

Welcome to pybotlib

	Introduction

	Getting Started

	API Documentation

	pybotlib.utils

	pybotlib.exceptions

Indices and tables

	Index

	Search Page

Introduction

pybotlib is a python library for developing Robotic Process Automation projects easily with python primarily on Linux.
It contains the code for a central object that will maintain the state and behavior of the RPA.
The focus of the project is to accelerate RPA development at scale using open source technology.
The package is split into two parts the pybotlib.VirtualAgent object that will control the overall behavior of your RPA as well as pybotlib.utils that contain many useful functions for RPA developmet purposes.
Check out the API Documentation for more details.
The project is centered around open technologies and the believe that the future of digital transformation across business is rooted in a shared knowledge economy.

pybotlib’s offical version is only supported on Linux systems however there is a version for Windows 10 that can be cloned and used in github.
The main branch of the pybotlib github repo is the Windows branch while the branch that is linked to PyPI is the ubuntu-client-37 branch.

To start using pybotlib on any linux machine you must make sure the machine can run GUI apps and has python 3.7+ installed.

We recommend to run light weight virtual desktops within docker containers and develop cloud native “destructible” RPA armies that can be summoned at mass scale.

To learn more about RPA development best practices in general refer to the following Medium article here: https://itnext.io/the-modern-enterprise-business-in-code-c6a5e0f4ed7e.

To install pybotlib you can install via pip or setup.py. We recommend to use pip for the latest stable version.

pip install pybotlib

To install from source:

git clone -b ubuntu-client-37 pybotlib && cd pybotlib
python setup.py install

As mentioned above, we recomend to use lightweight docker containers to run your RPA’s.
To spin up a fully functioning Ubuntu with GUI desktop run the following command, then access it via any VNC client or through the browser.
More details on this container image can be found here: https://github.com/fcwu/docker-ubuntu-vnc-desktop

docker run -p 6080:80 -p 5900:5900 -v /dev/shm:/dev/shm dorowu/ubuntu-desktop-lxde-vnc

Getting Started

Open, scalable, distributed processing is the future of computing and RPA’s is general. pybotlib considers these factors as key to its development philosophy.

To specifically develop RPAs for scale deployments on any infrastructure follow the tutorial provided here: https://github.com/dkatz23238/pybotlib-tutorial

API Documentation

	
class pybotlib.VirtualAgent(bot_name, downloads_directory, df=None, firefoxProfile=None)

	Core class of pybotlib. Creates an ‘RPA’ object for business process automation.

RPA objects can be used to create a virtual
assistant that will cary out a series of event-based
or strictly scheduled tasks.

It is always recommended to provide a firefox path to have cookies and preferences persisted.

	Parameters

	
	bot_name (str) – Name of the RPA. Used for logging and identification purposes.

	downloads_directory (str) – Name of the subfolder to which all file downloads from the internet will be downloaded to.

	df (Pandas.DataFrame, optional) – Used to embed a table within the VirtualAgent object and store call it via VirtualAgent.df

	firefoxProfile (str, optional) – Specific name of the Firefox profile settings subfolder to use when using the geckodriver.
Usefull to retain cookies and other web based data. It is also very usefull to store specific accepted settings such as MIME types
of resources you don’t want to be prompted to download (direct download). By default the VirtualAgent will include most MIME file types to
directly download them on the host machine without prompting. Profiles are found under: “~/.mozilla/firefox/profiles.ini”.

	Returns

	An instance of VirtualAgent ready to be used and deployed to automate business processes.

	Return type

	pybotlib.VirtualAgent

	
create_log_file()

	Creates a log csv under “./pybotlib_logs”.

You can log transactional or execution logs once the file has been created.

	
find_by_tag_and_attr(tag, attribute, evaluation_string, sleep_secs, return_many=True)

	Returns an Selenium webelement object.

Usefull function to scan a web site for elements that satisfy specific conditions.
This function is accelerated with javascript. For example:
my_bot.find_by_tag_and_attr("a","class","special_class",0.2)

	Parameters

	
	tag (str) – HTML tag to begin search for. If the element we seek is an <input> we would pass the argument “input”.

	attribute (str) – Which attribute of the HTML element do we evaluate in order to interact with a webpage.
To name a few: “class”, “id”, or “placeholder”, are all possible examples.

	evaluation_string (str) – What text should we evaluate when searching the elements on the page. If our attribute is “id” and
evaluation string is “001” we will reduce our search the the elements that id == “001”.

	sleep_secs (float) – How many seconds to sleep before executing search. Used to contemplate for slow webpages

	return_many (bool, optional) – Should the method return a list or an individual element

	Returns

	
	Either returns a list of webelement objects or an individual

	webelement object depending on the return_many argument.

	Return type

	list or selenium.webdriver.remote.webelement

	
get(url)

	Access a website via the browser.

Given a URL the VirtualAgent will navigate to this website via the webdriver.
The webdriver must be instantited and running by using the initialize_driver method.

	Raises

	Exception – If no driver is initialized.

	
initialize_driver()

	Instantiates a geckodriver firefox instance.

This method is used to initialize a webdriver instance to automate browser based tasks.

	Raises

	FileNotFoundError – If the geckodriver is not in CWD.
You can use pybotlib.utils.get_geckodriver() to download and place it in the CWD.

	
log(message, tag='transaction')

	Logs a message to the currently active log file.

Used to log messages to the currently active log file.

	Parameters

	
	message (str) – Message to be logged.

	tag (str, optional) – Tag associated to message. Defaults to “transactional”.

	
log_bot_completion()

	Log completion of RPA.

Logs that the RPA has successfully completed. To be used at the very end of the RPA.

	
quit_driver()

	Quits out of the web driver.

	
set_DataFrame(df)

	Setter for a pandas.DataFrame.
:param df: Embed a dataframe within the RPA after instantiation
:type df: pandas.DataFrame

	
use_javascript(script)

	Executes javascript code into the current running webpage.
:raises: Exception – If no driver is initialized.

	
pybotlib.generate_js(tag, atr, evalString)

	Generates js string for web element searching.

	Parameters

	
	tag (str) – HTML tag to search for.

	atr (str) – HTML attribute for which to evaluate when searching the DOM.

	evalString (str) – Used to determine if attribute of HTML is element is equal to this string.

	Returns

	Javascript code to loop through HTML elements and find a subset satisfying a specific evaluated condition.

	Return type

	str

pybotlib.utils

	
pybotlib.utils.create_minio_bucket(host_uri, minio_access_key, minio_secret_key, bucket_name)

	Creates a minio bucket.

	
pybotlib.utils.dt_parse(t)

	Parses out datetime from email msg format.

	Parameters

	t (str) – t is a string containing an RFC 2822 date, such as “Mon, 20 Nov 1995 19:12:08 -0500”.

	Returns

	A datetime.datetime object.

	Return type

	datetime.datetime

	
pybotlib.utils.get_geckodriver()

	Fetches latest version of geckodriver to automate firefox via the Selenium webdriver.

This function uses GNU wget. Make sure it is installed on the system before calling get_geckodriver()

	
pybotlib.utils.pandas_read_google_sheets(sheet_id)

	Returns a pandas DataFrame from a spreadsheet in google sheets.
Make sure the spreadsheet has a “view” link and only contains one tab of data.

	Parameters

	sheet_id (str) – Individual googlesheet ID extracted from URL with view access.

	Returns

	A dataframe with the data from the googlesheets.

	Return type

	pandas.DataFrame

	
pybotlib.utils.return_emails_from_IMAP(email_account, password, email_folder, search_term='ALL', url='imap.gmail.com')

	Returns a list of mailparser.MailParser objects from an email address using IMAP.

Used to search a specific IMAP email folder and return a list of individual mailparser.MailParser objects.
Will return no values if the login, folder, or search fails. You can replace search_term with other fields such as “UnSeen” or “Seen”.

	Parameters

	
	email_account (str) – Email address to read inbox from in string format.

	password (str) – Password for associated email_account.

	email_folder (str) – Which IMAP folder to return emails from.

	search_term (str) – Term that is used to search in email folder. Defaults to all.

	url (str) – IMAP server url. Defaults to imap.gmail.com for use with google gmail accounts.

	Returns

	A list of mailparser.MailParser objects retrieved from the email server.

	Return type

	list

	
pybotlib.utils.save_csv_from_googlesheets(service_file, sheet_url, filename)

	Save a google sheets table to .csv with name filename.

Needs JSON credentials file location, full google sheets URL and filename to be saved.
Google Sheet must be shared with view access to service account listed in JSON credentials file under ‘client_email’.

	Parameters

	
	service_file (str) – Path to the google credentials json service file.

	sheet_url (str) – URL of the googlesheet to be downloaded.

	filename (str) – Name of the csv file to be saved without the ‘.csv’.

	Returns

	True. The csv was saved.

	Raises

	Exception – If the function does not return True.

	
pybotlib.utils.save_emails_to_CWD(list_of_mails)

	Saves a list of mailparser.MailParser objects to CWD.

Takes as input a list of mailparser.MailParser objects and saves the emails to current working directory under a folder called pybotlib_emails.
Headers and body are saved as individual txt files inside a folder named after the subject and date recieved.
Attachments are also saved into said folder.

	Parameters

	list_of_mails (list) – A list of mailparser.MailParser objects.

	Returns

	None.

	
pybotlib.utils.send_HTML_email_with_attachement(subject, body, sender_email, receiver_email, password, filename, watermark='pybotlib RPA')

	Sends an visually pleasing HTML email with one attachment from a gmail account.

	Parameters

	
	subject (str) – Subject of the email.

	body (str) – Body of the email.

	sender_email (str) – From field in the email.

	reciever_email (str) – The recipient emaill address.

	password (str) – Password of senders email.

	filename (str) – Absoloute path of file to send in email or the file name if the file is in CWD.

	Returns

	None.

	
pybotlib.utils.send_email_with_attachement(subject, body, sender_email, receiver_email, password, filename)

	Sends a simple with one attachment from a gmail account.

	Parameters

	
	subject (str) – Subject of the email.

	body (str) – Body of the email.

	sender_email (str) – From field in the email.

	reciever_email (str) – The recipient emaill address.

	password (str) – Password of senders email.

	filename (str) – Absoloute path of file to send in email or the file name if the file is in CWD.

	Returns

	None.

	
pybotlib.utils.write_file_to_minio_bucket(host_uri, minio_access_key, minio_secret_key, bucket_name, filename)

	Write a file to a minio bucket.

	Parameters

	
	host_uri (str) – URI to minio instance.

	minio_access_key (str) – Access key.

	minio_secret_key (str) – Secret key.

	bucket_name (str) – Bucket name to save.

	filename (str) – Name of file to save to bucket. Must be in CWD.

	Returns

	None.

	Raises

	Exception – If bucket does not exist or the file is not found.

pybotlib.exceptions

	
exception pybotlib.exceptions.Error

	Base class for other exceptions

	
exception pybotlib.exceptions.NoElementsSatisfyConditions

	Raised when find_by_tag_and_attr results in an empty list

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pybotlib	

 	
 	
 pybotlib.exceptions	

 	
 	
 pybotlib.utils	

Index

 C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | P
 | Q
 | R
 | S
 | U
 | V
 | W

C

 	
 	create_log_file() (pybotlib.VirtualAgent method)

 	
 	create_minio_bucket() (in module pybotlib.utils)

D

 	
 	dt_parse() (in module pybotlib.utils)

E

 	
 	Error

F

 	
 	find_by_tag_and_attr() (pybotlib.VirtualAgent method)

G

 	
 	generate_js() (in module pybotlib)

 	
 	get() (pybotlib.VirtualAgent method)

 	get_geckodriver() (in module pybotlib.utils)

I

 	
 	initialize_driver() (pybotlib.VirtualAgent method)

L

 	
 	log() (pybotlib.VirtualAgent method)

 	
 	log_bot_completion() (pybotlib.VirtualAgent method)

N

 	
 	NoElementsSatisfyConditions

P

 	
 	pandas_read_google_sheets() (in module pybotlib.utils)

 	pybotlib (module)

 	
 	pybotlib.exceptions (module)

 	pybotlib.utils (module)

Q

 	
 	quit_driver() (pybotlib.VirtualAgent method)

R

 	
 	return_emails_from_IMAP() (in module pybotlib.utils)

S

 	
 	save_csv_from_googlesheets() (in module pybotlib.utils)

 	save_emails_to_CWD() (in module pybotlib.utils)

 	
 	send_email_with_attachement() (in module pybotlib.utils)

 	send_HTML_email_with_attachement() (in module pybotlib.utils)

 	set_DataFrame() (pybotlib.VirtualAgent method)

U

 	
 	use_javascript() (pybotlib.VirtualAgent method)

V

 	
 	VirtualAgent (class in pybotlib)

W

 	
 	write_file_to_minio_bucket() (in module pybotlib.utils)

 nav.xhtml

 Table of Contents

 		
 Welcome to pybotlib

 		
 Introduction

 		
 Getting Started

 		
 API Documentation

 		
 pybotlib.utils

 		
 pybotlib.exceptions

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

