

Welcome to pyCardDeck’s documentation!

We hope you’ll find everything you’ll ever need in here. If youn don’t, why not submit a pull request :)

	API
	pyCardDeck

	Types

	Classes and Functions

	Examples
	Blackjack

	Hearthstone Arena

	Poker example

	Exploding Kittens

Indices and tables

	Index

	Module Index

API

pyCardDeck

Deck of cards with all the logic, so you don’t have to!

	copyright

	
	2016 David Jetelina

	license

	MIT

Types

pyCardDeck isn’t strict about types. It’s however nice to use Python 3’s type annotations.
That’s why we have custom types set up when needed

CardType

Can be either instance of an object, string or an integer. Basically, it’s important
that they aren’t bool or NoneType. It’s however recommended to inherit from
one of the classes in Cards

Classes and Functions

Deck

	
class pyCardDeck.deck.Deck(cards: Optional[List[object]] = None, reshuffle: object = True, name: str = None, discard: Optional[Deck] = None)

	Deck you will be using. Make sure to create the instance somewhere reachable :)

	Parameters

	
	cards (List[CardType]) –
Use this parameter if you don’t plan to register your cards another way

Cards can be either an instance of a object, string or an integer,

the documentation will be calling this CardType (because of Python’s rank hinting)

	reshuffle (bool) – Set reshuffle to false if you want your deck not to reshuffle after it’s depleted

	name (string) – Name of the deck, used when converting the Deck instance into string

	discard (Union[Deck, None]) – optional Deck object to use as discard pile

Attributes

	
Deck.name

	
	Returns

	The name of the deck

	Return type

	str

	
Deck.reshuffle

	
	Returns

	Whether the deck will be reshuffled when drawn out

	Return type

	bool

	
Deck._cards

	
	Returns

	Cards in the deck

	Return type

	list

	
Deck._discard_pile

	
Note

Cards are not put in the discard pile automatically after drawing,
the code assumes they went into a hand of sorts and must be discarded
with discard() from there. This means that reshuffle doesn’t
work on one card deck as you can’t reshuffle an empty deck
(errors.NoCards would be raised).

	Returns

	Cards in the discard pile

	Return type

	list

	
Deck.empty

	
	Returns

	Whether the deck is empty

	Return type

	bool

	
Deck.cards_left

	Cards left in the deck

	Returns

	Number of cards in the deck

	Return type

	int

	
Deck.discarded

	Cards in the discard pile

	Returns

	Number of cards in the discard pile

	Return type

	int

	
Deck.json

	Alternative to Deck.export(“json”)

	Returns

	jsonpickled Deck

	Return type

	str

	
Deck.yaml

	Alternative to Deck.export(“yaml”)

	Returns

	yaml dump of the Deck

	Return type

	str

Card drawing

	
Deck.draw() → object

	Draw the topmost card from the deck

	Returns

	Card from the list

	Return type

	CardType

	Raises

	
	OutOfCards – when there are no cards in the deck

	NoCards – when the deck runs out of cards (no reshuffle)

	
Deck.draw_bottom() → object

	Draw the bottommost card from the deck

	Returns

	Card from the list

	Return type

	CardType

	Raises

	
	OutOfCards – when there are no cards in the deck

	NoCards – when the deck runs out of cards (no reshuffle)

	
Deck.draw_random() → object

	Draw a random card from the deck

	Returns

	Card from the list

	Return type

	CardType

	Raises

	
	OutOfCards – when there are no cards in the deck

	NoCards – when the deck runs out of cards (no reshuffle)

	
Deck.draw_specific(specific_card: object) → object

	Draw a specific card from the deck

Note

For card instances to match, they should have __eq__ method
set to compare their equality. If you don’t want to set those up,
make sure their __dict__ are the same and their name is the same.

If you are using a string or an integer, don’t worry about this!

	Parameters

	specific_card (CardType) – Card identical to the one you are looking for

	Returns

	Card from the list

	Return type

	CardType

	Raises

	
	OutOfCards – when there are no cards in the deck

	NoCards – when the deck runs out of cards (no reshuffle)

	CardNotFound – when the card is not found in the deck

Card information

	
Deck.card_exists(card: object) → bool

	Checks if a card exists in the deck

Note

For card instances to match, they should have __eq__ method
set to compare their equality. If you don’t want to set those up,
make sure their __dict__ are the same and their name is the same.

If you are using a string or an integer, don’t worry about this!

	Parameters

	card (CardType) – Card identical to the one you are looking for

	Returns

	
True if exists

False if doesn’t exist

	Return type

	bool

Deck Manipulation

	
Deck.shuffle() → None

	Randomizes the order of cards in the deck

	Raises

	NoCards – when there are no cards to be shuffled

	
Deck.shuffle_back() → None

	Shuffles the discard pile back into the main pile

	
Deck.discard(card: object) → None

	Puts a card into the discard pile

	Parameters

	card (CardType) – Card to be discarded

	Raises

	NotACard – When you try to insert False/None into a discard pile

	
Deck.add_single(card: object, position: int = False) → None

	Shuffles (or inserts) a single card into the active deck

	Parameters

	
	card (CardType) – Card you want to insert

	position (int) –
If you want to let player insert card to a specific location, use position

where 0 = top of the deck, 1 = second card from top etc.

By default the position is random

	
Deck.add_many(cards: List[object]) → None

	Shuffles a list of cards into the deck

	Parameters

	cards (List[CardType]) – Cards you want to shuffle in

	
Deck.show_top(number: int) → List[object]

	Selects the top X cards from the deck without drawing them

Useful for mechanics like scry in Magic The Gathering

If there are less cards left than you want to show, it will show
only the remaining cards

	Parameters

	number (int) – How many cards you want to show

	Returns

	Cards you want to show

	Return type

	List[CardType]

Import/Export

	
Deck.export(fmt: str, to_file: bool = False, location: str = None) → str

	Export the deck. By default it returns string with either JSON or YaML,
but if you set to_file=True, you can instead save the deck as a file.
If no location (with filename) is provided, it’ll save to the folder the script
is opened from as exported_deck without an extension.

	Parameters

	
	fmt (str) – Desired format, either YaML or JSON

	to_file (bool) – Whether you want to get a string back or save to a file

	location (str) – Where you want to save your file - include file name!

	Raises

	UnknownFormat – When entered format is not supported

	Returns

	Your exported deck as a string in your desired format

	Return type

	str

	
Deck.load(to_load: str, is_file: bool = False) → None

	Way to override a deck instance with a saved deck from either yaml, JSON
or a file with either of those.

The library will first try to check if you have a save location saved, then verifies
if the file exists as a path to a file. If it doesn’t, it’l assume it’s a string with one of
the supported formats and will load from those.

	Parameters

	
	to_load (str) –
This should be either a path to a file or a string containing

json/yaml generated by Deck.export(). It’s not safe to trust your users

with this, as they can provide harmful pickled JSON (see jsonpickle docs for more)

	is_file (bool) – whether to_load is a file path or actual data. Default is False

	Raises

	UnknownFormat – When the entered yaml or json is not valid

	
Deck.load_standard_deck() → None

	Loads a standard deck of 52 cards into the deck

Magic Methods

	
Deck.__repr__() → str

	Used for representation of the object

called with repr(Deck)

	Returns

	‘Deck of cards’

	Return type

	string

	
Deck.__str__() → str

	Used for representation of the object for humans

called with str(Deck)

This method is also called when you are providing arguments to str.format(), you can just provide
your Deck instance and it will magically know the name, yay!

	Returns

	Name of the deck if it has a name or ‘Deck of cards’ if it has none

	Return type

	string

	
Deck.__len__() → int

	Instead of doing len(Deck.cards) you can just check len(Deck)

It’s however recommended to use the cards_left attribute

	Returns

	Number of cards left in the deck

	Return type

	int

Other Functions

	
pyCardDeck.deck._card_compare(card: object, second_card: object) → bool

	Function for comparing two cards. First it checks their __eq__,
if that returns False, it checks __dict__ and name of the Class
that spawned them .

	Parameters

	
	card (CardType) – First card to match

	second_card (CardType) – Second card to match

	Returns

	Whether they are the same

	Return type

	bool

	
pyCardDeck.deck._get_exported_string(format_stripped: str, deck: pyCardDeck.deck.Deck) → str

	Helper function to Deck.export()

	Parameters

	
	format_stripped (str) – Desired format stripped of any spaces and lowercase

	deck (Deck) – instance of a Deck

	Returns

	YAML/JSON string of the deck

	Return type

	str

	Raises

	UnknownFormat – when it doesn’t recognize format_stripped

Cards

These classes are only recommended to inherit from, feel free to use your own!

	
class pyCardDeck.cards.BaseCard(name: str)

	This is an example Card, showing that each Card should have a name.

This is good, because when we can show player their cards just by converting
them to strings.

	
class pyCardDeck.cards.PokerCard(suit: str, rank: str, name: str)

	Example Poker Card, since Poker is a a deck of Unique cards,
we can say that if their name equals, they equal too.

Exceptions

	
exception pyCardDeck.errors.DeckException

	Base exception class for pyCardDeck

	
exception pyCardDeck.errors.NoCards

	Exception that’s thrown when there are no cards to be manipulated.

	
exception pyCardDeck.errors.OutOfCards

	Exception that’s thrown when the deck runs out of cards.
Unlike NoCardsException, this will happen naturally when reshuffling is disabled

	
exception pyCardDeck.errors.NotACard

	Exception that’s thrown when the manipulated object is False/None

	
exception pyCardDeck.errors.CardNotFound

	Exception that’s thrown when a card is not found

	
exception pyCardDeck.errors.UnknownFormat

	Exception thrown when trying to export to a unknown format.
Supported formats: YaML, JSON

Examples

If you don’t want to read through the whole documentation, you can just have a look
at the examples we wrote to help you understand how to use pyCardDeck, enjoy!

	Blackjack
	The main blackjack game sequence

	Sum of cards in hand.

	Hearthstone Arena

	Poker example

	Exploding Kittens

Blackjack

Blackjack game made using pyCardDeck. This is an example of pyCardDeck; it’s not
meant to be complete blackjack game, but rather a showcase of pyCardDeck’s usage.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import sys
import pyCardDeck
from typing import List
from pyCardDeck.cards import PokerCard

class Player:

 def __init__(self, name: str):
 self.hand = []
 self.name = name

 def __str__(self):
 return self.name

class BlackjackGame:

 def __init__(self, players: List[Player]):
 self.deck = pyCardDeck.Deck()
 self.deck.load_standard_deck()
 self.players = players
 self.scores = {}
 print("Created a game with {} players.".format(len(self.players)))

The main blackjack game sequence

Each player takes an entire turn before moving on. If each player gets a turn
and no one has won, the player or players with the highest score below 21 are
declared the winner.

def blackjack(self):

 print("Setting up...")
 print("Shuffling...")
 self.deck.shuffle()
 print("All shuffled!")
 print("Dealing...")
 self.deal()
 print("\nLet's play!")
 for player in self.players:
 print("{}'s turn...".format(player.name))
 self.play(player)
 else:
 print("That's the last turn. Determining the winner...")
 self.find_winner()

Dealing.

Deals two cards to each player.

def deal(self):
 for _ in range(2):
 for p in self.players:
 newcard = self.deck.draw()
 p.hand.append(newcard)
 print("Dealt {} the {}.".format(p.name, str(newcard)))

Determining the winner.

Finds the highest score, then finds which player(s) have that score,
and reports them as the winner.

def find_winner(self):

 winners = []
 try:
 win_score = max(self.scores.values())
 for key in self.scores.keys():
 if self.scores[key] == win_score:
 winners.append(key)
 else:
 pass
 winstring = " & ".join(winners)
 print("And the winner is...{}!".format(winstring))
 except ValueError:
 print("Whoops! Everybody lost!")

Hit.

Adds a card to the player’s hand and states which card was drawn.

def hit(self, player):

 newcard = self.deck.draw()
 player.hand.append(newcard)
 print(" Drew the {}.".format(str(newcard)))

An individual player’s turn.

If the player’s cards are an ace and a ten or court card,
the player has a blackjack and wins.

If a player’s cards total more than 21, the player loses.

Otherwise, it takes the sum of their cards and determines whether
to hit or stand based on their current score.

def play(self, player):

 while True:
 points = sum_hand(player.hand)
 if points < 17:
 print(" Hit.")
 self.hit(player)
 elif points == 21:
 print(" {} wins!".format(player.name))
 sys.exit(0) # End if someone wins
 elif points > 21:
 print(" Bust!")
 break
 else: # Stand if between 17 and 20 (inclusive)
 print(" Standing at {} points.".format(str(points)))
 self.scores[player.name] = points
 break

Sum of cards in hand.

Converts ranks of cards into point values for scoring purposes.
‘K’, ‘Q’, and ‘J’ are converted to 10. ‘A’ is converted to 1 (for simplicity),
but if the first hand is an ace and a 10-valued card, the player wins with a blackjack.

def sum_hand(hand: list):

 vals = [card.rank for card in hand]
 intvals = []
 while len(vals) > 0:
 value = vals.pop()
 try:
 intvals.append(int(value))
 except ValueError:
 if value in ['K', 'Q', 'J']:
 intvals.append(10)
 elif value == 'A':
 intvals.append(1) # Keep it simple for the sake of example
 if intvals == [1, 10] or intvals == [10, 1]:
 print(" Blackjack!")
 return(21)
 else:
 points = sum(intvals)
 print(" Current score: {}".format(str(points)))
 return(points)

if __name__ == "__main__":
 game = BlackjackGame([Player("Kit"), Player("Anya"), Player("Iris"),
 Player("Simon")])
 game.blackjack()

Hearthstone Arena

This shows how simple something like drafting can be with pyCardDeck. Although not much more complicated
with just a list :D

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
This is an example of pyCardDeck, it's not meant to be complete poker script,
but rather a showcase of pyCardDeck's usage.
"""

import pyCardDeck
import random
import requests

arena_deck = pyCardDeck.Deck(reshuffle=False, name="Awesome arena deck!")
rarity = {"Common": 100, "Rare": 50, "Epic": 15, "Legendary": 1}

def card_choice() -> list:
 """
 Picks a rarity, then lets you make a choice

 :return: List with the card information
 """
 pick_rarity = random.choice([k for k in rarity for _ in range(rarity[k])])
 # This api doesn't provide an easy way to get class and rarity filter at the same time
 # and I'm too lazy to look for another, reminder: this is an example
 cards = requests.get("https://omgvamp-hearthstone-v1.p.mashape.com/cards/qualities/{}".format(pick_rarity),
 headers={"X-Mashape-Key": "GkQg9DFiZWmshWn6oYqlfXXlXeK9p1QuB6QjsngIi1sHnJiJqv"}).json()
 first, second, third = [random.choice(cards)] * 3
 while second == first:
 second = random.choice(cards)
 while third == first or third == second:
 third = random.choice(cards)
 choice = input("Which one would you like?\n 1: {0}, 2: {1}, 3: {2}\n".format(
 first['name'], second['name'], third['name']))
 while choice not in ["1", "2", "3"]:
 if choice == "1":
 return first
 elif choice == "2":
 return second
 elif choice == "3":
 return third

def draft():
 """
 Simple draft logic
 """
 for _ in range(30):
 arena_deck.add_single(card_choice())
 print(arena_deck)

if __name__ == '__main__':
 draft()

Poker example

This is a poker example of pyCardDeck, it’s not meant to be complete poker script,
but rather a showcase of pyCardDeck’s usage.

import pyCardDeck
from typing import List
from pyCardDeck.cards import PokerCard

For python 3.3 and 3.4 compatibility and type hints, we import typing.List - this is not needed, however
the package itself and PokerCard are recommended here

class Player:

 def __init__(self, name: str):
 self.hand = []
 self.name = name

 def __str__(self):
 return self.name

class PokerTable:

 def __init__(self, players: List[Player]):
 self.deck = pyCardDeck.Deck(
 cards=generate_deck(),
 name='Poker deck',
 reshuffle=False)
 self.players = players
 self.table_cards = []
 print("Created a table with {} players".format(len(self.players)))

We define our Player class, to have a hand and a name, and our PokerTable which will hold all the information
and will have following methods:

def texas_holdem(self):
 """
 Basic Texas Hold'em game structure
 """
 print("Starting a round of Texas Hold'em")
 self.deck.shuffle()
 self.deal_cards(2)
 # Imagine pre-flop logic for betting here
 self.flop()
 # Imagine post-flop, pre-turn logic for betting here
 self.river_or_flop()
 # Imagine post-turn, pre-river logic for betting here
 self.river_or_flop()
 # Imagine some more betting and winner decision here
 self.cleanup()

This is the core “loop” of Texas Hold’em

def deal_cards(self, number: int):
 for _ in range(0, number):
 for player in self.players:
 card = self.deck.draw()
 player.hand.append(card)
 print("Dealt {} to player {}".format(card, player))

Dealer will go through all available players and deal them x number of cards.

def flop(self):
 # Burn a card
 burned = self.deck.draw()
 self.deck.discard(burned)
 print("Burned a card: {}".format(burned))
 for _ in range(0, 3):
 card = self.deck.draw()
 self.table_cards.append(card)
 print("New card on the table: {}".format(card))

Burns a card and then shows 3 new cards on the table

def river_or_flop(self):
 burned = self.deck.draw()
 self.deck.discard(burned)
 print("Burned a card: {}".format(burned))
 card = self.deck.draw()
 self.table_cards.append(card)
 print("New card on the table: {}".format(card))

Burns a card and then shows 1 new card on the table

def cleanup(self):
 for player in self.players:
 for card in player.hand:
 self.deck.discard(card)
 for card in self.table_cards:
 self.deck.discard(card)
 self.deck.shuffle_back()
 print("Cleanup done")

Cleans up the table to gather all the cards back

def generate_deck() -> List[PokerCard]:
 suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades']
 ranks = {'A': 'Ace',
 '2': 'Two',
 '3': 'Three',
 '4': 'Four',
 '5': 'Five',
 '6': 'Six',
 '7': 'Seven',
 '8': 'Eight',
 '9': 'Nine',
 '10': 'Ten',
 'J': 'Jack',
 'Q': 'Queen',
 'K': 'King'}
 cards = []
 for suit in suits:
 for rank, name in ranks.items():
 cards.append(PokerCard(suit, rank, name))
 print('Generated deck of cards for the table')
 return cards\

Function that generates the deck, instead of writing down 50 cards, we use iteration to generate the cards for use

if __name__ == '__main__':
 table = PokerTable([Player("Jack"), Player("John"), Player("Peter")])
 table.texas_holdem()

And finally this is how we start the “game”

Exploding Kittens

Here’s a bit more advanced game using pyCardDeck. This code itself is not the full game, but should showcase how
the library is meant to be used. If you find anything in here impractical or not clean, easy and nice, please
file an issue!

import pyCardDeck
from pyCardDeck.cards import BaseCard
from random import randrange

class Player:

 def __init__(self):
 self.hand = []

 def turn(self):
 pass

 def skip(self):
 pass

 def take_turn_twice(self):
 self.turn()
 self.turn()

 def nope_prompt(self) -> bool:
 for card in self.hand:
 if card.name == "Nope":
 if input("Do you want to use your Nope card?").lower().startswith("y"):
 return True
 else:
 return False
 return False

 def insert_explode(self) -> int:
 position = int(input("At which position from top do you want to insert Exploding Kitten back into the deck?"))
 return position

class KittenCard(BaseCard):

 def __init__(self, name: str, targetable: bool = False, selfcast: bool = False):
 super().__init__(name)
 self.selfcast = selfcast
 self.targetable = targetable

 def effect(self, player: Player, target: Player):
 pass

class ExplodeCard(KittenCard):

 def __init__(self, name: str = "Exploding Kitten"):
 super().__init__(name)

class DefuseCard(KittenCard):

 def __init__(self, deck: pyCardDeck.deck, name: str = "Defuse"):
 super().__init__(name, selfcast=True)
 self.deck = deck

 def effect(self, player: Player, target: Player):
 position = player.insert_explode()
 self.deck.add_single(ExplodeCard(), position=position)

class TacocatCard(KittenCard):

 def __init__(self, name: str = "Tacocat"):
 super().__init__(name)

class OverweightCard(KittenCard):

 def __init__(self, name: str = "Overweight Bikini Cat"):
 super().__init__(name)

class ShuffleCard(KittenCard):

 def __init__(self, deck: pyCardDeck.Deck, name: str = "Shuffle"):
 super().__init__(name)
 self.deck = deck

 def effect(self, player: Player, target: Player):
 self.deck.shuffle()

class AttackCard(KittenCard):

 def __init__(self, name: str = "Attack"):
 super().__init__(name, selfcast=True, targetable=True)

 def effect(self, player: Player, target: Player):
 player.skip()
 target.take_turn_twice()

class SeeTheFuture(KittenCard):

 def __init__(self, deck: pyCardDeck.Deck, name: str = "See The Future"):
 super().__init__(name)
 self.deck = deck

 def effect(self, player: Player, target: Player):
 self.deck.show_top(3)

class NopeCard(KittenCard):

 def __init__(self, name: str = "Nope"):
 super().__init__(name)

class SkipCard(KittenCard):

 def __init__(self, name: str = "Skip"):
 super().__init__(name, selfcast=True)

 def effect(self, player: Player, target: Player):
 player.skip()

class FavorCard(KittenCard):

 def __init__(self, name: str = "Favor"):
 super().__init__(name, targetable=True, selfcast=True)

 def effect(self, player: Player, target: Player):
 random_target_card = target.hand.pop(randrange(target.hand))
 player.hand.append(random_target_card)

class Game:

 def __init__(self, players: list):
 self.deck = pyCardDeck.Deck()
 self.players = players
 self.prepare_cards()
 self.deal_to_players()
 self.add_defuses()
 self.add_explodes()
 while len(self.players) > 1:
 self.play()

 def play(self):
 pass

 def turn(self):
 pass

 def prepare_cards(self):
 print("Preparing deck from which to deal to players")
 self.deck.add_many(construct_deck(self))

 def deal_to_players(self):
 print("Dealing cards to players")
 for _ in range(4):
 for player in self.players:
 player.hand.append(self.deck.draw())

 def ask_for_nope(self):
 noped = False
 for player in self.players:
 noped = player.nope_prompt()
 return noped

 def add_explodes(self):
 print("Adding explodes to the deck")
 self.deck.add_many([ExplodeCard() for _ in range(len(self.players) - 1)])

 def add_defuses(self):
 print("Adding defuses to the deck")
 self.deck.add_many([DefuseCard(self.deck) for _ in range(6 - len(self.players))])

 def play_card(self, card: KittenCard, player: Player = None, target: Player = None):
 if card.selfcast and player is None:
 raise Exception("You must pass a player who owns the card!")
 elif card.targetable and target is None:
 raise Exception("You must pass a target!")
 elif not self.ask_for_nope():
 card.effect(player, target)
 else:
 print("Card was noped :(")

def construct_deck(game: Game):
 card_list = [
 TacocatCard(),
 TacocatCard(),
 TacocatCard(),
 TacocatCard(),
 OverweightCard(),
 OverweightCard(),
 OverweightCard(),
 OverweightCard(),
 ShuffleCard(game.deck),
 ShuffleCard(game.deck),
 ShuffleCard(game.deck),
 ShuffleCard(game.deck),
 AttackCard(),
 AttackCard(),
 AttackCard(),
 AttackCard(),
 SeeTheFuture(game.deck),
 SeeTheFuture(game.deck),
 SeeTheFuture(game.deck),
 SeeTheFuture(game.deck),
 SeeTheFuture(game.deck),
 NopeCard(),
 NopeCard(),
 NopeCard(),
 NopeCard(),
 NopeCard(),
 SkipCard(),
 SkipCard(),
 SkipCard(),
 SkipCard(),
 FavorCard(),
 FavorCard(),
 FavorCard(),
 FavorCard(),
]
 return card_list

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyCardDeck	

 	
 	
 pyCardDeck.errors	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | J
 | L
 | N
 | O
 | P
 | R
 | S
 | U
 | Y

_

 	
 	__len__() (pyCardDeck.deck.Deck method)

 	__repr__() (pyCardDeck.deck.Deck method)

 	__str__() (pyCardDeck.deck.Deck method)

 	
 	_card_compare() (in module pyCardDeck.deck)

 	_cards (pyCardDeck.Deck attribute)

 	_discard_pile (pyCardDeck.Deck attribute)

 	_get_exported_string() (in module pyCardDeck.deck)

A

 	
 	add_many() (pyCardDeck.deck.Deck method)

 	
 	add_single() (pyCardDeck.deck.Deck method)

B

 	
 	BaseCard (class in pyCardDeck.cards)

C

 	
 	card_exists() (pyCardDeck.deck.Deck method)

 	
 	CardNotFound

 	cards_left (pyCardDeck.deck.Deck attribute)

D

 	
 	Deck (class in pyCardDeck.deck)

 	DeckException

 	discard() (pyCardDeck.deck.Deck method)

 	discarded (pyCardDeck.deck.Deck attribute)

 	
 	draw() (pyCardDeck.deck.Deck method)

 	draw_bottom() (pyCardDeck.deck.Deck method)

 	draw_random() (pyCardDeck.deck.Deck method)

 	draw_specific() (pyCardDeck.deck.Deck method)

E

 	
 	empty (pyCardDeck.deck.Deck attribute)

 	
 	export() (pyCardDeck.deck.Deck method)

J

 	
 	json (pyCardDeck.deck.Deck attribute)

L

 	
 	load() (pyCardDeck.deck.Deck method)

 	
 	load_standard_deck() (pyCardDeck.deck.Deck method)

N

 	
 	name (pyCardDeck.Deck attribute)

 	
 	NoCards

 	NotACard

O

 	
 	OutOfCards

P

 	
 	PokerCard (class in pyCardDeck.cards)

 	
 	pyCardDeck (module)

 	pyCardDeck.errors (module)

R

 	
 	reshuffle (pyCardDeck.Deck attribute)

S

 	
 	show_top() (pyCardDeck.deck.Deck method)

 	
 	shuffle() (pyCardDeck.deck.Deck method)

 	shuffle_back() (pyCardDeck.deck.Deck method)

U

 	
 	UnknownFormat

Y

 	
 	yaml (pyCardDeck.deck.Deck attribute)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyCardDeck’s documentation!

 		
 API

 		
 pyCardDeck

 		
 Types

 		
 CardType

 		
 Classes and Functions

 		
 Deck

 		
 Cards

 		
 Exceptions

 		
 Examples

 		
 Blackjack

 		
 The main blackjack game sequence

 		
 Sum of cards in hand.

 		
 Hearthstone Arena

 		
 Poker example

 		
 Exploding Kittens

_static/ajax-loader.gif

