PyBSD
Release 0.0.2

November 20, 2015

Contents

Overview

1.1 PyBSD
Installation

Usage

Reference

41 Systems.
42 Commands
43 Network
44 Handlers
45 Executors
46 Utls
477 Exceptions
Contributing

5.1 Bugreports
5.2 Documentation improvements .
5.3 Feature requests and feedback .
5.4 Development
Authors

Changelog

7.1 0.0.2(2015-08-06)
7.2 0.0.1 (2015-08-04)
Roadmap

8.1 0.0.3 (expected wk1 of 2015-09)
8.2 0.0.4 (expected wk2 of 2015-09)
8.3 0.0.5 (expected wk3 of 2015-09)
8.4 0.0.6 (expected end of 2015-09)
8.5 0.0.7 (expected wk1 of 2015-10)
8.6 0.0.8 (expected wk2 of 2015-10)
8.7 0.0.9 (expected wk3 of 2015-10)

Indices and tables

11
11
17
18
19
21
21
22

27
27
27
27
27

29

31
31
31

33
33
33
33
33
34
34
34

35

Python Module Index

37

PyBSD, Release 0.0.2

Contents:

Contents 1

PyBSD, Release 0.0.2

2 Contents

CHAPTER 1

Overview

1.1

a Python tool to provision, keep in sync and manage FreeBSD boxes and jails

PyBSD

Free software: BSD license

PyPi: https://pypi.python.org/pypi/pybsd
Github: https://github.com/rebost/pybsd
Read the Docs: http://pybsd.readthedocs.org/

Tested on Python 2.7, Python 3.4 and PyPy

docs

tests

package

Provisioning, keeping in sync and maintaining even a medium-sized pool of FreeBSD boxes and jails can quickly
become a time-consuming and complex task. Tools like Ansible , Fabric and ezjail provide welcome help in one
aspect or another and it makes sense to integrate them into a Python-based interface that allows centralized, push-
oriented and automated interaction.

A project like bsdploy already leverages these tools to great effect albeit in a very inflexible way that cannot easily
be applied to an existing deployment. PyBSD-Project aims at providing a fully customizable Python tool that can be
used to maintain an existing array of servers as well as set one up and at making available as well as safely, easily and
quickly deployable a wide array of pre-configured, clonable and configurable jails to implement, in a DevOps spirit,
tools such as:

nginx

Django

Flask

JSON Web Tokens

NodelS /i0.js

Grunt , Bower and Gulp
PostgreSQL

MySQL / MariaDB / Percona

https://pypi.python.org/pypi/pybsd
https://github.com/rebost/pybsd
http://pybsd.readthedocs.org/
https://docs.python.org/2/
https://docs.python.org/3/
http://pypy.org/
https://www.freebsd.org/
http://www.ansible.com/home
http://www.fabfile.org/
http://erdgeist.org/arts/software/ezjail/
https://www.python.org/
https://github.com/ployground/bsdploy
http://nginx.org/
https://www.djangoproject.com/
http://flask.pocoo.org/
https://en.wikipedia.org/wiki/JSON_Web_Token
https://nodejs.org/
https://iojs.org/
http://gruntjs.com/
http://bower.io
http://gulpjs.com
http://www.postgresql.org/
http://www.mysql.com/
https://mariadb.org/
https://www.percona.com/

PyBSD, Release 0.0.2

* Redis

e mongoDB

* Memcached

* Solr

* Elasticsearch

* Varnish

* HaProxy

* Jenkins

e Sentry

* statsd + collectd + Graphite
* logstash

e InfluxDB

* Grafana

* Pypi

* Gitolite

¢ RabbitMQ

* poudriere

e Let’s Encrypt

* Postfix + Dovecot + amavis + SpamAssassin

Somewhere down the line interfacing with tsuru or an equivalent is a goal. On the other hand, once the above shopping
list is completed, Docker on FreeBSD will probably be a reality 8P.

1.1.1 Installation

\pip install pybsd

1.1.2 Quick start

from pybsd import Master
box01 = Master (name='box01', ext_if=('re0', ['8.8.8.8/24"']1))
box0l.ezjail_admin.list ()

1.1.3 Documentation

https://pybsd.readthedocs.org/

4 Chapter 1. Overview

http://redis.io
https://www.mongodb.org/
http://memcached.org/
http://lucene.apache.org/solr/
https://www.elastic.co/products/elasticsearch
https://www.varnish-cache.org/
http://www.haproxy.org/
http://jenkins-ci.org/
https://getsentry.com/welcome/
https://github.com/etsy/statsd
http://collectd.org/
http://graphite.readthedocs.org/en/latest/
https://www.elastic.co/products/logstash
https://influxdb.com
http://grafana.org
https://pypi.python.org/pypi
https://github.com/sitaramc/gitolite/wiki
https://www.rabbitmq.com/
https://github.com/freebsd/poudriere/wiki
https://letsencrypt.org/
http://www.postfix.org/
http://www.dovecot.org/
http://www.ijs.si/software/amavisd/
http://spamassassin.apache.org
https://tsuru.io/
https://www.docker.com/
https://pybsd.readthedocs.org/

PyBSD, Release 0.0.2

1.1.4 Development

To run the all tests run:

’tox -e 2.7,3.4,pypy

1.1. PyBSD 5

PyBSD, Release 0.0.2

6 Chapter 1. Overview

CHAPTER 2

Installation

At the command line:

pip install pybsd

PyBSD, Release 0.0.2

8 Chapter 2. Installation

CHAPTER 3

Usage

To use PyBSD in a project:

import pybsd

PyBSD, Release 0.0.2

10 Chapter 3. Usage

CHAPTER 4

Reference

4.1 Systems

4.1.1 BaseSystem

class pybsd. systems.base .BaseSystem (name, hostname=None)

Bases: object
Describes a base OS instance such as a computer, a virtualized system or a jail

It provides common functionality for a full system, a jail or a virtualized instance. This allows interaction with
both real and modelized instances.

Parameters
* name (str)— aname that identifies the system.
* hostname (Optional[str]) — The system’s hostname.

ExecutorClass
class

the class of the system’s executor. It must be or extend Executor

ExecutorClass
alias of Executor

execute = None
function: a method that proxies binaries invocations

hostname
str: The system’s hostname. If not specified, the system’s name is returned instead.

name
str: aname that identifies the system.

4.1.2 System

class pybsd. systems.base.System (name, ext_if, int_if=None, lo_if=None, hostname=None)

Bases: pybsd. systems.base.BaseSystem
Describes a full OS instance

It provides common functionality for a full system.

11

PyBSD, Release 0.0.2

Interfaces
Each interface is described by:
tuple (interface_name (str), 1ist [ip_interfaces (str)]).

Each ip interface is composed of an ip and an optional prefixlen, such as:

('re0', ['10.0.2.0/24', '10.0.1.0/24', '"1c02:4£8:0f0:14e6::2:0:1/110"', '"1c02:4£f8:0f]0:14e6::1:0:
if the prefixlen is not specified it will default to /32 (IPv4) or /128 (IPv6)
Example
>>> from pybsd import System
>>> box01l = System(name='box01",
hostname='box01.foo.bar',
ext_if=('reO0', ['148.241.178.106/24"', '1c02:4f8:0£f0:14e6::/110",| '"1c02:4£8:0
int_if=('eth0', ['192.168.0.0/24"'", '1c02:4f8:0f0:14e6::0:0:1/110["])
..)
>>> '148.241.178.106" in box0l.ips
True
>>> '148.241.178.101" in box0l.ips
False
>>> box01l.ips
SortedSet (['127.0.0.1", '148.241.178.106"', '192.168.0.0', '1c02:4£f8:0:14e6::"', '"1lc0O2:4£f8:f0:
Parameters

* name (str)— aname that identifies the system.
e ext_if (tuple (str, list [str]))— Interface definition used to initialize self.ext_if

* int_if (Optional[tuple (str, 1ist [str])]) — Interface definition used to initialize
self.int_if

* lo_if (Optional[tuple (str, 1ist [str])]) — Interface definition used to initialize
self.lo_if

* hostname (Optional[int]) — The system’s hostname.
Raises DuplicateIPError —if any ip address in the interface definitions is already in use.
ext_if =None
Interface: the system’s outward-facing interface
int_if
Interface: the system’s internal network-facing interface. If not expressly defined, it defaults to
self.ext_if, as in that case the same interface will be used for all networks.

ips
sortedcontainers.SortedSet ([str]): a sorted set containing all ips on this system.

lo_if =None
Interface: the system’s loopback interface. If not expressly defined, it defaults to (‘100’, [127.0.0.1/8’,
:1/110°])

make_if (definition)
Returns an Tnterface based on definition

Parameters definition (tuple (str, list [str])) -

12 Chapter 4. Reference

PyBSD, Release 0.0.2

Returns a valid interface
Return type Interface
Raises DuplicateIPError —raised if one of the ip addresses in definition is already in use

reset_int if ()
Resets the system’s int_if to its default value (its own ext_if)

4.1.3 Master

class pybsd.systems.masters.Master (name, ext_if, int_if=None, lo_if=None, j_if=None,
Jjlo_if=None, hostname=None)
Bases: pybsd. systems.base.System

Describes a system that can host jails
Parameters
* name (str)— aname that identifies the system.

* ext_if (tuple (str, list [str])) — Definition of the system’s outward-facing inter-
face

* int_if (Optional[tuple (str, 1list [str])]) — Definition of the system’s internal
network-facing interface. If it is not specified it defaults to ext_if, as in that case the same
interface will be used for all networks.

* lo_if (Optional][tuple (str, 1list [str])]) — Definition of the system’s loopback
interface. It defaults to (‘100’, [‘127.0.0.1/8’, “::1/110°])

* j_if (Optional[tuple (str, list [str])]) — Definition of the interface the system
provides to hosted jails as their external interface. By default, this will be the system’s own
ext_if.

* jlo_if (Optional[tuple (str, list [str])]) — Definition of the interface the system
provides to hosted jails as their loopback interface. By default, this will be the system’s own
lo_if.

* hostname (Optional[int]) — The system’s hostname.

JailHandlerClass
class

the class of the system’s jail handler. It must be or extend BaseJailHandler

JailHandlerClass
alias of BaseJailHandler

attach_3jail (jail)
Adds a jail to the system’s jails list.

Re-attaching an already-owned jail is transparent.
Parameters jail (Jail) - The jail to be added
Returns the jail that was added. This allows chaining of commands.
Return type Jail
Raises
* AttachNonJailError —if jail is not an instance of Ja il

* JailAlreadyAttachedError —if jail is already attached to another Master

4.1. Systems 13

PyBSD, Release 0.0.2

* DuplicateJdailNameError — if another Jail with the same name is already at-
tached to master

e DuplicateJdailHostnameError — if another Jail with the same hostname is al-
ready attached to master

* DuplicateJdailUidError — if another Jail with the same uid is already attached
to master

clone_jail (jail, name, uid, hostname=None)
Creates and returns the clone of a Jai 1, using provided parameters as the new value of unique properties.

Parameters
* jail (Jail) - The jail to be cloned
* name (str)— aname that identifies the system.
e uid (int) — The jail’s id.
* hostname (Optional[st r]) — The jail’s hostname.
Returns The cloned jail
Return type Jail
Raises see exceptions raised by attach_jail ()

ezjail_admin_binary
Returns the path of this environment’s ezjail-admin binary.

Returns
Return type str

hostnames
set: returns a set containing the hostnames attached to a Master. These will be its own hostname and

that of jails attached to it.

j_if
Interface: the interface the system provides to hosted jails as their external interface. By default, this
will be the system’s own ext_if.

jlo_if
Interface: the interface the system provides to hosted jails as their loopback interface. By default, this
will be the system’s own lo_if.

names
set: returns a set containing the names attached to a Master. These will be its own name and that of

jails attached to it.

reset_j_if ()
Resets the system’s j_if to its default value (its own ext_if)

reset_jlo_if ()
Resets the system’s jlo_if to its default value (its own lo_if)

uids
set: returns a set containing the uids attached to a Master. These will be the uids of jails attached to it.

14 Chapter 4. Reference

PyBSD, Release 0.0.2

4.1.4 Jail

class pybsd.systems. jails.Jail (name, uid, hostname=None, master=None, auto_start=False,
Jjail_class=u’service’)
Bases: pybsd. systems.base.BaseSystem

Describes a jailed system

When attached to an instance of Master a jail can be created, deleted and controlled through said master’s
ezjail-admin interface.

Example
>>> from pybsd import Jail, Master
>>> master0l = Master (name= ,
hostname= ’
ext_if=(;L ’
il'lt_i f=(’ [’
J_if=(;L ’ D
Jlo_if=(, L , 1))
>>> jail0l = Jail (name= ’
uid=12,
hostname= ’
master= '
auto_start= ,
jail_class=)
Parameters

* name (str)— aname that identifies the jail.
* uid (int) — The jail’s id, unique over a user’s or an organization’s domain.

* hostname (Optional[str]) — The jail’s hostname. It not specified the jail’s name is used
instead. #: Optional[Master]:

* master (Optional[Master]) — The jail’s master i.e. host system. By defaulta Jail is
created detached and the value of master is None.

* jail_type (Optional[str]) — The jail’s type, according to its storage solution. If the jail
is not attached it is set to None by default. If attached the default is Z, for ZFS filesystem-
based jail.

Possible types are:

— D — Directory tree based jail.

I — File-based jail.

E — Geli encrypted file-based jail.

B — Bde encrypted file-based jail.

Z —> ZFS filesystem-based jail.

* auto_start (Optional[bool]) — Whether the jail should be started automatically at host
system’s boot time.

* jail_class (Optional[st r]) — Allows differentiating jails by class. This will be worked
out of base jails to depend on the jail handler. The base handler will probably not have the
notion of classes

4.1. Systems 15

PyBSD, Release 0.0.2

Raises
* AttachNonMasterError — if master is specified and is not an instance of Master

* DuplicateJailNameError — if master is specified and the jail’s name is already at-
tached to it

* DuplicateJailHostnameError — if master is specified and the jail’s hostname is
already attached to it

* DuplicateJailUidError —if master is specified and the jail’s uid is already attached
to it

* JailAlreadyAttachedError — if master is specified and the jail is already attached
to another master
auto_start =None
Optional[bool]: Whether the jail should be started automatically at host system’s boot time.

base_hostname
str or NoneType: The system’s hostname.

ext_if
Interface: the jail’s outward-facing interface. It is evaluated dynamically by the master’s jail handler,
so that the same base jail cloned on different host systems can return different values.

handler
bool: Whether the jail is currently attached to a master.

hostname
str or NoneType: The jail’s hostname. If not attached, it. is equal to None

is_attached
bool: Whether the jail is currently attached to a master.

jail_class = None
Optional[st r]: Allows differentiating jails by class.

jail_class_id
int: Returns this jail’s class id.

This is an integer value which is given by its jail_handler according to its class.

jail_type
str or NoneType: The jail’s type, according to its storage solution. If not attached, it. is equal to None

Possible types are:
* D — Directory tree based jail.
* I — File-based jail.
* E — Geli encrypted file-based jail.
* B —> Bde encrypted file-based jail.
* 7 —> ZFS filesystem-based jail.

jid
int: Returns this jail’s jid as per ezjail_admin

The 1 value returned when attached is a stub for now. It must come from parsing master’s ezjail-
admin.list()’s output

16 Chapter 4. Reference

PyBSD, Release 0.0.2

lo_if
Interface: the jail’s loopback interface. It is evaluated dynamically by the master’s jail handler, so that
the same base jail cloned on different host systems can return different values.

master = None
Optional[Master]: The jail’s master i.e. host system. By default a Ja 1 I is created detached.

name
str: a name that identifies the system.

path
unipath.Path: the absolute path of the jail’s filesystem, relative to the host’s filesystem. It is evaluated
dynamically by the master’s jail handler, so that the same base jail cloned on different host systems can
return different values. By default it resolves to a directory called after jail.name, inside the host system’s
jail_path: foo.path = unipath.Path(‘/usr/jails/foo’).

status
str: Returns this jail’s status as per ezjail_admin

Possible status
* D The jail is detached (not attached to any master)
* S The jail is stopped.
* A The image of the jail is mounted, but the jail is not running.
* R The jail is running.
The § value is a stub for now. It must come from parsing master’s ezjail-admin.list()’s output
uid
int: The jail’s uid.

4.2 Commands

4.2.1 BaseCommand
class pybsd.commands . BaseCommand (env)
Bases: object
Provides a base interface to a shell command so it can be invoked through a BaseSystem

Parameters env (BaseSystem)— The system on which the command will be will executed.

name
str

a name that identifies the command.

binary
str

The path of the command binary on the host filesystem.

Raises
e InvalidCommandNameError —raised when a command doesn’t have a name

* InvalidCommandExecutorError — raised when the host system doesn’t have an ex-
ecyutor or it is not callable

4.2. Commands 17

PyBSD, Release 0.0.2

* CommandNotImplementedError —raised when the command’s binary does not exist
in the host filesystem

* CommandConnectionError —raised when connection to a remote host fails
invoke (*args)
Executes the command, passing it arguments.
Parameters args (arguments that are passed to the command at execution time) —
Raises

e CommandNot ImplementedError —raised when the command’s binary does not exist
in the host filesystem

e CommandConnectionError —raised when connection to a remote host fails

4.2.2 EzjailAdmin

class pybsd.commands.EzjailAdmin (env)
Bases: pybsd.commands .base.BaseCommand

Provides an interface to the ezjail-admin command

list_headers
rc: command return code out: command stdout err: command stderr

4.3 Network

class pybsd.network.Interface (name, ips=None)
Bases: object

Describes a network interface

An interface has main ipaddress.IPv4Interface and a main ipaddress.IPv6Interface. Any
other ipaddress.IPvxInterface will be added as an alias. Main addresses as used by the default
BaseJailHandler as the basis to calculate jail interfaces (see derive_interface). Interfaces can be
checked for equality based on their name and list of ips.

Parameters
* name (str) - aname that identifies the interface.

* ips (Optional[str, list ‘[:py:class: ‘str]orset(:py:class: ‘str)])—a
single ip address or a list of ip addresses, represented as strings. Duplicates are silently ig-
nored. The first ip added for each version will become the main ip address for this interface.

__eq__ (other)
Compares interface based on their name, and list of ips

add_ips (ips)
Adds a single ip address or a list of ip addresses, represented as strings, to the interface.

None and duplicates are silently ignored.

Parameters ips (str, list‘[:py:class: ‘str] or set ' (:py:class: ‘str)) — a
single ip address or a list of ip addresses, represented as strings. Duplicates are silently
ignored. The first ip added for each version will become the main ip address for this inter-
face.

18 Chapter 4. Reference

PyBSD, Release 0.0.2

alias_ifsv4
sortedcontainers.SortedSet ([ipaddress.IPv4Interface]): a sorted set containing
this interface’s IPv4 aliases

alias_ifsv6
sortedcontainers.SortedSet ([ipaddress.IPvdInterface]): a sorted set containing
this interface’s IPv6 aliases

ifsv4 = None
sortedcontainers.SortedSet ([ipaddress.IPv4Interface]): asorted set containing all
the IPv4 interfaces on this physical interface.

ifsv6 = None
sortedcontainers.SortedSet ([ipaddress.IPv6Interface]): asorted set containing all
the IPv6 interfaces on this physical interface.

ips
sortedcontainers.SortedSet ([str]): a sorted set containing all ips on this interface.

main_ifv4 = None
ipaddress.IPv4Interface: this interface’s main IPv4 interface

main_ifvé = None
ipaddress.IPvé6Interface: this interface’s main IPv6 interface

name = None
str: a name that identifies the interface.

4.4 Handlers

class pybsd.handlers.BaseJailHandler (master=None, jail_root=None)
Bases: object

Provides a base jail handler

Handlers allow custom parametrization and customization of all logic pertaining to the jails. Each aspect of the
handling is delegated to a method that can be called from the master or the jail.

Parameters
* master (Optional[Master]) — The handler’s master.

* jail root (str) - the path on the host’s filesystem to the jails directory that the handler
will enforce

default_jail_root
str

the default jail_root.

jail_class_ids
dict

a dictionary linking jail class types and the numerical ids that are to be linked to them by this handler.

Raises
e MissingMainIPError — when a master’s interface does not define a main_if
e InvalidMainIPError — when a master’s main_if violates established rules

* MasterJailMismatchError —if a master and a jail called in a method are not related

4.4. Handlers 19

PyBSD, Release 0.0.2

check_mismatch (jail)
Checks whether a given jail belongs to the handler’s master

Parameters jail (Jail) - the jail whose status is checked
Returns whether the jail belongs to the handler’s master
Return type bool

Raises MasterJailMismatchError — if a master and a jail called in a method are not
related

classmethod derive_interface (master_if, jail)
Derives a jail’s Tnterface based on the handler’s master’s

Parameters
* master_if (Jail)-—master’s Interface to which the jail’s is attched
* jail (Interface) —the jail whose Interface is requested
Returns the jail’s Tnterface
Return type Interface
Raises
e MissingMainIPError — when a master’s interface does not define a main_if
e InvalidMainIPError — when a master’s main_if violates established rules

get_jail_ext_Aif (jail)
Returns a given jail’s ext_if

Parameters jail (Jail) - the jail whose ext_if is requested
Returns the jail’s ext_if
Return type Interface

get_jail_ hostname (jail, strict=True)
Returns a given jail’s hostname.

if strict is set to False, it will evaluate what the jail hostname would be if it were attached to the handler’s
master.

Parameters
* jail (Jail) - the jail whose hostname is requested

e strict (Optional[bool]) — whether the handler should only return hostnames for jails
attached to its master. Default is True.

Returns the jail’s path
Return type unipath.Path

get_jail_lo_if (jail)
Returns a given jail’s lo_if

Parameters jail (Jail) - the jail whose lo_if is requested
Returns the jail’s lo_if
Return type Interface

get_jail_path (jail)
Returns a given jail’s path

20 Chapter 4. Reference

PyBSD, Release 0.0.2

Parameters jail (Jail)— the jail whose path is requested
Returns the jail’s path
Return type unipath.Path

get_jail_type (jail)
Returns a given jail’s type.

The default implementation simply honours the master’s default jail type and provides an esaily overridable
method where custom logic can be applied.

Parameters jail (Jail) - the jail whose jail type is requested
Returns the jail’s type. For base values see jail type ()

Return type str

4.5 Executors

class pybsd.executors .Executor (instance=None, prefix_args=(), splitlines=False)
Bases: object

Executes a command Adapted from https://github.com/ployground/ploy

4.6 Utils

pybsd.utils.from_split_if (chunks)
Converts a list-based description of an ipaddress.IPVxInterface'sip and prefixlen such as that returned
by pybsd.utils.split_1if () into a string.

The returned string can be used as the argument to ipaddress.ip_interface ()
Parameters chunks (1ist)—alist of 6 (IPv4) or 10 (IPv6) elements describing an interface
Returns a string-based description of an ipaddress.IPVxInterface’sip and prefixlen
Return type str

pybsd.utils.safe_unicode (string)
Converts a string to unicode

Parameters string (basestring (python 2/3) or st r (python 2/3) or unicode (python 2) or
bytes (python 3)) — the string to be converted

Returns a unicode string
Return type unicode (python 2) or st r (python 3)

pybsd.utils.split_if (interface)
Returns a list-based description of an ipaddress.IPVxInterface’sip and prefixlen

Some significative indexes of the list always describe the same aspect of the interface:
* 0: version
¢ 1: prefixlen
* 2: first octet of the interface’s ip address

e -1: last octet of the interface’s ip address

4.5. Executors 21

https://github.com/ployground/ploy

PyBSD, Release 0.0.2

Parameters interface (ipaddress.IPV4Interface or
ipaddress.IPV6Interface) — the interface to be described

Returns a list of 6 (IPv4) or 10 (IPv6) elements describing an interface

Return type 1ist

4.7 Exceptions

class pybsd.exceptions.PyBSDError
Bases: exceptions.Exception

Base PyBSD Exception. It is only used to except any PyBSD error and never raised

msg
str

The template used to generate the exception message

message
An alias of __str__, useful for tests

4.7.1 Network

class pybsd.exceptions.InterfaceError (environment, interface)
Bases: pybsd.exceptions.PyBSDError

Base exception for errors involving a network interface.
Parameters

* environment (BaseSystem)— The environment on which the command is deployed.
Any subclass of BaseSystem

e interface (Interface)— The interface

class pybsd.exceptions.MissingMainIPError (environment, interface)
Bases: pybsd.exceptions.InterfaceError

Error when a network interface doesn’t have at least one main ip.
Parameters

* environment (BaseSystem)— The environment to which the interface is attached. Any
subclass of BaseSystem

e interface (Interface)— The interface

class pybsd.exceptions.InvalidMainIPError (environment, interface, reason)
Bases: pybsd.exceptions.InterfaceError

Error when ips are duplicated.
Parameters

* environment (BaseSystem)—The environment to which the interface is attached. Any
subclass of BaseSystem

* interface (Interface)— The interface

* reason (str)— The reason why this main if is invalid

22 Chapter 4. Reference

PyBSD, Release 0.0.2

class pybsd.exceptions.DuplicateIPError (environment, interface, ips)
Bases: pybsd.exceptions.InterfaceError

Error when ips are duplicated.
Parameters

* environment (BaseSystem)—The environment to which the interface is attached. Any
subclass of BaseSystem

* interface (Interface)— The interface

* ips (set)—Theips

4.7.2 Commands
class pybsd.exceptions.BaseCommandError (command, environment)
Bases: pybsd.exceptions.PyBSDError
Base exception for errors involving a command. It is never raised
Parameters
¢ command (Command) — The command

* environment (BaseSystem)— The environment on which the command is deployed.
Any subclass of BaseSystem

class pybsd.exceptions.InvalidCommandNameError (command, environment)
Bases: pybsd.exceptions.BaseCommandError

Error when a command is missing a name attribute
Parameters
¢ command (BaseCommand) — The command

* environment (BaseSystem) — The environment on which the command is deployed.
Any subclass of BaseSystem

class pybsd.exceptions.InvalidCommandExecutorError (command, environment)
Bases: pybsd. exceptions.BaseCommandError

Error when a command is missing a name attribute
Parameters command (BaseCommand) — The command

class pybsd.exceptions.CommandNotImplementedError (command, environment)
Bases: pybsd.exceptions.BaseCommandError

Error when a command is missing a name attribute
Parameters
e command (BaseCommand) — The command

* environment (BaseSystem)— The environment on which the command is deployed.
Any subclass of BaseSystem

class pybsd.exceptions.CommandConnectionError (command, environment)
Bases: pybsd. exceptions.BaseCommandError

Error when a command is missing a name attribute

Parameters

4.7. Exceptions 23

PyBSD, Release 0.0.2

¢ command (BaseCommand) — The command

* environment (BaseSystem) — The environment on which the command is deployed.
Any subclass of BaseSystem

class pybsd.exceptions.CommandError (command, environment, subcommand=None)
Bases: pybsd.exceptions.BaseCommandError

Base exception for errors involving a validated command. It is never raised
Parameters
e command (BaseCommand) — The command

* environment (BaseSystem)— The environment on which the command is deployed.
Any subclass of BaseSystem

* subcommand (st r)— The subcommand, if any

class pybsd.exceptions.WhitespaceError (command, environment, argument, value, subcom-

mand=None)
Bases: pybsd.exceptions.CommandError

Error when a command arguments include corrupting whitespace
Parameters
* command (BaseCommand) — The command

* environment (BaseSystem)— The environment on which the command is executed.
Any subclass of BaseSystem

* subcommand (st r)— The subcommand, if any

class pybsd.exceptions.InvalidOutputError (command, environment, err, subcommand=None)
Bases: pybsd.exceptions.CommandError

Base exception for commands returning invalid output
Parameters
e command (BaseCommand) — The command

* environment (BaseSystem)— The environment on which the command is executed.
Any subclass of BaseSystem

* subcommand (st r)— The subcommand, if any
* err (str)— The error returned by the subprocess

class pybsd.exceptions.SubprocessError (command, environment, err, subcommand=None)
Bases: pybsd.exceptions.CommandError

Base exception for errors returned by a subprocess
Parameters
e command (BaseCommand) — The command

e environment (BaseSystem) — The environment on which the command is executed.
Any subclass of BaseSystem

* subcommand (str)— The subcommand, if any

* err (str) - The error returned by the subprocess

24 Chapter 4. Reference

PyBSD, Release 0.0.2

4.7.3 Systems

class pybsd.exceptions.MasterJailError (master, jail)
Bases: pybsd.exceptions.PyBSDError

Base exception for errors involving a master and a jail. It is never raised
Parameters
* master (Master)— The master
* jail (Jail)— The jail

class pybsd.exceptions.AttachNonMasterError (master, jail)
Bases: pybsd.exceptions.MasterJdailError

Error when a master tries to import a non-jail
Parameters
* master (Master)— The object that was supposed to host the jail
* jail (any) — The jail

class pybsd.exceptions.AttachNonJailError (master, jail)
Bases: pybsd.exceptions.MasterJailError

Error when a master tries to import a non-jail
Parameters
* master (Master)— The master
* jail (any) — The object that was supposed to be attached

class pybsd.exceptions.MasterJailMismatchError (master, jail)
Bases: pybsd.exceptions.MasterJdailError

Error when a master tries to import a non-jail
Parameters
* master (Master)— The master
* jail (any) — The object that was supposed to be attached

class pybsd.exceptions.JailAlreadyAttachedError (master, jail)
Bases: pybsd.exceptions.MasterdailError

Error when a jail is already attached to another master
Parameters
* master (Master)— The master
* jail (Jail)—The jail

class pybsd.exceptions.DuplicateJailNameError (master, jail, duplicate)
Bases: pybsd.exceptions.MasterJailError

Error when another jail with the same name is already attached to a master
Parameters
* master (Master)— The master
* jail (Jail)— The jail

* duplicate (str)— The duplicated hostname

4.7. Exceptions

25

PyBSD, Release 0.0.2

class pybsd.exceptions.DuplicateJailHostnameError (master, jail, duplicate)

Bases: pybsd.exceptions.DuplicatedailNameError
Error when another jail with the same hostname is already attached to a master
Parameters
* master (Master)— The master
* jail (Jail)—The jail
* duplicate (str) - The duplicated hostname

class pybsd.exceptions.DuplicateJailUidError (master, jail, duplicate)
Bases: pybsd.exceptions.DuplicatedailNameError

Error when another jail with the same uid is already attached to a master
Parameters
* master (Master)— The master
* jail (Jail) - The jail
* duplicate (str)— The duplicated hostname

class pybsd.exceptions.InvalidUIDError (master, jail)
Bases: pybsd.exceptions.MasterJdailError

Error when a master tries to import a non-jail
Parameters
* master (Master)— The object that was supposed to host the jail

* jail (any) — The jail

26

Chapter 4. Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

5.2 Documentation improvements

PyBSD could always use more documentation, whether as part of the official PyBSD docs, in docstrings, or even on
the web in blog posts, articles, and such.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/rebost/pybsd/issues.
If you are proposing a feature:

¢ Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.4 Development

To set up pybsd for local development:
1. Fork pybsd on GitHub.
2. Clone your fork locally:

27

https://github.com/rebost/pybsd/issues
https://github.com/rebost/pybsd/issues
https://github.com/rebost/pybsd/fork

PyBSD, Release 0.0.2

git clone git@github.com:your_name_here/pybsd.git

3. Create a branch for local development:

‘ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

‘ tox

5. Commit your changes and push your branch to GitHub:

git add
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

5.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.
For merging, you should:

1. Include passing tests (run tox) '

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG. rst about the changes.

4. Add yourself to AUTHORS . rst.

5.4.2 Tips

To run a subset of tests:

’tox —e envname —-- py.test -k test_myfeature

To run all the test environments in parallel (youneed to pip install detox):

‘detox

1If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.
It will be slower though ...

28 Chapter 5. Contributing

http://tox.readthedocs.org/en/latest/install.html
https://travis-ci.org/rebost/pybsd/pull_requests

CHAPTER 6

Authors

* Matias Pizarro - https://docbase.net

29

https://docbase.net

PyBSD, Release 0.0.2

30

Chapter 6. Authors

CHAPTER 7

Changelog

7.1 0.0.2 (2015-08-06)

* Adds ReadTheDocs, travis, appveyor, coveralls, codecov, landscape and scrutinizer support.

» Adapts project structure accordingly.

7.2 0.0.1 (2015-08-04)

* First release on PyPI.

31

https://pybsd.readthedocs.org/en/latest/
https://travis-ci.org/rebost/pybsd
https://ci.appveyor.com/project/rebost/pybsd
https://coveralls.io/github/rebost/pybsd
https://codecov.io/github/rebost/pybsd
https://landscape.io/github/rebost/pybsd/master
https://scrutinizer-ci.com/g/rebost/pybsd/

PyBSD, Release 0.0.2

32

Chapter 7. Changelog

CHAPTER 8

Roadmap

All the — expected — dates of completion and version numbers are pure hypothesis, likely to be modified by reality.

Until version 1.0.0, the API, properties, methods and trheir signature are likely to change a lot.

8.1 0.0.3 (expected wk1 of 2015-09)

Complete documentation:

the idea is that keeping documentation up to date is not a realistic prospect until we have the current code base covered.
Further development is therefore put on the backburner until this is achieved. However, opportunities for simplification
or fixes in the existing code base will be followed up.

8.2 0.0.4 (expected wk2 of 2015-09)

Make all existing methods work with a modelized set up:
* Some methods depend on interaction with the host, like Jail.status.

* In order to plan and test deployments and architecture we need to be able to work on models without direct
interaction with existing systems.

* To achieve this, when not working on an actual system, the package will create and maintain internal state that
allows state-dependent methods to work

* implement Master.remove_jail method

8.3 0.0.5 (expected wk3 of 2015-09)

Check all existing methods correctly work on a local instance

8.4 0.0.6 (expected end of 2015-09)

Make all existing methods work remotely

33

PyBSD, Release 0.0.2

8.5 0.0.7 (expected wk1 of 2015-10)

Implement the other methods of EzjailAdmin
* console
* create
¢ delete
e start

* stop

8.6 0.0.8 (expected wk2 of 2015-10)

* Serialize to files an existing model

8.7 0.0.9 (expected wk3 of 2015-10)

¢ Import from files a serialized model

34

Chapter 8. Roadmap

CHAPTER 9

Indices and tables

¢ genindex
* modindex

e search

35

PyBSD, Release 0.0.2

36

Chapter 9. Indices and tables

Python Module Index

P

pybsd.utils, 21

37

PyBSD, Release 0.0.2

38

Python Module Index

Index

Symbols

__eq__() (pybsd.network.Interface method), 18

A

add_ips() (pybsd.network.Interface method), 18
alias_ifsv4 (pybsd.network.Interface attribute), 18
alias_ifsv6 (pybsd.network.Interface attribute), 19
attach_jail() (pybsd.systems.masters.Master method), 13
AttachNonJailError (class in pybsd.exceptions), 25
AttachNonMasterError (class in pybsd.exceptions), 25
auto_start (pybsd.systems.jails.Jail attribute), 16

B

base_hostname (pybsd.systems.jails.Jail attribute), 16
BaseCommand (class in pybsd.commands), 17
BaseCommandError (class in pybsd.exceptions), 23
BaseJailHandler (class in pybsd.handlers), 19
BaseSystem (class in pybsd.systems.base), 11

binary (BaseCommand attribute), 17

C

check_mismatch()
method), 20

clone_jail() (pybsd.systems.masters.Master method), 14

CommandConnectionError (class in pybsd.exceptions),
23

CommandError (class in pybsd.exceptions), 24

CommandNotImplementedError (class in
pybsd.exceptions), 23

(pybsd.handlers.BaseJailHandler

D

default_jail_root (BaseJailHandler attribute), 19

derive_interface() (pybsd.handlers.BaseJailHandler class
method), 20

DuplicateIPError (class in pybsd.exceptions), 22

DuplicateJailHostnameError (class in pybsd.exceptions),
25

DuplicateJailNameError (class in pybsd.exceptions), 25

DuplicateJailUidError (class in pybsd.exceptions), 26

E

execute (pybsd.systems.base.BaseSystem attribute), 11

Executor (class in pybsd.executors), 21

ExecutorClass (BaseSystem attribute), 11

ExecutorClass (pybsd.systems.base.BaseSystem at-
tribute), 11

ext_if (pybsd.systems.base.System attribute), 12

ext_if (pybsd.systems.jails.Jail attribute), 16

ezjail_admin_binary (pybsd.systems.masters.Master at-
tribute), 14

EzjailAdmin (class in pybsd.commands), 18

F

from_split_if() (in module pybsd.utils), 21

G

get_jail_ext_if()
method), 20
get_jail_hostname()
method), 20
get_jail_lo_if()
method), 20
get_jail_path()
method), 20
get_jail_type()
method), 21

(pybsd.handlers.BaseJailHandler
(pybsd.handlers.BaseJailHandler
(pybsd.handlers.BaseJailHandler
(pybsd.handlers.BaseJailHandler

(pybsd.handlers.BaseJailHandler

H

handler (pybsd.systems.jails.Jail attribute), 16

hostname (pybsd.systems.base.BaseSystem attribute), 11
hostname (pybsd.systems.jails.Jail attribute), 16
hostnames (pybsd.systems.masters.Master attribute), 14

ifsv4 (pybsd.network.Interface attribute), 19
ifsv6 (pybsd.network.Interface attribute), 19
int_if (pybsd.systems.base.System attribute), 12
Interface (class in pybsd.network), 18
InterfaceError (class in pybsd.exceptions), 22

39

PyBSD, Release 0.0.2

InvalidCommandExecutorError (class in PyBSDError (class in pybsd.exceptions), 22
pybsd.exceptions), 23
InvalidCommandNameError (class in pybsd.exceptions), R

. 23 ‘ ' reset_int_if() (pybsd.systems.base.System method), 13
Inval%dMalnIPError (class~1n pbed.CXCfbpt.lOIlS), 22 reset_j_if() (pybsd.systems.masters.Master method), 14
InvalidOutputError (class in pybsd.exceptions), 24 reset_jlo_if() (pybsd.systems.masters.Master method), 14

InvalidUIDError (class in pybsd.exceptions), 26
invoke() (pybsd.commands.BaseCommand method), 18 ~ §
ips (pybsd.network.Interface attribute), 19

ips (pybsd.systems.base.System attribute), 12
is_attached (pybsd.systems.jails.Jail attribute), 16

safe_unicode() (in module pybsd.utils), 21
split_if() (in module pybsd.utils), 21

status (pybsd.systems.jails.Jail attribute), 17

J SubprocessError (class in pybsd.exceptions), 24

System (class in pybsd.systems.base), 11
j_if (pybsd.systems.masters.Master attribute), 14

Jail (class in pybsd.systems.jails), 15 U

jail_class (pybsd.systems.jails.Jail attribute), 16

jail_class_id (pybsd.systems.jails.Jail attribute), 16

jail_class_ids (BaseJailHandler attribute), 19

jail_type (pybsd.systems.jails.Jail attribute), 16 W

JailAlreadyAttachedError (class in pybsd.exceptions), 25

JailHandlerClass (Master attribute), 13

JailHandlerClass (pybsd.systems.masters.Master at-
tribute), 13

jid (pybsd.systems.jails.Jail attribute), 16

jlo_if (pybsd.systems.masters.Master attribute), 14

L

list_headers (pybsd.commands.EzjailAdmin attribute), 18
lo_if (pybsd.systems.base.System attribute), 12
lo_if (pybsd.systems.jails.Jail attribute), 16

M

main_ifv4 (pybsd.network.Interface attribute), 19
main_ifv6 (pybsd.network.Interface attribute), 19
make_if() (pybsd.systems.base.System method), 12
Master (class in pybsd.systems.masters), 13

master (pybsd.systems.jails.Jail attribute), 17
MasterJailError (class in pybsd.exceptions), 25
MasterJailMismatchError (class in pybsd.exceptions), 25
message (pybsd.exceptions.PyBSDError attribute), 22
MissingMainIPError (class in pybsd.exceptions), 22
msg (PyBSDError attribute), 22

N

name (BaseCommand attribute), 17

name (pybsd.network.Interface attribute), 19

name (pybsd.systems.base.BaseSystem attribute), 11
name (pybsd.systems.jails.Jail attribute), 17

names (pybsd.systems.masters.Master attribute), 14

P

path (pybsd.systems.jails.Jail attribute), 17
pybsd.utils (module), 21

uid (pybsd.systems.jails.Jail attribute), 17
uids (pybsd.systems.masters.Master attribute), 14

WhitespaceError (class in pybsd.exceptions), 24

40 Index

	Overview
	PyBSD

	Installation
	Usage
	Reference
	Systems
	Commands
	Network
	Handlers
	Executors
	Utils
	Exceptions

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	0.0.2 (2015-08-06)
	0.0.1 (2015-08-04)

	Roadmap
	0.0.3 (expected wk1 of 2015-09)
	0.0.4 (expected wk2 of 2015-09)
	0.0.5 (expected wk3 of 2015-09)
	0.0.6 (expected end of 2015-09)
	0.0.7 (expected wk1 of 2015-10)
	0.0.8 (expected wk2 of 2015-10)
	0.0.9 (expected wk3 of 2015-10)

	Indices and tables
	Python Module Index

