

What is the PyBpod’s Sound Card Module?

The Harp Sound Card is a board developed by the Scientific Hardware Platform
at the Champalimaud Foundation.

This documentation is for the Python 3 library to control the
pybpod_soundcard_module module.

Table of contents

First steps

	Getting started
	Requirements

	User interface
	1. Connection to the Sound Card

	2. Sound generation or loading sounds from the disk

	3. Sending or receiving data to the Sound Card

API reference

	SoundCard USB connection
	Usage Example

	Usage Example (using ‘with’ statement)

	Usage Example (sound generation with WindowConfiguration)

	PyBpod SoundCard module API
	Usage Example

Project info

	About
	The SWP Team

	This project

	License

	Maintenance team

	Questions?

Getting started

Requirements

This library requires the following Python 3 packages to be installed.

	libusb

	pyusb

	aenum

User interface

The main window that comprises the user interface of the SoundCard
Module is divided in three main sections as it can be seen in the
following Figure.

	Connection to the Sound Card

	Sound generation or loading sounds from the disk

	Sending or receiving data to the Sound Card

[image: Main window for the SoundCard Module]
Main window for the SoundCard Module

1. Connection to the Sound Card

When connecting the Harp Sound Card to the computer, the device will
appear in the dropdown control for the USB port. If you connect it later,
or reset the Sound Card, you can press the refresh button to force a search
for connected devices.

After a device is connected and selected in the dropdown, you can
connect to it by pressing the Connect button.

Note

The operations in the bottom section of the window
require that a connect is established. When you press
Connect and a successful connection is made, the operations
buttons will enable.

2. Sound generation or loading sounds from the disk

If you want to send sounds to the Sound Card , it is necessary to either
generate a sound using the provided UI, or you can load it from the disk.

Generating sounds

The UI allows to create sounds with a sinewave, with distinct frequencies for
the left and right channel. The duration, in seconds, of the sound can also be
configured. The two sample rates supported by the Harp Sound Card can be selected
in the sound generation portion of the UI.

[image: Generate sounds portion of the window]
Generate sounds portion of the window

When pressing the Generate sound button, the sound will be generated and
it will be possible to send it to the Sound Card, at the bottom portion of the
main UI.

Note

It is possible to generate a sound in memory and send it directly
to the Sound Card. However, if you wish to save the generated
sound to the disk, you can activate the checkbox Write sound to
file and create a new file.

At the same time, it is possible to generate the sound with a window function at
the start and/or end of the sound. The duration of this window can be different
for the left and right channel, and its duration is defined in milliseconds. It is
also possible to define if the window function should be applied to the start, end
or both sides of the sound. The window function used can also be selected. The
available options are: Hanning, Hamming, Blackman and Bartlett.

Note

The window functions implementation are provided by the NumPy library.
For further details, please visit the Numpy's official documentation (opens in new tab).

Loading sounds from disk

To load a sound from the disk, two options are available. You can either load
a generated sound that was previously saved or you can load a WAV file (except
24bits WAV files).

[image: Load sound from disk portion of the window]
Load sound from disk portion of the window

The procedure to load a sound is pressing Browse and select the file. The
file will be loaded automatically. If there are loading errors, you will be
notified.

3. Sending or receiving data to the Sound Card

Sending data to the Sound Card

Sending a sound to the Sound Card can be accompanied by some user metadata
and some description information. Those fields are optional and can be
defined in the UI.

Warning

The user metadata field has a limit of 1024 bytes and the
description field has a limit of 512 bytes. Any data that
passes this limit will be truncated.

[image: Send data portion of the window]
Send data portion of the window

After selecting the index to where to write the sound and data, by pressing the
Send to sound card button will send the sound and data to the Harp Sound
Card.

Note

The index to where to save the sound must be greater or equal than 2
and lower than 32. The interface will limit the input to those values.

Receiving data from the Sound Card

In the same manner that it is possible to send additional data with the sound
(user metadata and a description), when receiving data from the Sound Card,
that data will also be written in the destination folder, if it exists.

The UI allows to receive the data from a single index or from all the indexes.

[image: Receive data portion of the window]
Receive data portion of the window

The procedure to receive data from the Sound Card is by selecting a destination
folder, by pressing the Browse button, and selecting if the application
should clear the destination folder or not.

Warning

Even if the destination folder is not cleared, the files will be
overwritten if they already exist.

SoundCard USB connection

	
class pybpod_soundcard_module.module_api.SampleRate

	Enumeration for the Sample rate of the sounds in the Sound Card

	
_96000HZ = 96000

	96KHz sample rate

	
_192000HZ = 192000

	192KHz sample rate

	
class pybpod_soundcard_module.module_api.DataType

	Type of the data to be send to the Sound Card

	
INT32 = 0

	Integer 32 bits

	
FLOAT32 = 1

	Single precision float

	
class pybpod_soundcard_module.module_api.SoundCardModule(device=None)

	Provides access to the Harp Sound Card. It allows to send and read the sounds in the Sound Card, through a normal
USB connection.

If a libUSB’s device is given, it will try to open it. If none is given it will try to connect to the first Sound Card that is connected to the computer.

	Parameters

	device – (Optional) libUSB device to use. If nothing is passed, it will try to connect automatically.

	
open(device=None)

	Opens the connection to the Sound Card. If no device is given, it will try to connect to the first Sound Card that is connected to the computer.

	Parameters

	device – (Optional) Already initialized libUSB’s device to use.

	
close()

	Closes the connection with the Sound Card. It will close USB connection (to read and save sounds)

	
reset()

	Resets the device, waits 700ms and tries to connect again so that the current instance of the SoundCard object can still be used.

Note

Necessary at the moment after sending a sound.

	
read_sounds(output_folder=None, sound_index=None, clean_dst_folder=True)

	Reads sounds from the sound card.

Note

by default, it will clear the destination folder of all data. It will also write by default to a
“from_soundcard” folder in the working directory if none is given.

	Parameters

	
	output_folder – Destination folder’s path.

	sound_index – If a sound_index is given, it will get only that sound, if nothing is passed it will gather all sounds from all indexes.

	clean_dst_folder – Flag that defines if the method should clean the destination folder or not

	
send_sound(wave_int, sound_index, sample_rate, data_type, sound_filename=None, metadata_filename=None, description_filename=None)

	This method will send the sound to the Harp Sound Card as a byte array (int8)

	Parameters

	
	wave_int – NumPy array as int32 that represents the sound data

	sound_index – The destination index in the Sound Card (>=2 and <= 32)

	sample_rate – The SampleRate enum value for either 96KHz or 192KHz

	data_type – The DataType enum value for either Int32 or Float32 (not implemented yet in the hardware)

	sound_filename – The name of the sound filename to be saved with the sound in the board (str)

	metadata_filename – The name of the metadata filename to be saved with the sound in the board (str)

	description_filename – The name of the description filename to be saved with the sound in the board (str)

	
class pybpod_soundcard_module.utils.generate_sound.WindowConfiguration(left_duration=0.1, left_apply_window_start=True, left_apply_window_end=True, left_window_function='Hanning', right_duration=0.1, right_apply_window_start=True, right_apply_window_end=True, right_window_function='Hanning')

	
	Parameters

	
	left_duration – (Optional) Duration of the window in seconds, for the left channel. If zero, no window
will be created for this channel. Default: 0.1s

	left_apply_window_start – (Optional) True if the window should be applied to the start of the sound
for the left channel, False otherwise. Default: True

	left_apply_window_end – (Optional) True if the window should be applied to the end of the sound for
the left channel, False otherwise. Default: True

	left_window_function – (Optional) Window function that should be used for the left channel. Possible values
accepted: ‘Hanning’, ‘Hamming’, ‘Blackman’, ‘Bartlett’. Default: ‘Hanning”

	right_duration – (Optional) Duration of the window in seconds, for the right channel. If zero, no window
will be created for this channel. Default: 0.1s

	right_apply_window_start – (Optional) True if the
window should be applied to the start of the sound, for the right channel, False otherwise. Default: True

	right_apply_window_end – (Optional) True if the window
should be applied to the end of the sound for the right channel, False otherwise. Default: True

	right_window_function – (Optional) Window function that should be used for the left channel.
Possible values accepted: ‘Hanning’, ‘Hamming’, ‘Blackman’, ‘Bartlett’. Default: ‘Hanning”

	
pybpod_soundcard_module.utils.generate_sound.generate_sound(filename=None, fs=96000, duration=1, frequency_left=1000, frequency_right=1000, window_configuration: pybpod_soundcard_module.utils.generate_sound.WindowConfiguration = None)

	Helper method to dynamically generated a sound that can be used in with the Sound Card module.

	Parameters

	
	filename – (Optional)

	fs – (Optional) number of samples per second (standard)

	duration – (Optional) sound duration in seconds

	frequency_left – (Optional) number of cycles per second (Hz) (frequency of the sine wave for the left channel)

	frequency_right – (Optional) number of cycles per second (Hz) (frequency of the sine wave for the right channel)

	window_configuration – (Optional) WindowConfiguration object to apply to the generated sound.

	Returns

	Returns the flatten generated sound as a numpy array (as np.int8)

	
pybpod_soundcard_module.utils.generate_sound.generate_window(fs, wave_int, duration, apply_start, apply_end, window_function)

	
	Parameters

	
	fs – number of samples per second (standard)

	wave_int – base sound where the window will be applied

	duration – duration of the window (it will be the same on the start and end)

	apply_start – True if the window should be created at the start, False otherwise.

	apply_end – True if the window should be created at the end, False otherwise.

	window_function – window function to be generated. Possible values accepted:
‘Hanning’, ‘Hamming’, ‘Blackman’, ‘Bartlett’. It will revert to ‘Hanning’ if an unknown option is given.

	Returns

	Returns the modified sound with the window applied to it.

Usage Example

import numpy as np
from pybpod_soundcard_module.module import SoundCard, SoundCommandType
from pybpod_soundcard_module.module_api import SoundCardModule, DataType, SampleRate
from pybpod_soundcard_module.utils.generate_sound import generate_sound

card = SoundCardModule()
card.open()

sound_filename = 'sound.bin'
sound_index = 4

load file and read data (we are using the numpy's fromfile method)
wave_int = np.fromfile(sound_filename, dtype=np.int32)

NOTE: As an alternative, we can generate a sound dynamically with the helper method generate_sound
wave_int = generate_sound(sound_filename, # optional, if given, it will save the generated sound to the hard drive
 fs=96000, # sample rate in Hz
 duration=4, # duration of the sound in seconds
 frequency_left=1500, # frequency of the sinusoidal signal generated in Hz for the left channel
 frequency_right=1200) # frequency of the sinusoidal signal generated in Hz for the right channel

send sound
card.send_sound(wave_int,
 sound_index,
 SampleRate._96000HZ,
 DataType.INT32,
 sound_filename,
 'sound_metadata.bin', # optional
 'sound_description.txt') # optional

reads the files related with the sound in index 4, without cleaning the destination folder
card.read_sounds(output_folder='folder', sound_index=sound_index, clean_dst_folder=False)

card.close()

Usage Example (using ‘with’ statement)

import numpy as np
from pybpod_soundcard_module.module import SoundCard, SoundCommandType
from pybpod_soundcard_module.module_api import SoundCardModule, DataType, SampleRate
from pybpod_soundcard_module.utils.generate_sound import generate_sound

sound_filename = 'sound.bin'
sound_index = 4

load file and read data (we are using the numpy's fromfile method)
wave_int = np.fromfile(sound_filename, dtype=np.int32)

NOTE: As an alternative, we can generate a sound dynamically with the helper method generate_sound
wave_int = generate_sound(sound_filename, # optional, if given, it will save the generated sound to the hard drive
 fs=96000, # sample rate in Hz
 duration=4, # duration of the sound in seconds
 frequency_left=1500, # frequency of the sinusoidal signal generated in Hz for the left channel
 frequency_right=1200) # frequency of the sinusoidal signal generated in Hz for the right channel

the with statement will call 'close' automatically at the end of the block
with SoundCardModule() as card:
 # send sound
 card.send_sound(wave_int,
 sound_index,
 SampleRate._96000HZ,
 DataType.INT32,
 sound_filename,
 'sound_metadata.bin', # optional
 'sound_description.txt') # optional

 # reads the files related with the sound in index 4 without cleaning the destination folder
 card.read_sounds(output_folder='folder', sound_index=4, clean_dst_folder=False)

Usage Example (sound generation with WindowConfiguration)

import numpy as np
from pybpod_soundcard_module.module import SoundCard, SoundCommandType
from pybpod_soundcard_module.module_api import SoundCardModule, DataType, SampleRate
from pybpod_soundcard_module.utils.generate_sound import generate_sound, WindowConfiguration

sound_filename = 'sound.bin'
sound_index = 4

create WindowConfiguration to later pass it to generate_sound
NOTE: (exemplification of options available, change options according to your needs)
window_config = WindowConfiguration(left_duration = 0.2, # It is possible to define different durations for the left and right channel.
 left_apply_window_start = True, # For this example, we want a start window
 left_apply_window_end = False, # ... and no 'end' window for the left channel
 left_window_function = 'Blackman', # ... and with 'Blackman' window function
 right_duration = 0.1, # It is possible to define different durations for the left and right channel.
 right_apply_window_start = False, # For this example, we don't want a start window
 right_apply_window_end = True, # ... and a 'end' window for the right channel
 right_window_function = 'Bartlett') # ... and with 'Bartlett' window function

wave_int = generate_sound(sound_filename, # optional, if given, it will save the generated sound to the hard drive
 fs=96000, # sample rate in Hz
 duration=4, # duration of the sound in seconds
 frequency_left=1500, # frequency of the sinusoidal signal generated in Hz for the left channel
 frequency_right=1200, # frequency of the sinusoidal signal generated in Hz for the right channel
 window_configuration=window_config) # window configuration

the with statement will call 'close' automatically at the end of the block
with SoundCardModule() as card:
 # send sound
 card.send_sound(wave_int,
 sound_index,
 SampleRate._96000HZ,
 DataType.INT32,
 sound_filename,
 'sound_metadata.bin', # optional
 'sound_description.txt') # optional

 # reads the files related with the sound in index 4 without cleaning the destination folder
 card.read_sounds(output_folder='folder', sound_index=4, clean_dst_folder=False)

PyBpod SoundCard module API

	
class pybpod_soundcard_module.module.SoundCommandType

	Enumeration for the commands that can be sent through the Sound Card module, when connected through the BPod’s
State Machine.

	
PLAY = 1

	Plays a specific sound index

	
STOP_SPECIFIC = 2

	Stops playing a specific sound index

	
STOP_ALL = 3

	Stops all sounds

	
class pybpod_soundcard_module.module.SoundCard(connected=False, module_name='', firmware_version=0, events_names=[], n_serial_events=0, serial_port=None)

	Bases: pybpodapi.bpod_modules.bpod_module.BpodModule

	
static get_command(command_type, sound_index=None)

	Returns the proper bytes to send as output_actions in the BPod StateMachine’s states. In the case of the Play
and StopSpecific command_types, it is required to use the BPod’s load_serial_message method to be able to
send to the module more than 1 byte properly.

Note

This might not be required in a future version of BPod’s firmware

	Parameters

	
	command_type – Instruction of type SoundCommandType to generate the command

	sound_index – The sound index to play or stop

Usage Example

from pybpodapi.protocol import Bpod, StateMachine
from pybpod_soundcard_module.module import SoundCard, SoundCommandType

sound index to play
sound_index = 2
my_bpod = Bpod(serial_port='/dev/ttyACM0')

get first SoundBoard module connected to a Bpod serial port
sound_module = [x for x in my_bpod.modules if x.name == 'SoundCard1'][0]
sound_module_play = 1

card = (SoundCard)(sound_module)

define serial message to be used in the states with the sound_module_play id
my_bpod.load_serial_message(sound_module, sound_module_play,
 card.get_command(SoundCommandType.PLAY, sound_index))

sma = StateMachine(my_bpod)

sma.add_state(
 state_name='myState',
 state_timer=2,
 state_change_conditions={Bpod.Events.Tup: 'myState2'},
 output_actions=[(Bpod.OutputChannels.Serial1, sound_module_play)])

sma.add_state(
 state_name='myState2',
 state_timer=3,
 state_change_conditions={Bpod.Events.Tup: 'exit'},
 output_actions=[(Bpod.OutputChannels.Serial1, card.get_command(SoundCommandType.STOP_ALL))])

my_bpod.send_state_machine(sma)

my_bpod.run_state_machine(sma)

print("Current trial info: {0}".format(my_bpod.session.current_trial))

my_bpod.close()

Project Info

The SWP Team

[image: _images/fc_logo.jpg]
Scientific Software Platform (Champalimaud Foundation) [http://research.fchampalimaud.org/en/research/platforms/staff/Scientific%20Software/]

The Scientific Software Platform (SWP) from the Champalimaud Foundation provides technical know-how in software engineering and high quality software support for the Neuroscience and Cancer research community at the Champalimaud Foundation.

We typical work on computer vision / tracking, behavioral experiments, image registration and database management.

This project

pybpod-gui-plugin-soundcard is a module for the PyBpod GUI. For more information please check its website [http://pybpod.com] and documentation [https://pybpod.readthedocs.io]

License

This is Open Source software with a MIT license.

Maintenance team

The current and past members of the pybpod-gui-plugin-soundcard team.

	@MicBoucinha [https://github.com/MicBoucinha/] Luís Teixeira

Questions?

If you have any questions or want to report a problem with this library please fill a issue here [https://github.com/pybpod/pybpod-gui-plugin-soundcard/issues].

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pybpod_soundcard_module	

 	
 	
 pybpod_soundcard_module.utils.generate_sound	

Index

 _
 | C
 | D
 | F
 | G
 | I
 | O
 | P
 | R
 | S
 | W

_

 	
 	_192000HZ (pybpod_soundcard_module.module_api.SampleRate attribute)

 	
 	_96000HZ (pybpod_soundcard_module.module_api.SampleRate attribute)

C

 	
 	close() (pybpod_soundcard_module.module_api.SoundCardModule method)

D

 	
 	DataType (class in pybpod_soundcard_module.module_api)

F

 	
 	FLOAT32 (pybpod_soundcard_module.module_api.DataType attribute)

G

 	
 	generate_sound() (in module pybpod_soundcard_module.utils.generate_sound)

 	
 	generate_window() (in module pybpod_soundcard_module.utils.generate_sound)

 	get_command() (pybpod_soundcard_module.module.SoundCard static method)

I

 	
 	INT32 (pybpod_soundcard_module.module_api.DataType attribute)

O

 	
 	open() (pybpod_soundcard_module.module_api.SoundCardModule method)

P

 	
 	PLAY (pybpod_soundcard_module.module.SoundCommandType attribute)

 	
 	pybpod_soundcard_module.utils.generate_sound (module)

R

 	
 	read_sounds() (pybpod_soundcard_module.module_api.SoundCardModule method)

 	
 	reset() (pybpod_soundcard_module.module_api.SoundCardModule method)

S

 	
 	SampleRate (class in pybpod_soundcard_module.module_api)

 	send_sound() (pybpod_soundcard_module.module_api.SoundCardModule method)

 	SoundCard (class in pybpod_soundcard_module.module)

 	
 	SoundCardModule (class in pybpod_soundcard_module.module_api)

 	SoundCommandType (class in pybpod_soundcard_module.module)

 	STOP_ALL (pybpod_soundcard_module.module.SoundCommandType attribute)

 	STOP_SPECIFIC (pybpod_soundcard_module.module.SoundCommandType attribute)

W

 	
 	WindowConfiguration (class in pybpod_soundcard_module.utils.generate_sound)

 _static/send_data.png
senddata | Receive data |

Index to send 2 2]

User metadata (optional)

Description (optional)

Send to sound card

_static/soundcard_window.png
Sound Card module

1| useport

|[e Canne(t|

Write sound to file

Duration (s) 1,00
sample rate |96 KHz
Left channel | 1000

Frequency
Right channel | 1000

Generate sound | Load sound from disk

V| Create window

Left channel Right channel

Duration (ms) | 100 < 100
Apply window to start v
Apply window to end v v
Left channel window | Hanning

Right channel window | Hanning

Generate sound

senddata | Receive data

Index to send

User metadata (optional)

Description (optional)

_images/send_data.png
senddata | Receive data |

Index to send 2 2]

User metadata (optional)

Description (optional)

Send to sound card

_images/soundcard_window.png
Sound Card module

1| useport

|[e Canne(t|

Write sound to file

Duration (s) 1,00
sample rate |96 KHz
Left channel | 1000

Frequency
Right channel | 1000

Generate sound | Load sound from disk

V| Create window

Left channel Right channel

Duration (ms) | 100 < 100
Apply window to start v
Apply window to end v v
Left channel window | Hanning

Right channel window | Hanning

Generate sound

senddata | Receive data

Index to send

User metadata (optional)

Description (optional)

_images/load_sound.png
Load sound from disk

Sound file |

|| Browse

_static/up-pressed.png

_images/receive_data.png
Senddata | Receive data

[/ Read all indexes
Index to read 2 A

[Clear destination folder

Browse |

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/fc_logo.jpg

_images/generate_sound.png
Generate sound | Load sound from disk

Write sound to file V| Create window
Left channel Right channel

Duration (ms) | 100 < 100
Duration (s) 1,00 | Apply window to start ¥ v

Sample rate |96 KHz | Apply window to end v v

Left channel (1000 |2| Left channel window Hanning
Frequency
Right channel (1000 2| Right channel window |Hanning

Generate sound

_static/down.png

nav.xhtml

 Table of Contents

 		
 What is the PyBpod’s Sound Card Module?

 		
 Getting started

 		
 Requirements

 		
 User interface

 		
 1. Connection to the Sound Card

 		
 2. Sound generation or loading sounds from the disk

 		
 Generating sounds

 		
 Loading sounds from disk

 		
 3. Sending or receiving data to the Sound Card

 		
 Sending data to the Sound Card

 		
 Receiving data from the Sound Card

 		
 SoundCard USB connection

 		
 Usage Example

 		
 Usage Example (using ‘with’ statement)

 		
 Usage Example (sound generation with WindowConfiguration)

 		
 PyBpod SoundCard module API

 		
 Usage Example

 		
 About

 		
 The SWP Team

 		
 This project

 		
 License

 		
 Maintenance team

 		
 Questions?

_static/file.png

_static/generate_sound.png
Generate sound | Load sound from disk

Write sound to file V| Create window
Left channel Right channel

Duration (ms) | 100 < 100
Duration (s) 1,00 | Apply window to start ¥ v

Sample rate |96 KHz | Apply window to end v v

Left channel (1000 |2| Left channel window Hanning
Frequency
Right channel (1000 2| Right channel window |Hanning

Generate sound

_static/fc_logo.jpg

_static/plus.png

_static/load_sound.png
Load sound from disk

Sound file |

|| Browse

_static/minus.png

_static/receive_data.png
Senddata | Receive data

[/ Read all indexes
Index to read 2 A

[Clear destination folder

Browse |

