

 Navigation

 	
 index

 	
 next |

 	pybrainfuck 1.0.1 documentation

Welcome to metaframe’s documentation!

Contents:

	Introduction
	Documentation

	Python 2/3 Support

	Installation

	Quick Usage

	Main
	Using the BrainFck class
	Formatting of the programs

	Extending the command set

	pybrainfuck - the script

	BrainFck

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Daniel Rodriguez.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pybrainfuck 1.0.1 documentation

Introduction

[image: PyPi Version]
 [https://pypi.python.org/pypi/pybrainfuck/][image: PyPi Monthly Donwloads]
 [https://pypi.python.org/pypi/pybrainfuck/][image: License]
 [https://github.com/mementum/pybrainfuck/blob/master/LICENSE][image: Travis-ci Build Status]
 [https://travis-ci.org/mementum/pybrainfuck][image: Documentation Status]
 [https://readthedocs.org/projects/pybrainfuck/][image: Pytghon versions]
 [https://pypi.python.org/pypi/pybrainfuck/]pybrainfuck is yet another Python BrainFuck implementation. The goal is not
be the fastest or most efficient but rather to be extensive in the
implementation, configurable and extendable.

It contains a ``BrainFck `` class which can be directly used or subclassed to
use in scripts. The code is fully documented and commented.

Or else the pip installed script pybrainfuck can be directly used.

Documentation

Read the full documentation at readthedocs.org:

	pybrainfuck documentation [http://pybrainfuck.readthedocs.org/en/latest/introduction.html]

Python 2/3 Support

	Python 2.7

	Python 3.2/3.3/3.4/3.5

	It also works with pypy and pypy3

Installation

From pypi:

pip install pybrainfuck

From source:

	Place the pybrainfuck directory found in the sources inside your project
and import it

Scriptwise:

	The entire implementation has been kept inside a single file. You can copy
it inside other sources too

Quick Usage

Let’s quickly put together a script:

from __future__ import (absolute_import, division, print_function,
 unicode_literals)

import sys

from pybrainfuck import BrainFck

if name == '__main__':

 bfck = BrainFck()

 for arg in sys.argv[1:]:
 print('-' * 50)
 print('Running:', arg)
 print('-' * 50)
 bfck.runfile(arg)
 print()

And prepare a Hello World (including a newline) brainfuck program:

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.

And both paired for a execution:

$./readme-example.py readme-example.b
--
Running: readme-example.b
--
Hello World!

Although the newlines after Hello World! are difficult to perceive.

Using the built-in script pybrainfuck:

$ pybrainfuck readme-example.b
Hello World!

Which luckily produces the same result.

 Copyright 2015, Daniel Rodriguez.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pybrainfuck 1.0.1 documentation

Main

There are many brainfuck implementations (compilers/interpreters) and
therefore no need for yet another implementation.

But here it is.

The goal is to make something configurable, extendable and at the same time
extensive in itself from the very beginning.

pybrainfuck will for sure not win any price for memory efficiency, speed or
size. But it can serve to experiment with the configuration options, extension
commands or who knows what.

The introduction has already shown how to use the BrainFck class and the
pybrainfuck script.

For the configuration options, take a look at the class reference or the scrip
reference.

Using the BrainFck class

See the class reference for the full set configuration options and methods.

The most important methods for a external user are:

- ``runfiles`` which defined as ``def runfiles(self, *args)``

 Each arg in args must be the path to a file containing a ``brainfuck``
 program

- ``run`` which is defined as ``def run(self, f)``

 f is either a file (or file-like) object or a string containing the program.

 If a string is passed it will internally converted to a file-like object
 before execution.

Those are the ones the end user pass the brainfuck programs too.

Formatting of the programs

Usually each brainfuck is contained in a single file. pybrainfuck
supports additional formats which can aid when it comes down to testing and
readability. The configuration options to support additional formats:

	linemode (default: False)
Read the input in lines and interpret each line as a program skipping
blank lines

	multiline (default: False)
In linemode join lines until a blank line is seen

	comments (default: False)
In linemode skip lines starting with commentchar

	commentchar (default: #)
Comment charachter for comments in linemode

Doing this configuration:

bfck = BrainFck(linemode=True, multiline=True, comments=True)

and applying it to the following file:

Yo!
+[--->++<]>+++.[->+++++++<]>.[--->+<]>----.

Hello World! (and newline)
++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.

Prints H (and newline) after checking some pathological cases
[]++++++++++[>>+>+>++++++[<<+<+++>>>-]<<<<-]
"A*$";?@![#>>+<<]>[>>]<<<<[>++<[-]]>.>.

Cell 30000 (prints # and newline)
++++[>++++++<-]>[>+++++>+++++++<<-]>>++++<[[>[[>>+<<-]<]>>>-]>-[>+>+<<-]>]+++++[>+++++++<<++>-]>.<<.

Results in the execution of 4 brainfuck programs. Lines starting with ‘#’
and blank lines will be skipped.

And the 2 line program (because ‘multiline’ was set to True) will be joined

Extending the command set

To aid in addind commands without tapping into the logic and internals of the
classavoid tapping into the internals of BrainFck a decorator is provided to
define commands.

Operation of the existing commands is defined by modifying the status
variables (see the class reference).

In regular brainfuck the commands + and - increment and decrement
the value of the current cell by 1.

To experiment with “shorter” programs which can increment/decrement by 2, let’s
add a couple of commands: " and =:

from pybrainfuck import BrainFck, BfCommand

class BrainFck2(BrainFck):

 @BfCommand('"')
 def proc_increment2(self):
 self.cells[self.ptr] += 2

 @BfCommand('=')
 def proc_decrement2(self):
 self.cells[self.ptr] -= 2

´Rather than directly modifying the status of the interpreter/machine the
existing methods can be reused:

from pybrainfuck import BrainFck, BfCommand

class BrainFck2(BrainFck):

 @BfCommand('"')
 def proc_increment2(self):
 self.proc_increment()
 self.proc_increment()

 @BfCommand('=')
 def proc_decrement2(self):
 self.proc_decrement()
 self.proc_decrement()

This implementation makes use of the existing methods which manage the
increment/decrement actions. This can also be done by looking up the command
characters:

from pybrainfuck import BrainFck, BfCommand

class BrainFck2(BrainFck):

 @BfCommand('"')
 def proc_increment2(self):
 method = self.cmd_procs['+']
 method()
 method()

 @BfCommand('=')
 def proc_decrement2(self):
 method = self.cmd_procs['-']
 method()
 method()

The entire BrainFck class is fully documented, just see the reference to
modify the behaviors or add new ones.

 Copyright 2015, Daniel Rodriguez.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pybrainfuck 1.0.1 documentation

pybrainfuck - the script

A regular pip installation will deliver a pybrainfuck executable which
can be directly used to run brainfuck programs.

The arguments match those of the BrainFck class which can be used in scripts.

Usage:

$ pybrainfuck --help
usage: pybrainfuck-script.py [-h] [--totalcells TOTALCELLS] [--prealloc]
 [--noextleft] [--wrapover] [--cellsize CELLSIZE]
 [--nonumclass] [--debug] [--linemode]
 [--multiline] [--comments]
 [--commentchar COMMENTCHAR] [--breakline]
 [--flushout]
 script

BrainF*ck Interpreter/Virtual Machine

positional arguments:
 script BrainF*ck script to execute (can be specified multiple
 times

optional arguments:
 -h, --help show this help message and exit
 --totalcells TOTALCELLS, -tc TOTALCELLS
 Size of memory in cells (set to 0 for unbounded
 (default: 30000)
 --prealloc, -pa Preallocate cells if a memory size has been set
 (default: False)
 --noextleft, -nl Do not extend the cells to the left in
 dynamicallocation (default: False)
 --wrapover, -wo If the number of totalcells is limited, wrap over the
 boundaries when the amount of totalcells has already
 been allocated (default: False)
 --cellsize CELLSIZE, -cs CELLSIZE
 Size in bits of each cell (default: 8)
 --nonumclass, -nn Do numerics directly rather than with a class
 (default: False)
 --debug, -db Print debug information (default: False)
 --linemode, -lm In line mode each line of a provided script file will
 be interpreted as a single script. Empty lines will be
 skipped (default: False)
 --multiline, -ml In linemode subsequent lines will be joined until a
 blank line is seen (default: False)
 --comments, -co In line mode lines starting with # will be skipped
 (default: False)
 --commentchar COMMENTCHAR, -cc COMMENTCHAR
 Char which indicates a line is a comment (default: #)
 --breakline, -br Print a break line in between output of scripts
 (default: False)
 --flushout, -fo Flush output on each write (meant for broken buffering
 like Python 2.x under Win32 (default: False)

 Copyright 2015, Daniel Rodriguez.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	pybrainfuck 1.0.1 documentation

BrainFck

	
pybrainfuck.pybrainfuck()

	Runs a BrainF*ck Machine with command line arguments

	
pybrainfuck.BfCommand(cmd)

	Decorates the function with _cmd attribute taken from the arg

	
class pybrainfuck.BrainFck(**kwargs)

	BrainF*ck interpreter/virtual machine

	The machine is configurable with following kwargs:

	
	cellsize (default: 8)
Size in bits of the numeric type to emulate. This types rollover when
crossing the 0 and pow(2, cellsize) boundaries

	totalcells (default: 30000)
Size in cells in the virtual machine. Literature shows the default
value to be expected by many test scripts

Set it to 0 for unbounded size

	extleft (defaults: True):
Allow extension to the left. This applies only whilst the array has not
reached its full size (if set)

	prealloc (default: False)
If the number of cells is limited, whether to preallocate them

	wrapover (default: False)
Wrap over cells boundaries if totalcells is set and all cells have been
allocated (by preallocating or because the totalcells limit has
been reached)

	debug (default: False)
Print the status and command to be evaluated

	linemode (default: False)
Read the input in lines and interpret each line as a program skipping
blank lines

	multiline (default: False)
In linemode join lines until a blank line is seen

	comments (default: False)
In linemode skip lines starting with commentchar

	commentchar (default: #)
Comment charachter for comments in linemode

	breakline (default: False)
Print a breakline in between the output of the execution of multiple
programs

	Input/Output:

	Controlled also through configuration variables

	fin (default: sys.stdin)
Stream from which input will be read

	fout (default: sys.stdout)
Stream to which input will be printed

	fdebug (default: fout)
Stream to print debug messages to

	flushout (default: False)
Flush out each write (including debug)

	Cells/Memory:

	
	cells: access to the array of memory cells

The machine checks boundaries and will not go below 0 or above the
maximum total number of cells configured

	bfnum: class holding the numeric type with the configure bitsize for
this machine.

	Command Processing:

	
	cmd_procs (dict): holds a reference per command to a method to process
the command. Automatically filled with methods which have been
decorated with BfCommand

	Command index:

	
	idx (start: -1)
Current command index. Increased when a command is read

	Constants:

	
	maxptr
Holds the right limit in cells of the virtual machine

	csize
Length of the numeric value (power of 2 of cellsize)

	Status:

	
	cmd (start: ‘’)
Current command being processed

	ptr (start: 0)
Current cell for get/set/check operations

	loopskip (start: 0)
if > 0, it will skip commands until the matching amount of ‘]’ has been
seen. While positive, seeing a ‘[‘ will increase its value by 1

	loops (start: [])
Stores index in input of ‘[‘ commands until they must be skipped

	loopback (start: -1)
If >= 0, the value indicates a jump to such command index

Commands:

Methods decorated with BfCommand(cmd) will be added to a dictionary
cmd_procs using cmd as the key.

Method retrieval when a command is read (unless commands are being
skipped inside a loop) will be done using the dictionary

The commands manipulate the Status variables

Decoration allows for easy addition of new commands

Internally None is used as a virtual NOP command when the commands
inside a loop have to be skipped

Commands are deliberately kept as simple as possible in that they don’t
do any memory management or command index manipulation. If such an action
may be needed it will tackled by the main loop using the information in
the status variables modified by the commands

	
__init__(**kwargs)

	Initializes the machine (not to confuse with resetting the status)

	It prepares the dictionary of commands

	It configures the “configuration” variables

	It sets the constants for maximum pointer length and cell
allocation

	Configures the numeric class

	Prepares the input/output streams

	
reset()

	Resets the virtual machine to the default status

	
writeout(*args)

	

	
debug_out(*args)

	

	
debug_config()

	Prints config debug information

	
debug_status()

	Prints status debug information

	
runfiles(*args)

	It opens filenames (args) in read/binary mode to get an unprocessed
stream of bytes and executes the program(s)

	Parameters:	args – paths to files

	
run(f)

	Runs a BrainF*ck program

	Parameters:	f – file (like) object or string
If a string is passed it will be internally converted to a file
like object

In non linemode the contents of the file will be executed as a
single script

If in linemode the file will be read line by line (skipping empty
lines)

If in multiline non-empty lines will be joined until a blank line
is seen

If, additionally, in comments mode, then lines starting with the
commentschar character will also be skipped

	
execute(f)

	Actual execution of the BrainF*ck program

	Parameters:	f – file (like) object

	The machine is “reset” at the beginning and in each loop

	
	Cell (append) memory management is done in dynamic mode (if needed)
- To the right if going over the limit
- To the left if going below the 0 mark

	Jumps in program text are performed if needed

	Next command is fetched

	On “no command” (EOF) the loop is exited

	If a command processor exists for the command it is fetched
- In case a loop has to be skipped the command processor is fetched

using the internal NOP command (None)

	If any command processor has been fetched is invoked

	If internal numerics are in used, do an overflow check on the cell

	
mmu_init()

	

	
proc_loopskip()

	Skips commands until the next closing loop command is found

Loop commands ‘[‘ and ‘]’ seen while looping will be skipped by
adding them and substracting them from the loopskip count

	
proc_increment()

	Increments by one the value of the current cell

	
proc_decrement()

	Decrements by one the value of the current cell

	
proc_whilebegin()

	If the current cell is 0, increases the loopskip counter to skip the
current loop.

Otherwise it marks the position in the command index seen

	
proc_whileend()

	If the current cell is 0, it removes the entry for the loop start to
simply carry on

Otherwise it sets loopback to the command index to jump to

	
proc_forward()

	Increments cell pointer by one

	
proc_backwards()

	Decrements cell pointer by one

	
proc_output()

	Outputs in char format the value of the current cell

	
proc_input()

	Reads input in char format the value of the current cell

 Copyright 2015, Daniel Rodriguez.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	pybrainfuck 1.0.1 documentation

Index

 _
 | B
 | D
 | E
 | M
 | P
 | R
 | W

_

 	

 	__init__() (pybrainfuck.BrainFck method)

B

 	

 	BfCommand() (in module pybrainfuck)

 	

 	BrainFck (class in pybrainfuck)

D

 	

 	debug_config() (pybrainfuck.BrainFck method)

 	debug_out() (pybrainfuck.BrainFck method)

 	

 	debug_status() (pybrainfuck.BrainFck method)

E

 	

 	execute() (pybrainfuck.BrainFck method)

M

 	

 	mmu_init() (pybrainfuck.BrainFck method)

P

 	

 	proc_backwards() (pybrainfuck.BrainFck method)

 	proc_decrement() (pybrainfuck.BrainFck method)

 	proc_forward() (pybrainfuck.BrainFck method)

 	proc_increment() (pybrainfuck.BrainFck method)

 	proc_input() (pybrainfuck.BrainFck method)

 	

 	proc_loopskip() (pybrainfuck.BrainFck method)

 	proc_output() (pybrainfuck.BrainFck method)

 	proc_whilebegin() (pybrainfuck.BrainFck method)

 	proc_whileend() (pybrainfuck.BrainFck method)

 	pybrainfuck() (in module pybrainfuck)

R

 	

 	reset() (pybrainfuck.BrainFck method)

 	run() (pybrainfuck.BrainFck method)

 	

 	runfiles() (pybrainfuck.BrainFck method)

W

 	

 	writeout() (pybrainfuck.BrainFck method)

 Copyright 2015, Daniel Rodriguez.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		pybrainfuck 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Daniel Rodriguez.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

