

 Navigation

 	
 index

 	
 next |

 	pyalgos 0.1.2 documentation

pyalgos

[image: version] [https://pypi.python.org/pypi/pyalgos/] [image: travis] [https://travis-ci.org/bharadwajyarlagadda/pyalgos] [image: coveralls] [https://coveralls.io/r/bharadwajyarlagadda/pyalgos] [image: license] [https://pypi.python.org/pypi/pyalgos/]

pyalgos is a package for implementing various algorithms:

	Sorting
	Insertion Sort

	Selection Sort

	Merge Sort

Links

	Project: https://github.com/bharadwajyarlagadda/pyalgos

	Documentation: http://pyalgos.readthedocs.io

	Pypi: https://pypi.python.org/pypi/pyalgos

	TravisCI: https://travis-ci.org/bharadwajyarlagadda/pyalgos

Features

	Supported on Python 2.7 and Python 3.3+.

Quickstart

Install using pip:

pip install pyalgos

Guide

	Installation

	User’s Guide
	Sorting
	Insertion Sort

	Selection Sort

	Merge Sort

	API Reference
	Sorting

Project Info

	License

	Versioning

	Changelog

	Authors

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyalgos 0.1.2 documentation

Installation

pyalgos requires Python 2.7 or 3.3+.

To install from PyPI [https://pypi.python.org/pypi/pyalgos]:

pip install pyalgos

You can also install pyalgos with all the latest changes:

$ git clone git@github.com:bharadwajyarlagadda/pyalgos.git
$ cd pyalgos
$ python setup.py install

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyalgos 0.1.2 documentation

User’s Guide

Sorting

Insertion Sort

A simple sorting algorithm that builds the final sorted list of items - one item at a time. It can be less efficient on larger lists.

	Best Case: Input is already sorted out. This takes only O(n) running time. For ex, [1, 2, 3, 4, 5] - in this case it takes only linear time to sort out the items.

	Average/Worst Cases: In both the cases, it takes O(pow(n, 2)) running time to sort out the items. In both these cases, the items in the list are either in a reverse order (or) zig-zag order.

You can use Insertion Sort from pyalgos for both list of integers and list of strings.

from pyalgos.sorting import insertion

numbers_sorted = insertion([3, 4, 2, 7, 5, 1])
alphabets_sorted = insertion(['a', 'z', 'y', 'b', 'w'])

assert numbers_sorted == [1, 2, 3, 4, 5, 7]
assert alphabets_sorted == ['a', 'b', 'w', 'y', 'z']

Note

You can provide either list/tuple of values.

Selection Sort

A sorting algorithm that build the final sorted list of items. It is inefficient on larger lists.

	Best/Average/Worst Cases: In all these cases, the running time is O(pow(n, 2)).

You can use Selection Sort from pyalgos for both list of integers and list of strings.

from pyalgos.sorting import selection

numbers_sorted = selection([3, 4, 2, 7, 5, 1])
alphabets_sorted = selection(['a', 'z', 'y', 'b', 'w'])

assert numbers_sorted == [1, 2, 3, 4, 5, 7]
assert alphabets_sorted == ['a', 'b', 'w', 'y', 'z']

Note

You can provide either list/tuple of values.

Merge Sort

A sorting algorithm that build the final sorted list of items. It is a divide and conquer algorithm.

	Best/Average/Worst Cases: In all these cases, the running time is O(n * log(n)).

You can use Merge Sort from pyalgos for both list of integers and list of strings.

from pyalgos.sorting import merge

numbers_sorted = merge([3, 4, 2, 7, 5, 1])
alphabets_sorted = merge(['a', 'z', 'y', 'b', 'w'])

assert numbers_sorted == [1, 2, 3, 4, 5, 7]
assert alphabets_sorted == ['a', 'b', 'w', 'y', 'z']

Note

You can provide either list/tuple of values.

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyalgos 0.1.2 documentation

API Reference

Sorting

	
pyalgos.sorting.insertion(elements)[source]

	Returns the sorted values using insertion sort algorithm.

The best case is when the input is an array that is already sorted. In
this case, insertion sort has a linear running time O(n).

The worst case is when the input is an array sorted in reverse order. In
this case, insertion sort has a quadratic running time O(pow(n,2)).

	Parameters:	elements (list/tuple) – A list/tuple of values provided by the user.

	Returns:	A list/tuple of elements sorted in ascending order.

	Return type:	list/tuple

New in version 0.1.0.

Changed in version 0.1.1: Added validation for checking whether every element in the list is a
string (when strings are provided in the list).

Changed in version 0.1.2: Added support for tuples. Now the user can also provide a tuple of
values.

Changed in version 0.2.0: insertion() can now return the list when the size of list is less than
or equal to 1.

	
pyalgos.sorting.selection(elements)[source]

	Returns the sorted values using selection sort algorithm.

Selection sort has O(pow(n, 2)) time complexity in all the three cases
(Best, Average and Worst).

	Parameters:	elements (list/tuple) – A list/tuple of values provided by the user.

	Returns:	A list/tuple of elements sorted in ascending order.

	Return type:	list/tuple

New in version 0.1.0.

Changed in version 0.1.1: Added validation for checking whether every element in the list is a
string (when strings are provided in the list).

Changed in version 0.1.2: Added support for tuples. Now the user can also provide a tuple of
values.

Changed in version 0.2.0: selection() can now return the list when the size of list is less than
or equal to 1.

	
pyalgos.sorting.merge(elements)[source]

	Returns the sorted values using merge sort algorithm.

The time complexity will always be O(n * log(n)).

	Parameters:	elements (list/tuple) – A list/tuple of values provided by the user.

	Returns:	A list/tuple of elements sorted in ascending order.

	Return type:	list/tuple

New in version 0.2.0.

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyalgos 0.1.2 documentation

License

MIT License

Copyright (c) 2016 Bharadwaj Yarlagadda

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyalgos 0.1.2 documentation

Versioning

This project follows Semantic Versioning [http://semver.org/].

It is recommended to only use or import objects from the main module, pyalgos.

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyalgos 0.1.2 documentation

Changelog

v0.2.0

	Added merge() method for implementing merge sort algorithm.

	insertion()/selection() can now just return the list when the size of list is less than or equal to 1.

v0.1.2

	Added support for tuple of values in both insertion() and selection() sorting methods.

v0.1.1

	Added validation for checking whether all the elements in a given list are strings or not in both insertion() and selection() sorting methods.

v0.1.0

	First release.

	Added insertion() method for implementing insertion sort algorithm.

	Added selection() method for implementing selection sort algorithm.

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyalgos 0.1.2 documentation

Authors

Lead

	Bharadwaj Yarlagadda, yarlagaddabharadwaj@gmail.com, bharadwajyarlagadda@github [https://github.com/bharadwajyarlagadda]

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	pyalgos 0.1.2 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/bharadwajyarlagadda/pyalgos.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” or “help wanted” is open to whoever wants to implement it.

Write Documentation

pyalgos could always use more documentation, whether as part of the official pyalgos docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/bharadwajyarlagadda/pyalgos.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyalgos for local development.

	Fork the pyalgos repo on GitHub.

	Pull your fork locally:

$ git clone git@github.com:<username>/pyalgos.git

	Install your local copy into a virtualenv. Assuming you have virtualenv installed, this is how you set up your fork for local development:

$ cd pyalgos
$ pip install -r requirements-dev.txt

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass linting and all unit tests by testing with tox across all supported Python versions:

$ invoke tox

	Add yourself to AUTHORS.rst.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the README.rst.

	The pull request should work for Python 2.7, 3.4, and 3.5. Check https://travis-ci.org/bharadwajyarlagadda/pyalgos/pull_requests and make sure that the tests pass for all supported Python versions.

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	pyalgos 0.1.2 documentation

Index

 I
 | M
 | S

I

 	

 	insertion() (in module pyalgos.sorting)

M

 	

 	merge() (in module pyalgos.sorting)

S

 	

 	selection() (in module pyalgos.sorting)

 Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		pyalgos 0.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_modules/pyalgos/sorting/selection.html

 Navigation

 		
 index

 		pyalgos 0.1.2 documentation »

 		Module code »

 Source code for pyalgos.sorting.selection

-*- coding: utf-8 -*-

[docs]def selection(elements):
 """Returns the sorted values using selection sort algorithm.

 Selection sort has O(pow(n, 2)) time complexity in all the three cases
 (Best, Average and Worst).

 Args:
 elements (list/tuple): A list/tuple of values provided by the user.

 Returns:
 list/tuple: A list/tuple of elements sorted in ascending order.

 .. versionadded:: 0.1.0

 .. versionchanged:: 0.1.1
 Added validation for checking whether every element in the list is a
 string (when strings are provided in the list).

 .. versionchanged:: 0.1.2
 Added support for tuples. Now the user can also provide a tuple of
 values.

 .. versionchanged:: 0.2.0
 selection() can now return the list when the size of list is less than
 or equal to 1.
 """
 if not isinstance(elements, (list, tuple)):
 raise ValueError('A list/tuple of values should be given.')

 # A list of size 1 is already sorted.
 if len(elements) <= 1:
 return elements

 # Get the instance of the data structure given.
 instance = type(elements)

 if instance is tuple:
 # Convert the tuple of elements to list of elements. We need to
 # convert the tuple to list because a tuple is immutable. You cannot
 # swap the elements of a tuple.
 elements = list(elements)

 is_str = all(isinstance(element, str) for element in elements)

 if any(isinstance(element, str) for element in elements) and not is_str:
 # When any of the element in the list is a string, we should then
 # check whether all the other elements are strings or not.
 raise ValueError("int() and str() type can't be specified at the same "
 "time")

 for pivot in range(0, len(elements) - 1):
 # Assume that minimum value is the starting element in the list.
 minimum = pivot

 for next in range(pivot + 1, len(elements)):
 if elements[next] < elements[minimum]:
 # If pivot + 1 position element is smaller than the minimum
 # value, we swap the values.
 minimum = next

 if minimum != pivot:
 # When the minimum and pivot positions are different, we go ahead
 # and swap the pivot ad minimum position values in the given list.
 elements[pivot], elements[minimum] = (elements[minimum],
 elements[pivot])

 if instance is tuple:
 # Convert the data structure back to tuple if the user has provided a
 # tuple of values.
 elements = tuple(elements)

 return elements

 © Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

_modules/pyalgos/sorting/insertion.html

 Navigation

 		
 index

 		pyalgos 0.1.2 documentation »

 		Module code »

 Source code for pyalgos.sorting.insertion

-*- coding: utf-8 -*-

[docs]def insertion(elements):
 """Returns the sorted values using insertion sort algorithm.

 The best case is when the input is an array that is already sorted. In
 this case, insertion sort has a linear running time O(n).

 The worst case is when the input is an array sorted in reverse order. In
 this case, insertion sort has a quadratic running time O(pow(n,2)).

 Args:
 elements (list/tuple): A list/tuple of values provided by the user.

 Returns:
 list/tuple: A list/tuple of elements sorted in ascending order.

 .. versionadded:: 0.1.0

 .. versionchanged:: 0.1.1
 Added validation for checking whether every element in the list is a
 string (when strings are provided in the list).

 .. versionchanged:: 0.1.2
 Added support for tuples. Now the user can also provide a tuple of
 values.

 .. versionchanged:: 0.2.0
 insertion() can now return the list when the size of list is less than
 or equal to 1.
 """
 if not isinstance(elements, (list, tuple)):
 raise ValueError('A list/tuple of values should be given.')

 # A list of size 1 is already sorted.
 if len(elements) <= 1:
 return elements

 # Get the instance of the data structure given.
 instance = type(elements)

 if instance is tuple:
 # Convert the tuple of elements to list of elements. We need to
 # convert the tuple to list because a tuple is immutable. You cannot
 # swap the elements of a tuple.
 elements = list(elements)

 is_str = all(isinstance(element, str) for element in elements)

 if any(isinstance(element, str) for element in elements) and not is_str:
 # When any of the element in the list is a string, we should then
 # check whether all the other elements are strings or not.
 raise ValueError("int() and str() type can't be specified at the same "
 "time")

 for pivot in range(1, len(elements)):
 next = pivot
 while next > 0 and elements[next - 1] > elements[next]:
 elements[next], elements[next - 1] = (elements[next - 1],
 elements[next])
 next -= 1

 if instance is tuple:
 # Convert the data structure back to tuple if the user has provided a
 # tuple of values.
 elements = tuple(elements)

 return elements

 © Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		pyalgos 0.1.2 documentation »

 All modules for which code is available

		pyalgos.sorting.insertion

		pyalgos.sorting.merge

		pyalgos.sorting.selection

 © Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

_modules/pyalgos/sorting/merge.html

 Navigation

 		
 index

 		pyalgos 0.1.2 documentation »

 		Module code »

 Source code for pyalgos.sorting.merge

-*- coding: utf-8 -*-

[docs]def merge(elements):
 """Returns the sorted values using merge sort algorithm.

 The time complexity will always be O(n * log(n)).

 Args:
 elements (list/tuple): A list/tuple of values provided by the user.

 Returns:
 list/tuple: A list/tuple of elements sorted in ascending order.

 .. versionadded:: 0.2.0
 """
 if not isinstance(elements, (list, tuple)):
 raise ValueError('A list/tuple of values should be given.')

 # Get the instance of the data structure given.
 instance = type(elements)

 if instance is tuple:
 # Convert the tuple of elements to list of elements. We need to
 # convert the tuple to list because a tuple is immutable. You cannot
 # swap the elements of a tuple.
 elements = list(elements)

 is_str = all(isinstance(element, str) for element in elements)

 if any(isinstance(element, str) for element in elements) and not is_str:
 # When any of the element in the list is a string, we should then
 # check whether all the other elements are strings or not.
 raise ValueError("int() and str() type can't be specified at the same "
 "time")

 if len(elements) <= 1:
 # A list of size 1 is already sorted.
 return elements

 # Using "//" gives you int() value.
 mid_position = len(elements) // 2

 # Recursively sort both sub-lists
 left = merge(elements[:mid_position])
 right = merge(elements[mid_position:])

 # Merge the sorted sub-lists.
 sorted = []

 while left and right:
 if left[0] <= right[0]:
 # When the first element of left sub-list is less than first
 # element of right sub-list, append the first item of left
 # sub-list to the sorted list and remove that element from left
 # sub-list.
 sorted.append(left[0])
 left.pop(0)
 else:
 # When the first element of right sub-list is less than first
 # element of left sub-list, append the first item of right
 # sub-list to the sorted list and remove that element from right
 # sub-list.
 sorted.append(right[0])
 right.pop(0)

 # There is a possibility that the left sub-list might have elements left
 # in it. Append the elements from left sub-list to the sorted list.
 while left:
 sorted.append(left[0])
 left.pop(0)

 # There is a possibility that the right sub-list might have elements left
 # in it. Append the elements from right sub-list to the sorted list.
 while right:
 sorted.append(right[0])
 right.pop(0)

 if instance is tuple:
 # Convert the data structure back to tuple if the user has provided a
 # tuple of values.
 sorted = tuple(sorted)

 return sorted

 © Copyright 2016, Bharadwaj Yarlagadda.
 Created using Sphinx 1.3.5.

