInit).

As a result, if you want to use PyChimera in your developments, you only need
to execute these lines at the beginning of the script. For example, PyChimera
is used programmatically in the GaudiMM [https://github.com/insilichem/gaudi/blob/master/gaudi/cli/gaudi_cli.py#L71] CLI entry point.

import pychimera
pychimera.patch_environ()
pychimera.enable_chimera()

Calling patch_environ() will result in the interpreter being restarted
to inject all UCSF Chimera libraries; take that into account in the logic
of your program. This is why you should probably add the lines at the very
beginning of the script.

Alternatively, you can leave those lines out and have your users execute
the script with pychimera instead of python. Up to you, but usually
you will prefer to hide the technical details…

Alternative methods

PyChimera also offers its interface through python -m. This has not
been thoroughly tested, so it may not work perfectly. Add -i for interactive mode:

python -[i]m pychimera [-m another_module | -c "string" | script.py | ipython | notebook]

You can also try to launch it from IPython, but, again, some things may not
work. Anyway, these two commands have the same effect:

pychimera ipython [notebook]
ipython -m pychimera [notebook]

If you want to run a script with IPython and then inspect the results
(-i flag), your best bet is to run pychimera ipython and then
call %run path/to/file.py inside the interpreter.

How does it work?

When you run patch_environ, we try to locate a valid UCSF Chimera installation
in the system. This is performed with three alternative strategies:

	Check if a CHIMERADIR variable is set. This is normally set by the user when the
automated strategies can’t work right due to the system configuration. If the path
is valid, use that as the UCSF Chimera installation directory. Else, try strategy #2.

	Check if an executable called chimera is somewhere in PATH. This is done with
disutils.spawn.find_executable. If successful, figure out the UCSF Chimera installation
directory from the file path after resolving any possible symlinks.

	If chimera is not in PATH, we can try to find the installation directory in
the default locations (~/.local or /opt for Linux, /Applications for Mac OS X,
C:\Program Files for Windows).

Once we have located a valid UCSF Chimera, we find the needed libraries and Python modules
to patch LD_LIBRARY_PATH, PYTHONPATH and other environment variables, as specified
in their own shell launcher [http://plato.cgl.ucsf.edu/trac/chimera/browser/trunk/apps/common-unix] (Linux/OSX) and cpp launcher [http://plato.cgl.ucsf.edu/trac/chimera/browser/trunk/apps/chimera/launcher/launcher.cpp] (Windows). In this step,
any additional packages and libraries installed in a conda environment or virtualenv
are also injected. For all this to work, the interpreter is restarted.

After the restart, enable_chimera is called, which runs the UCSF Chimera initialization
routines contained in chimeraInit.py. Depending on the CLI options, we then run a script,
run IPython/Notebook or start the GUI.

Index

 _static/ajax-loader.gif

_images/pychimera.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/pychimera.gif
(insilichem) Wed 14:55

_static/file.png

nav.xhtml

 Table of Contents

 		
 PyChimera

 		
 Quickstart

 		
 Why?

 		
 Usage

 		
 Running code

 		
 Interactive sessions

 		
 Multiplatform compatibility

 		
 Installation

 		
 Recommended steps

 		
 1. Install Miniconda

 		
 2. Install UCSF Chimera

 		
 3. Install PyChimera

 		
 4. Make sure chimera can be found

 		
 Alternative procedure

 		
 Extra packages

 		
 FAQ & Known issues

 		
 Numpy problems

 		
 PyChimera GUI has ugly fonts

 		
 Setuptools problems

 		
 Chimera reports problems with libgfxinfo.so and pcrecpp

 		
 dateutil version

 		
 For developers

 		
 Quick API

 		
 Alternative methods

 		
 How does it work?

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

