

    
      
          
            
  
Welcome to pyCellAnalyst’s documentation!
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pyCellAnalyst is a Python module aimed at the segmentation of cells imaged with 3-D microscopy under different mechanical conditions, and then quantifying the deformations resulting from those conditions. Many image processing, segmentation, and registration methods from the extensive and powerful C++ Visualization and Simple Insight Toolkits are provided. With these tools, objects in challenging configurations can be segmented in 3-D.


[image: _images/segmentation.png]
Cells reconstructed from dual photon laser scanning microscopy data in an unloaded (top) and loaded state (bottom). The challenge of separating highly clustered objects is handled robustly by the tools provided.



Following object segmentation, the resulting polygonal surfaces in reference and deformed states can be used to calculate cellular deformations. Three methods are provided for this: equivalent principal moments of inertia ellipsoid, optimal affine transformation, and deformable image registration (more details in Introduction). The results of deformable image registration applied to the example object segmentation above is visualized below.


[image: _images/cells_deform.gif]
A visualization of the optimal diffeomorphism mapping the reconstructed referece (red) and deformed (green) cells in the previous figure is shown here. This is one of three methods to characterize deformation provided within pyCellAnalyst.







          

      

      

    

  

    
      
          
            
  
Installation





Anaconda

pyCellAnalyst now requires Anaconda [https://www.continuum.io/downloads] Python from Continuum Analytics. You can install either the full Anaconda package or Miniconda.


Note

pyCellAnalyst is now built for Python 3. If you wish to run it in your root environment, you must install Anaconda3 or Miniconda3. Alternatively, you can create a conda environment using Python 3.






Installing from Anaconda Cloud


	Add additional channels to fetch packages from.

conda config --add channels conda-forge
conda config --add channels SimpleITK
conda config --add channels siboles







	Install

To install to your root conda environment:

conda install -c siboles pycellanalyst





To install to a conda virtual environment for just pyCellAnalyst:

conda create --name pyCell python=3.6 pycellanalyst












Optional

It is still possible to install pyCellAnalyst to a standard Python build. Although the dependencies must be resolved by the user. pyCellAnalyst depends on the following:

Available in PyPi


	numpy


	scipy


	scikit-learn


	matplotlib


	wquantiles


	xlrd


	xlwt


	trimesh


	febio




Others:


	VTK [http://www.vtk.org/download/]


	SimpleITK [http://www.simpleitk.org/SimpleITK/resources/software.html]


	tetmesh [https://github.com/siboles/tetmesh]







Troubleshooting


	If the Anaconda version of Python does not start when you type python in a command terminal you likely need to unset your PYTHONPATH and PYTHONHOME variables.


	Other problems with Anaconda can be researched here [http://conda.pydata.org/docs/troubleshooting.html]


	If the pycellanalyst does not work with conda install on Linux, the user can build the package themself.
- Download the source code [https://github.com/siboles/pyCellAnalyst/archive/master.zip]
- Unzip and open a command terminal in the src directory containing build.sh.
- Type the following:


conda build .
conda install --use-local pycellanalyst


















          

      

      

    

  

    
      
          
            
  
Introduction





Object Segmentation

An example usage is as follows:

from pyCellAnalyst import Volume

# Instantiate a Volume object with default parameters
# This will execute the segmentation and populate all class attributes
# Note: PATH_TO_IMAGE_DIRECTORY must be changed to the location of the either
# a directory containing a single sequence of 2-D TIFF or a single NiFTi format ".nii"
# 3-D image. Likewise, each [int, int, int, int, int, int] must be replaced by the
# position and size of regions of interest (as indices)
# Please consult the pyCellAnalyst.Voluume class reference below to explore parameter options.
vol = Volume.Volume("PATH_TO_IMAGE_DIRECTORY", regions=[,[int, int, int, int, int, int],...])
# print the volumes of each segmented object
print vol.volumes





This code block will create a new directory “PATH_TO_IMAGE_DIRECTORY”+”_results” where the segmented object surfaces are saved in stereolithographic format (.stl). Also, a 3-D label image of the reconstructed objects “labels.nii” is also saved here.




Deformation Analysis


	The moment of inertia tensor, I is calculated discretely for each object in the reference and deformed states. An ellipsoid with the same principal moments of inertia, the eigenvalues of I, is then determined for each reference and deformed object. Deformation can then be characterized as the stretch along the ellipsoid axes between the reference and deformed states. This is analagous to the principal stretches (which of course can also be converted to strains); however, it is impossible to separate rigid body rotation from shear with this approach.


	The optimal affine transformation mapping the each reference surface to its deformed pair can be calculated using an interative closest point minimization. The objective function to minimize is the sum of the Euclidean distances from the vertices of the reference surface after affine transformation to their nearest neighbor vertices on the deformed surface. By default a rigid body transformation will first be optimized by the same method, before attempting to dfind the best affine transformation. Assuming uniform deformation on the object, the linear transformation matrix from this optimal affine transformation is the deformation gradient, [image: \mathbf{F}]. The Green-Lagrange strain tensor, [image: \mathbf{E} = \frac{1}{2}(\mathbf{F}^T.\mathbf{F} - \mathbf{I})] is then calculated for each object pair.


	Deformable image registration can be performed to determine the optimal diffeomorphism between the reference and deformed objects. This will yield a displacement vector field in the reference state that is then interpolated to the object vertices. Images are reconstructed from the object surfaces at a user-specified precision expressed as a ratio of the bounding box edge lengths e.g. 0.01 will result in 100 voxels in the [image: i,\,j,] and [image: k] directions with length of [image: \frac{L_x}{100},\,\frac{L_y}{100},] and [image: \frac{L_z}{100}].




To perform deformation analysis on these segmented objects:

from pyCellAnalyst import CellMech

# Instantiate a CellMech object with default parameters
# This will calculate object volumes, ellipsoids of equivalent principal moments of inertia,
# and the optimal affine transformation between reference and deformed object pairs.
# Please consult the pyCellAnalyst.CellMech class reference below to explore parameter options.
mech = CellMech.CellMech("PATH_TO_REFERENCE_DIRECTORY", "PATH_TO_DEFORMED_DIRECTORY")











          

      

      

    

  

    
      
          
            
  
Segmentation and Analysis Graphical User Interface

A graphical user interface (GUI) is packaged within the pyCellAnalyst module to allow for access to all features without a need for a knowledge of the Python language.
To start the GUI, open a command terminal anywhere and type:

python -m pyCellAnalyst.GUI





An example analysis video using ImageJ and this GUI can be found here [https://youtu.be/ICasGix1Omo].





I/O Tab - Input and Output, Segmentation Execution, Extra Options

[image: _images/tab1_annotated.png]

	Save settings used in current analysis to a Python pickle file.


	Load settings from a previously saved Python pickle file.


	Load an Excel (.xls) file containing region of interest definitions for each image directory.


	All regions of interest applicable to a specific image directory must be on a individual sheets.


	The sheets must be in the order that the image directories are added.






	Add and the path to a directory containing the images.


	Directories must be added corresponding to the order of the sheets in the region of interest file.


	Directory paths will appear in the white box to the right after addtion.






	Remove selected directory from the list.


	Physical dimensions of image voxels.


	If there is a necessary correction physical dimensions of the voxels, e.g., for laser scanning microscopy the z-spacing should be adjusted to account for depth distortion,  please account for it here.






	Upsample the image by this factor. This can help when an active contour model is employed.


	Check Objects are Dark if the objects of interest appear darkest in the image.


	Other options for the image processing and segmentation.


	Display Objects - If checked will spawn a 3-D interactive rendering of the reconstructed objects with label indicated by color.


	Remove Bright Spots - Will replace bright spots greater than or equal to the 98:sup:th percentile intensity.


	Edge Enhancement - Enhance the edges in each region of interest using Laplacian sharpening.


	Consider Slices Independent - Perform processing and segmentation on each slice in stack independently in 2-D and reassemble results. This is not recommended except for specialized cases.


	Perform Morphological Opening - If checked will perform a single voxel erosion followed by a single voxel dilation. This will remove islands and spurious connections with typically negligible effects on the segmentation. If the object of interest has exceptionally thin features it may be necessary to disable this.


	Fill Holes - If checked all holes completely internal to the segmented objects will be filled.


	Handle Overlap - If checked a support vector machine classification will be performed if any objects overlap.


	Debug Mode - Outputs addtional images to disk for debugging purposes (smoothed image, seed images for active contour models).


	Equalize Intensity Over Depth - Performs a linear correction of intensity changes with depth, so all slices are of similar intensity.






	Perform the segmentation.







Filtering Tab - Image Smoothing and Denoising Methods

[image: _images/tab2_annotated.png]

	Image smoothing and denoising methods.


	A brief description of the currently selected method, and general advice on its use.


	The adjustable parameters for the currently selected method.


	Hyperlinks to the appropriate theoretical reference if available. This requires and internet connection and will open in the OS default web browser.







Segmentation Tab - Object Segmentation and Display

[image: _images/tab3_annotated.png]

	Thresholding method that can either serve as the complete segmentation method, or provide the initial seed for an active contour model.


	Brief description of the currently selected thresholding method.


	Threshold settings for currently selected method. All by the Percentage method require no additional settings.


	If Iterative Threshold Adjustment is checked, the threshold will be adjusted until the thresholded object no longer touches the edge of the region of interest definition.






	Selection of active contour model to use.


	Brief description of the currently selected active contour model with general advice on its usage.


	Adjustable parameters for the currently selected active contour model.







Kinematics Tab - Deformation Analysis Methods

[image: _images/tab4_annotated.png]

	Load the directory containing the polygonal surfaces resulting from object segmentation of the reference state.


	Load each directory containing segmented surfaces for each deformed state.


	Remove the selected deformed directory(ies) from the list.


	Options for the deformation analysis.


	Before performing the optimization to determine the best affine transformation between objects, will first find the optimal rigid body translation and rotation to align objects if checked.


	If checked, perform deformable image registration to find the best non-uniform deformation that maps the reference to the deformed object(s).


	If checked, save 3-D mesh information and displacements calculated by deformable image registration interpolated to the mesh boundary to a Python pickle file that can later be used to fully generate and solve finite element analyses of the the deformation.


	If checked, spawns a 3-D interactive rendering of the non-uniform displacements resulting from deformable image registration. The deformation can be animated by pressing the RIGHT-ARROW. Also, the frames of the animation can be saved to disk by pressing the UP-ARROW.


	If checked, bar plots of the results from the ellipsoidal and affine transformation methods reporting cell strains.














          

      

      

    

  

    
      
          
            
  
Finite Element Analysis Graphical User Interface


Pre-requisites

This graphical user intereface (GUI) uses the FEBio finite element solver, which can be downloaded here [http://www.febio.org]. FEBio is aimed at solving problems in biomechanics, which often have both geometric and material non-linearity as well as anisotropy and multiple physical phases. This and the fact that FEBio is open-source make it an excellent solver for finite element analysis of the cells.

After running the install wizard, it may be advantage to add the FEBio binary (.exe in Windows, .lnx64 (arbitrary) in Linux) to your system path. This is not necessary for this utility though.




Peforming an Analysis

Start the GUI, by opening a command terminal and typing:

python -m pyCellAnalyst.FEA_GUI






Running for the First Time

The GUI looks for a file in your HOME directory called .pyCellAnalystFEA.pth containing the path to your FEBio binary. If this is not found or the path contained within is incorrect, a file browser will spawn instructing you to navigate to the FEBio executable and select it. Do this and the file will be generated or modified.




Importing Model Definition Pickles

When the option to save for FEA is active and a deformable image registration analysis is performed, files with the naming convention cellFEA{:02d}.pkl will be written to the corresponding results directory. These files contain all the necessary information to generate a finite element model of the cell and its deformation except for material properties.

Simply click the Add button on the Analysis tab and select pickle files for the cell(s) you wish to model. One or more files can be selected at a time. To remove files that were added simply select them from the listbox and click Remove




Setting Outputs

Checkboxes are provided to indicate what variables to output as results. Select or deselect these as you wish.




Setting Analysis Options

The GUI will automatically generate plots of the results for each analysis and write them to a directory named FEA_analysis_{TIME_STAMP} one directory level above the pickle folders. The options are as follows:


	Generate Histograms - For each cell, a histogram of each selected output variable will be generated from the values calculated for each element. The histograms are volumetrically weighted, such that the integral area is always 1. This will be done for all mechanical treatments of the cell included in the analysis.


	Tukey Boxplots - For each cell, a volumetrically weighted Tukey boxplot will be generated for each selected output variable. This will be done for all mechanical treatments of the cell included in the analysis.


	Calculate Differences - Since the finite element mesh used for each cell in the analysis is the same for all mechanical treatments (the reference state mesh), paired differences for each output variable can be calculated for all elements. The root-mean-square differences for all combinations of treatments within a cell are written to disk as heatmaps. If Convert to VTK is also selected the differences are also saved on each tetrahedron.


	Convert to VTK - An unstructured grid representation of each cell will be written in VTK format (.vtu). All selected output variables will be saved on the tetrahedrons. These can be further visualized and analyzed in software such as Paraview.







Assigning Material Properties

The second tab in the GUI, Material Model, provides options to define the material properties of the cells. The simplest model would be an isotropic ground substance such as a neo-Hookean or Mooney-Rivlin material with no tensile network.

To attempt to model the cytoskeleton, a transversely-isotropic ground substance can be selected to represent the microtubules. The symmetry axes for this material are oriented perpendicular to the local iso-distance contours measured from the cell surface.

To model the actin filaments, Tensile Fibres can be added. The contribution of these is modelled as a probability density function in spherical space. ksi1 is the axis of an ellipsoid oriented tangent to the local iso-distance contour, and can be thought of as the fibre stiffness in that direction. ksi2 and ksi3 are the other ellipsoidal axes and are forced to be equal. Likewise, the parameters beta1, beta2, and beta3, also represent the ellipsoidal axes of a probability density function, but these govern the non-linearity of the fibre stiffnesses. Since a derivative is taken, values of 2 for beta represent linear stiffness behaviour, and also the lower bound allowed for the value.









          

      

      

    

  

    
      
          
            
  
Module Classes

The autodocumentation for the pyCellAnalyst module is provided below.





	
class pyCellAnalyst.Volume(vol_dir, output_dir=None, regions=None, pixel_dim=[0.411, 0.411, 0.6835], stain='Foreground', segmentation='Geodesic', smoothing_method='Curvature Diffusion', smoothing_parameters={}, two_dim=False, bright=False, enhance_edge=False, depth_adjust=False, display=True, handle_overlap=True, debug=False, opening=True, fillholes=True)

	This class will segment objects from 3-D images using user-specified
routines. The intended purpose is for laser scanning fluorescence
microscopy of chondrocytes and/or their surrounding matrices.
Nevertheless, this can be generalized to any 3-D object using any
imaging modality; however, it is likely the segmentation parameters
will need to be adjusted. Therefore, in this case, the user should set
segmentation=’User’ during Class instantiation, and call the segmentaion
method with appropriate parameters.


	Parameters

	
	vol_dir (str) – This is required. Currently it is the path to a directory containing
a stack of TIFF images or a single NifTi (.nii) file. Other formats
may be supported in the future.


	output_dir (str, optional) – The directory in which to save results. If not specified, a directory
vol_dir + ‘_results’ will be created and used.


	regions ([,[int, int, int, int, int, int], ..], optional) – Cropped regions bounding a single object to segment. In terms of voxel indices
the order for each region is:
[top left corner x, y, z, box edge length Lx, Ly, Lz].
If not specified, the entire image is considered as the region.


	pixel_dim ([float=0.411, float=0.411, float=0.6835], optional) – The physical dimensions of the voxel ordered x, y, and z. If there is a need to correct
a dimesion such as for the depth distortion in laser scanning microscopy, it should be
incorporated here. Defaults to [0.411, 0.411, 0.6835]


	stain (str='Foreground', optional) – 
	‘Foreground’ indicates the objects of interest appear bright in the image.


	’Background’ indicates the objects of interest appear dark.







	segmentation (str='Geodesic', optional) – 
	‘Threshold’ – indicates to threshold the image at [image: 0.4\times intensity_{max}].


	’Geodesic’ – (default) peform a geodesic active contour segmentation with default settings.


	’Edge-Free’ – perform an edge-free active contour segmentation with default dettins.


	’User’ – The user will invoke calls to segmentation function with custom settings.







	smoothing_method (str='Curvature Diffusion', optional) – Smoothing method to use on regions of interest.


	’None’ – No smoothing will be performed.


	’Gaussian’ – Perform Gaussian smoothing.


	’Median’ – Apply a median filter.


	’Curvature Diffusion’ – Perform curvature-based anisotropic diffusion smoothing.


	’Gradient Diffusion’ – Peform classical anisotropic diffusion smoothing.


	’Bilateral’ – Apply a bilateral filter.


	’Patch-based’ – Perform patch-based denoising.







	smoothing_parameters (dict, optional) – Depends on smoothing_method. Field keys are documented in methods smoothRegion().


	
	’Gaussian’ – fields are:

	
	’sigma’: float=0.5










	
	’Median’ – fields are:

	
	’radius’: (int=1, int=1, int=1)










	
	’Curvature Diffusion’ – fields are:

	
	’iterations’: int=10


	’conductance’: float=9.0










	
	’Gradient Diffusion’ – fields are:

	
	’iterations’: int=10


	’conductance’: float=9.0


	’time step’: float=0.01










	
	’Bilateral’ – fields are:

	
	’domainSigma’: float=1.5


	’rangeSigma’: float=40.0


	’samples’: int=100










	
	’Patch-based’ – fields are:

	
	’radius’: int=3


	’iterations’: int=10


	’patches’: int=20


	
	’noise model: str=’poisson’

	
	options: (‘none’, ‘gaussian’, ‘poisson’, ‘rician’)























	two_dim (bool=False, optional) – If True, will consider each 2-D slice in stack independently in smoothing and segmentation.
This is not recommended except in special cases.


	bright (bool=False, optional) – If True, will perform bright spot removal replacing voxels with intensities
[image: \ge 98^{th}] percentile with median filtered (radius=6) value.


	enhance_edge (bool=False, optional) – If True, will enhance edges after smoothing using Laplacian sharpening.


	depth_adjust (bool=False, optional) – If True, will perform a linear correction for intensity degradation with depth.


	opening (bool=True, optional) – If True, will perform a morphological binary opening following thresholding to
remove spurious connections and islands. If object of interest is thin, this may
cause problems in which case, setting this to False may help.


	fillholes (bool=False, optional) – If True, all holes completely internal to the segmented object will be
considered as part of the object.


	display (bool=True, optional) – If True, will spawn a 3-D interactive window rendering of segmented object surfaces.


	handle_overlap (bool=True, optional) – If True, overlapping segmented objects will be reclassified using a Support Vector Machine.


	debug (bool=False, optional) – If True, will write additional images to disk in NifTi format for debugging purposes.









	
cells

	SimpleITK Image – An image containing the segmented objects as integer labels. Has the same properties as the
input image stack.






	
thresholds

	[, int, …] – The threshold level for each cell






	
volumes

	[, float, …] – List of the physical volumes of the segmented objects.






	
centroids

	[,[float, float, float], …]1 – List of centroids of segmented objects in physical space.






	
surfaces

	[,vtkPolyData, …] – List containing VTK STL objects.






	
dimensions

	[,[float, float, float],…] – List containing the ellipsoid axis lengths of segmented objects.
These are determined from the segmented binary images. It is recommended
to use the values calculated from a 3-D mesh in the CellMech class.






	
_classifyShared(i, cells, previous)

	If segmented objects overlap and handle_overlap is True,
this will attempt to reclassify the shared voxels using the
thresholded seed to train a support vector machine. Of course,
this relies on the seed to not overlap. The user strategy to get
good results from this would be to use an active contour method,
with an aggressive thresholding method to produce the seed.


	Returns

	
	A modified version of cells attribute with the overlapping objects


	reclassified.















	
_flattenBorder(img)

	To help ensure the segmentation does not touch
the cropped region border, the voxel intensities of
the 6 border slices are replaced by the intensity of
their 1st percentile.






	
_getLabelShape(img)

	




	
_getMinMax(img)

	




	
_parseStack()

	




	
_replaceSeed(seed)

	




	
adjustForDepth()

	Iterates over slices in 3-D image stack and appends each slice’s
maximum pixel intensity to a list. Then performs a weighted linear
curve fit with slices below the [image: 2^{nd}] percentile and above
the [image: 98^{th}] percentile assigned zero weights with all others
equally weighted. Ratios are then calculated from this fit for all z-depths
as:

[image: \frac{a_0}{a_1 z + a_0}]

and each slice of the image is multiplied by its corresponding weight
and reassembled into a 3-D image.


	Returns

	
	Replaces image read from disk with and image that is corrected for


	intensity change with depth.















	
edgeFreeSegmentation(upsampling=2, seed_method='Percentage', adaptive=True, ratio=0.4, lambda1=1.0, lambda2=1.1, curvature=0.0, iterations=20)

	Performs a segmentation using the SimpleITK implementation of the
Active Contours Without Edges method described in (Chan and Vese. 2001.)
Please also consult SimpleITK’s documentation of ScalarChanAndVeseDenseLevelSetImageFilter.


	Parameters

	
	upsampling (int=2, optional) – Resample image splitting original voxels this many times.
Resampling will always be performed to make voxels isotropic,
because anisotropic voxels can degrade the performance of this algorithm.


	seed_method (str='Percentage') – Thresholding method used to determine seed image; same as
thresholdSegmentation() method parameter. Please consult its
documentation.


	adaptive (bool=True) – If true will adaptively adjust threshold the threshold value until
resulting segmentation no longer touches the region of interest bounds.


	ratio (float=0.7) – The ratio to use with ‘Percentage’ threshold method. This plays no role
with other seed methods.


	lambda1 (float=1.0) – Weight for internal levelset term contribution to the total energy.


	lambda2 (float=1.1) – Weight for external levelset term contribution to the total energy.


	curvature (float=0.0) – Weight for curvature. Higher results in smoother levelsets, but less
ability to capture fine features.


	iterations (int=20) – The number of iterations the active contour method will conduct.













	
geodesic2D(seed, simg, cannyLower, cannyUpper, canny_variance, upsampling, active_iterations, rms, propagation, curvature, advection)

	A 2-D implementation of geodesicSegmentation() that operates
on each slice in the 3-D stack independently.






	
geodesicSegmentation(upsampling=2, seed_method='Percentage', adaptive=True, ratio=0.7, canny_variance=(0.05, 0.05, 0.05), cannyUpper=0.0, cannyLower=0.0, propagation=0.15, curvature=0.2, advection=1.0, rms=0.01, active_iterations=200)

	Performs a segmentation using the SimpleITK implementation of the
Geodesic Active Contour Levelset Segmentation method described in
(Caselles et al. 1997.) Please also consult SimpleITK’s documentation
of GeodesicActiveContourLevelSetImageFilter. This method will establish
the initial levelset function by calling the thresholdSegmentation()
method, and calculating a distance map from the resulting binary image.


	Parameters

	
	propagation (float=0.15) – Weight for propagation term in active contour functional.
Higher values result in faster expansion.


	curvature (float=0.2) – Weight for curvature term in active contour functional.
Higher values result in smoother segmentation.


	advection (float=1.0) – Weight for advective term in active contour functional.
Higher values causes the levelset evolution to be drawn
and stick to edges.


	rms (float=0.01) – The change in root-mean-square difference  at which iterations
will terminate. This value is divided by the upsampling value
to account the effect of voxel size.


	active_iterations (int=200) – The maximum number of iterations the active contour will conduct.


	upsampling (int=2, optional) – Resample image splitting original voxels this many times.
Resampling will always be performed to make voxels isotropic,
because anisotropic voxels can degrade the performance of this algorithm.


	seed_method (str='Percentage') – Thresholding method used to determine seed image; same as
thresholdSegmentation() method parameter. Please consult its
documentation.


	adaptive (bool=True) – If true will adaptively adjust threshold the threshold value until
resulting segmentation no longer touches the region of interest bounds.


	ratio (float=0.7) – The ratio to use with ‘Percentage’ threshold method. This plays no role
with other seed methods.


	canny_variance ([float=0.05, float=0.05, float=0.05]) – The Gaussian variance for canny edge detection used to generate the edge map for
this method. Gaussian smoothing is performed during edge detection, but if
another smoothing method was already performed this can be set low. High values
results in smoother edges, but risk losing edges when other objects are close.


	cannyUpper (float=0.0) – Ensures voxels in the image gradient with a value higher than this will always be
considered edges, and never discarded.


	cannyLower (float=0.0) – Ensures voxels in the image gradient with a value lower than this will be discarded.













	
getDimensions()

	




	
scale2D(img, thresh)

	




	
smooth2D(img)

	




	
smoothRegion(img)

	




	
threshold2D(img, thres, ratio)

	




	
thresholdSegmentation(method='Percentage', adaptive=True, ratio=0.4)

	Segments object of interest from image using user-specified method.


	Parameters

	
	method (str='Percentage') – The thresholding method to use. Options are:


	’Percentage’ –  Threshold at percentage of the maximum voxel intensity.


	’Otsu’ – Threshold using Otsu’s method


	’Huang’ –


	‘IsoData’


	’Li’


	’MaxEntropy’ – Sets the threshold value such that the sum of information entropy (Shannon) in the foreground and background is maximized.


	’KittlerIllingworth’


	’Moments’


	’Yen’


	’RenyiEntropy’ – The same as ‘MaxEntropy’, but uses the Renyi entropy function.


	’Shanbhag’ – Extends upon the entropy methods with fuzzy set theory.







	ratio (float=0.4) – Ratio of maximum voxel intensity in the region of interest to threshold at.
Only used if ‘Percentage’ method is given.


	adaptive (bool=True) – If True will adaptively adjust the determined threshold value until
the segmented object does not the region boundaries.













	
writeLabels()

	




	
writeSurfaces()

	








	
class pyCellAnalyst.CellMech(ref_dir=None, def_dir=None, rigidInitial=True, deformable=False, saveFEA=False, deformableSettings={'Maximum RMS': 0.01, 'Displacement Smoothing': 3.0, 'Precision': 0.01, 'Iterations': 200}, display=False)

	Quantifies deformation between objects in reference and deformed states.

Object geometries are obtained by importing polygonal sufaces saved in the STL format. The
user indicates a single reference directory containing the files and all corresponding
deformed directories. The STL files must be named the same in each directory, so they are
matched appropriately. In most cases, these will have been generated by pyCellAnalyst.Volume(),
and by default will be named [image_dirname]_results.


	Parameters

	
	ref_dir (str) – The directory containing the STL files corresponding to the reference (undeformed) state.


	def_dir (str) – The directory containing the STL files corresponding to the deformed state.


	rigidInitial (bool, optional) – If True do an initial rigid body transformation to align objects.


	deformable (bool, optional) – If True deformable image registration will be performed. This will call
deformableRegistration(), which will calculate a displacement map between
images reconstructed from reference and deformed surfaces.


	saveFEA (bool, optional) – If True will save nodes, elements, surface nodes, and displacement boundary conditions
in a dictionary to cell{:02d}.pkl. This information can then be used to run finite element
analysis in whatever software the user desires.


	deformableSettings (dict, optional) – 
	Settings for deformable image registration with fields:

	
	Iterations: (int, 200) The maximum number of iterations for algorithm.


	Maximum RMS: (float, 0.01) Will terminate iterations if root-mean-square error is less than.


	Displacement Smoothing: (float, 3.0) Variance for Gaussian smoothing of displacement field result.


	Precision: (float, 0.01) The fraction of the object bounding box in each dimension spanned by 1 voxel.











	display (bool, optional) – If True will display 3-D interactive rendering of displacement fields.









	
rsurfs

	[,vtkPolyData,…] – Polygonal surfaces of objects in reference state.






	
dsurfs

	[,vtkPolyData,…] – Polygonal surfaces of objects in deformed state.






	
rmeshes

	[,vtkUnstructuredGrid,…] – Tetrahedral meshes of undeformed geometries.






	
rcentroids

	[,ndarray(3, float),…] – Volumetric centroids of objects in reference state.






	
dcentroids

	[,ndarray(3, float),…] – Volumetric centroids of objects in deformed state.






	
cell_strains

	[,ndarray((3,3), float) – Green-Lagrange strain tensors for object assuming uniform deformation.






	
vstrains

	[, float, …] – Volumetric strains of the analyzed objects.






	
ecm_strain

	ndarray((3,3), float) – Green-Lagrange strain tensor for extracellular (extra-object) matrix assuming
uniform deformation.






	
rvols

	[,float,…] – Volumes of objects in reference state.






	
dvols

	[,float,…] – Volumes of objects in deformed state.






	
raxes

	[,ndarray(3, float),…] – Lengths of axes for ellipsoid with equivalent principal moments of inertia to object in reference state.






	
daxes

	[,ndarray(3, float),…] – Lengths of axes for ellisoid with equivalent principal moments of inertia to object in deformed state.






	
cell_fields

	[,vtkUnstructuredGrid,…] – Displacement vectors determined by deformable image registration interpolated to the vertices of object
mesh in reference state.






	
rigid_transforms

	[,vtkTransform,…] – Initial rigid body transforms applied to object in reference state to align with deformed state.
This is only populated if rigidInitial is True.






	
_deform()

	Calculates the affine transform that best maps the reference polygonal
surface to its corresponding deformed surface. This transform is calculated
through an interactive closest point optimization, that seeks to minimize
the sum of distances between the reference surface vertices and the current
affine transformed surface.

Assuming a uniform deformation, the non-translational elements of this affine
transform compose the deformation gradient [image: \mathbf{F}]. The Green-Lagrange
strain tensor is then defined as

[image: \mathbf{E} = \frac{1}{2}(\mathbf{F}^T.\mathbf{F} - \mathbf{1})],

where [image: \mathbf{1}] is the identity.


	Returns

	



	Return type

	cell_strains










	
_getECMstrain()

	Generates tetrahedrons from object centroids in the reference and deformed states.
The highest quality tetrahedron (edge ratio closest to 1) is used to construct a
linear system of equations,

[image: \|\mathbf{w}\|^2 - \|\mathbf{W}\|^2 = \mathbf{W}.\mathbf{E}.\mathbf{W}],

where, [image: \mathbf{W}] are the reference tetrahedron edges (as vectors) and
[image: \mathbf{w}] are the deformed tetrahedron edges, to solve for Green-Lagrange
strain, [image: \mathbf{E}].


	Returns

	



	Return type

	ecm_strain










	
_make3Dmesh(filename, frame, vConst)

	Generates a 3-D tetrahedral mesh using tetmesh module build on CGAL.
These meshes are then used to determine the object’s volume, centroid,
and the axes of the ellipsoid that has equivalent principal moments of
inertia.


	Parameters

	
	filename (str) – The path and filename of the STL surface currently being analyzed. This
is necessary since MeshPy has to read the STL from disk in its native format.


	frame (str) – Indicates the curent state, ‘MATERIAL’ or ‘SPATIAL’.






	Returns

	
	**if frame==’MATERIAL’** –


	rmeshes


	rcentroids


	rvols


	raxes






	**else** –


	dcentroids


	dvols


	daxes



















	
_poly2img(ind)

	Helper function called by deformableRegistration() that generates
images from polygonal surfaces in reference/deformed pairs. The voxel
dimension of these images is determined by the value for Precision
in deformableSettings.


	Parameters

	ind (int) – The list index for the current object pair being analyzed.



	Returns

	



	Return type

	(Reference Image, Deformed Image, Tranformed Reference Surface)










	
_readstls()

	Reads in all STL files contained in directories indicated by ref_dir and def_dir.
Also calls _make3Dmesh() to create 3-D tetrahedral meshes.


	Returns

	



	Return type

	rsurfs, dsurfs










	
animate(pd, ind)

	Helper function called by deformableRegistration if animate is True.
Spawns a window with an interactive 3-D rendering of the current analyzed object
in its reference state. The displacements calculated from the deformable image
registration can be applied to this object to animate the deformation by pressing
the RIGHT-ARROW. Pressing the UP-ARROW will animate and also save the frames to
disk.


	Parameters

	
	pd (vtkPolyData) – The current analyzed object’s reference geometry.


	ind (int) – The index of the current polydata in rsurfs. Necessary for naming directory created
if animation frames are saved.













	
deformableRegistration()

	Performs deformable image registration on images reconstructed from polygonal surfaces at a user-specified precision.
If animate parameter is True, this also spawns a VTK interative rendering that can animate the deformation.


	Returns

	



	Return type

	cell_fields

















          

      

      

    

  

    
      
          
            
  
License




The MIT License (MIT)

Copyright (c) 2014 Scott Sibole

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	
       	
       pyCellAnalyst	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | D
 | E
 | G
 | P
 | R
 | S
 | T
 | V
 | W
 


_


  	
      	_classifyShared() (pyCellAnalyst.Volume method)


      	_deform() (pyCellAnalyst.CellMech method)


      	_flattenBorder() (pyCellAnalyst.Volume method)


      	_getECMstrain() (pyCellAnalyst.CellMech method)


      	_getLabelShape() (pyCellAnalyst.Volume method)


  

  	
      	_getMinMax() (pyCellAnalyst.Volume method)


      	_make3Dmesh() (pyCellAnalyst.CellMech method)


      	_parseStack() (pyCellAnalyst.Volume method)


      	_poly2img() (pyCellAnalyst.CellMech method)


      	_readstls() (pyCellAnalyst.CellMech method)


      	_replaceSeed() (pyCellAnalyst.Volume method)


  





A


  	
      	adjustForDepth() (pyCellAnalyst.Volume method)


  

  	
      	animate() (pyCellAnalyst.CellMech method)


  





C


  	
      	cell_fields (pyCellAnalyst.CellMech attribute)


      	cell_strains (pyCellAnalyst.CellMech attribute)


  

  	
      	CellMech (class in pyCellAnalyst)


      	cells (pyCellAnalyst.Volume attribute)


      	centroids (pyCellAnalyst.Volume attribute)


  





D


  	
      	daxes (pyCellAnalyst.CellMech attribute)


      	dcentroids (pyCellAnalyst.CellMech attribute)


      	deformableRegistration() (pyCellAnalyst.CellMech method)


  

  	
      	dimensions (pyCellAnalyst.Volume attribute)


      	dsurfs (pyCellAnalyst.CellMech attribute)


      	dvols (pyCellAnalyst.CellMech attribute)


  





E


  	
      	ecm_strain (pyCellAnalyst.CellMech attribute)


  

  	
      	edgeFreeSegmentation() (pyCellAnalyst.Volume method)


  





G


  	
      	geodesic2D() (pyCellAnalyst.Volume method)


  

  	
      	geodesicSegmentation() (pyCellAnalyst.Volume method)


      	getDimensions() (pyCellAnalyst.Volume method)


  





P


  	
      	pyCellAnalyst (module)


  





R


  	
      	raxes (pyCellAnalyst.CellMech attribute)


      	rcentroids (pyCellAnalyst.CellMech attribute)


      	rigid_transforms (pyCellAnalyst.CellMech attribute)


  

  	
      	rmeshes (pyCellAnalyst.CellMech attribute)


      	rsurfs (pyCellAnalyst.CellMech attribute)


      	rvols (pyCellAnalyst.CellMech attribute)


  





S


  	
      	scale2D() (pyCellAnalyst.Volume method)


      	smooth2D() (pyCellAnalyst.Volume method)


  

  	
      	smoothRegion() (pyCellAnalyst.Volume method)


      	surfaces (pyCellAnalyst.Volume attribute)


  





T


  	
      	threshold2D() (pyCellAnalyst.Volume method)


  

  	
      	thresholds (pyCellAnalyst.Volume attribute)


      	thresholdSegmentation() (pyCellAnalyst.Volume method)


  





V


  	
      	Volume (class in pyCellAnalyst)


  

  	
      	volumes (pyCellAnalyst.Volume attribute)


      	vstrains (pyCellAnalyst.CellMech attribute)


  





W


  	
      	writeLabels() (pyCellAnalyst.Volume method)


  

  	
      	writeSurfaces() (pyCellAnalyst.Volume method)


  







          

      

      

    

  _images/tab1_annotated.png
Welcome to the pyCellfnalyst segmentation GUI.
1/0 | Fitering | Segmentation | Kinematics \J

Fb Save Settings. Load Settings. Load Region of Interest File

Image directories to process

@)=

age Settings /.
Mpxing y-spacing zspacing Upsampling Factor

.41 .41 03 20 Objects are Dark
Other Options:
¥ Display Objects Remove Bright Spots Edge Enhancement
.) Consider Slices Independent Perform Morphogical Opening. Fill Holes
¥ Handle Overiap Debug Mode Equalize Intensity Over Depth






_images/tab2_annotated.png
Smoothing/Denoising

Curvature-based
./P Anisotropic Diffusion
Gradient-based
Anisotropic Diffusion
Bilateral
Patch-based Denoising

Description

Apply an iterative curvature-based
anisotropic diffusion filter. Higher
conductance will result in more change
per iteration. More iterations will
result in a smoother image. This filter
should preserve edges. It is better at
retaining fine features than
gradient-based anisotropic diffusion,
and also better when the edge contrast
is low.

Reference

Smoothing/Denoising Settings:
Conductance

9.0

Iterations.

10






_images/pyCellAnalyst.png





_images/segmentation.png





_images/math/062c340ecfcf9aaee509ad6c1cae8f165991c61c.png
|w||* —||[W]* = W.EW





_images/math/1c92df80c9117ba2abc4685f88c1fa0f95bb31b6.png





_images/tab3_annotated.png
[“Threshold segmentation Description [Threshold Settings
Percentage Calculates the threshold such that ¥ Iterative Threshold Adjustment

entropy is maxiized between the e Sy
foreground and background. This has | Noaddiond settings neeced. |

./' Maximum Entropy shown good performance even when
u lobjects are in close proxinity.
Huang
IsoData (Ridler-Calvard)
Kittlerllingworth
Moments

Yen

RenyiEntropy
‘Shanbhag

-Active contour segmentation - -Description——————————————— -Active Contour Settings——
only a threshold-based segnentation No additional settings needed..
will be performed. -






_images/tab4_annotated.png
lcone to the puCellfnalyst segmentation GUI
10| Fitering | Segmentation | Kinematics.

Directory containing reference configuration data

@

irectories containing deformed configuration data

./’-
./’-

Kinematics Analysis Options-
¥ lign with a rigid rotation initially

./' Perform Deformable Image Registration

Save for Finite Element Analysis

¥ Display Registration Results

¥ Generate Plots






_images/math/34dfc16ca380badc83a8ca49e51b8279b2f63c54.png





_images/math/37904f24108d728909711fdc0318e19564f22764.png
0.4 X intensitymar





_images/cells_deform.gif





_images/math/51e6b9c36c3486b3a5efe77c64969613b20e7d55.png
Jna





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to pyCellAnalyst’s documentation!
        


        		
          Installation
          
            		
              Anaconda
            


            		
              Installing from Anaconda Cloud
            


            		
              Optional
            


            		
              Troubleshooting
            


          


        


        		
          Introduction
          
            		
              Object Segmentation
            


            		
              Deformation Analysis
            


          


        


        		
          Segmentation and Analysis Graphical User Interface
          
            		
              I/O Tab - Input and Output, Segmentation Execution, Extra Options
            


            		
              Filtering Tab - Image Smoothing and Denoising Methods
            


            		
              Segmentation Tab - Object Segmentation and Display
            


            		
              Kinematics Tab - Deformation Analysis Methods
            


          


        


        		
          Finite Element Analysis Graphical User Interface
          
            		
              Pre-requisites
            


            		
              Peforming an Analysis
              
                		
                  Running for the First Time
                


                		
                  Importing Model Definition Pickles
                


                		
                  Setting Outputs
                


                		
                  Setting Analysis Options
                


                		
                  Assigning Material Properties
                


              


            


          


        


        		
          Module Classes
        


        		
          License
        


      


    
  

_images/math/7873b37f27f20a356dba02fa1911e397a94bc764.png
S





_images/math/a5d4acd46eac5a9653d37ccf95f57497a20322c5.png





_images/math/5df8d5a13b4450539445d7b485091c7168a9c2c7.png





_images/math/63a0ed9351a11bdebc5fc6e5d6514e014a4b2380.png





_images/math/b3cd7f5d85b385867a69a28467acf1814158ced8.png





_images/math/b53d46f2e8419868efc4a0091fc82bee43f97b6d.png





_images/math/ad228061c5900caf2de416a6f8dbd1371b231e58.png
i, 7.





_images/math/b26025c14d1a3b0993815711294b9fe297844240.png





_images/math/ca91977bed6ab8abdd8a746b43d45990814104c3.png





_images/math/d11be48c811099625e2f1c699ba3d42f2e72d4f9.png





_images/math/e9203da50e1059455123460d4e716c9c7f440cc3.png





_static/comment-bright.png





_images/math/fb74441eab4e95b4b3c5776c8d8be42fea900a0b.png
gRth





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/plus.png





