

Welcome to PyAL’s documentation!

PyAL is a wrapper around the OpenAL library and as such similar to the
discontinued PyOpenAL project. In contrast to PyOpenAL, it has no licensing
restrictions, nor does it rely on C code, but uses ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] instead.

Contents

	Installing PyAL

	Integrating PyAL

	Direct OpenAL interaction

	openal.audio - advanced sound support

	openal.loaders - loading sounds

	Release News

Further readings:

	Todo list for PyAL

	License

Indices and tables

	Index

	Module Index

	Search Page

Documentation TODOs

Todo

more details

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pyal/checkouts/latest/doc/audio.rst, line 130.)

Todo

Outline

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pyal/checkouts/latest/doc/loaders.rst, line 7.)

Last generated on: Sep 11, 2017

Installing PyAL

This section provides an overview and guidance for installing PyAL on various
target platforms.

Prerequisites

PyAL relies on some 3rd party packages to be fully usable and to provide you
full access to all of its features.

You must have at least one of the following Python versions installed:

	Python 2.7, 3.1+ (http://www.python.org)

	PyPy 1.8.0+ (http://www.pypy.org)

	IronPython 2.7.3+ (http://www.ironpython.net)

Other Python versions or Python implementations might work, but are (currently)
not officially tested or supported by the PyAL distribution.

You must have OpenAL installed. OpenAL-compatible libraries might have shipped
with your sound drivers already. Otherwise it is recommended to obtain them
from your sound card manufacturer or from http://www.openal.org or
http://kcat.strangesoft.net/openal.html.

Installation

You can use either the python way of installing the package or the make command
using the Makefile on POSIX-compatible platforms, such as Linux or BSD, or the
make.bat batch file on Windows platforms.

Simply type

python setup.py install

for the traditional python way or

make install

for using the Makefile or make.bat. Both will try to perform a default
installation with as many features as possible.

Trying out

You also can test out PyAL without actually installing it. You just need to set
up your PYTHONPATH to point to the location of the source distribution
package. On Windows-based platforms, you might use something like

set PYTHONPATH=C:\path\to\pyal\:$PYTHONPATH

to define the PYTHONPATH on a command shell. On Linux/Unix, use

export PYTHONPATH=/path/to/pyal:$PYTHONPATH

For bourne shell compatibles or

setenv PYTHONPATH /path/to/pyal:$PYTHONPATH

for C shell compatibles. You can omit the :$PYTHONPATH`, if you did not use it
so far and if your environment settings do not define it.

Note

If you are using IronPython, use IRONPYTHONPATH instead of
PYTHONPATH.

Notes on Mercurial usage

The Mercurial version of PyAL is not intended to be used in a production
environment. Interfaces may change from one checkin to another, methods,
classes or modules can be broken and so on. If you want more reliable code,
please refer to the official releases.

Integrating PyAL

PyAL consists of two modules, openal, which is a plain 1:1 API wrapper
around the OpenAL 1.1 specification, and openal.audio, which contains
some high-level audio classes and helper functions, which use the OpenAL
wrapper.

Both modules are implemented in a way that shall make it easy for you to
integrate and deploy them with your own software projects. You can rely on PyAL
as third-party package, so that the user needs to install it before he can use
your software. Alternatively, you can just copy both modules into your project,
shipping them within your own project bundle.

Importing

The openal module relies on an external OpenAL library which it can
access for creating the wrapper functions. This means that the user needs to
have OpenAL installed or that you ship an OpenAL library with your project.

If the user has an OpenAL library installed on the target system, the
ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] hooks of openal try to find it in the OS-specific standard
locations via ctypes.util.find_library() [http://docs.python.org/library/ctypes.html#ctypes.util.find_library]. If you are going to ship your
own OpenAL library with the project or can not rely on the standard mechanism
of ctypes [http://docs.python.org/library/ctypes.html#module-ctypes], it is also possible to set the environment variable
PYAL_DLL_PATH, which shall point to the directory of the OpenAL
library.

Note

PYAL_DLL_PATH is preferred over the standard mechanism. That said,
if the module finds a OpenAL library in PYAL_DLL_PATH, it will try
to use that one in the first place, before using any OpenAL library
installed on the target system.

Let’s assume, you ship your own library OpenAL.dll within your project
location fancy_project/third_party. You can set the environment variable
PYAL_DLL_PATH before starting Python.

Win32 platforms
set PYAL_DLL_PATH=C:\path\to\fancy_project\third_party

Unix/Posix-alike environments - bourne shells export
PYAL_DLL_PATH=/path/to/fancy_project/third_party

Unix/Posix-alike environments - C shells setenv PYAL_DLL_PATH
/path/to/fancy_project/third_party

You also can set the environment variable within Python using
os.environ [http://docs.python.org/library/os.html#os.environ].

os.environ["PYAL_DLL_PATH"] = "C:\\path\\to\\fancy_project\\third_party"
os.environ["PYAL_DLL_PATH"] = "/path/to/fancy_project/third_party"

Note

If you aim to integrate openal directly into your software and do not
want or are not allowed to change the environment variables, you can
also change the os.getenv("PYAL_DLL_PATH") query within the openal.py
file to point to the directory, in which you keep the DLL.

Direct OpenAL interaction

openal is a simple (really, really simple) wrapper around the bindings
offered by the OpenAL 1.1 specification. Each constant, type and function
defined by the standard can be found within openal. There are no
additional object structures, safety nets or whatever else, so that you can
transfer code written using openal easily to any other platform in a 1:1
manner.

A brief example in C code:

#include <AL/al.h>
#include <AL/alc.h>

int main(int argc, char *argv[]) {
 ALuint source;
 ALCdevice *device;
 ALCcontext *context;

 device = alcOpenDevice(NULL);
 if (device == NULL)
 {
 ALenum error = alcGetError();
 /* do something with the error */
 return -1;
 }
 /* Omit error checking */
 context = alcCreateContext(device, NULL);
 alcMakeContextCurrent(context);

 /* Do more things */
 alGenSources(1, &source);
 alSourcef(source, AL_PITCH, 1);
 alSourcef(source, AL_GAIN, 1);
 alSource3f(source, AL_POSITION, 10, 0, 0);
 alSource3f(source, AL_VELOCITY, 0, 0, 0);
 alSourcei(source, AL_LOOPING, 1);

 alDeleteSources(1, &source);
 alcDestroyContext(context);
 alcCloseDevice(device);
 return 0;
}

Doing the same in Python:

from openal import al, alc # imports all relevant AL and ALC functions

def main():
 source = al.ALuint()
 device = alc.alcOpenDevice(None)
 if not device:
 error = alc.alcGetError()
 # do something with the error, which is a ctypes value
 return -1
 # Omit error checking
 context = alc.alcCreateContext(device, None)
 alc.alcMakeContextCurrent(context)

 # Do more things
 al.alGenSources(1, source)
 al.alSourcef(source, al.AL_PITCH, 1)
 al.alSourcef(source, al.AL_GAIN, 1)
 al.alSource3f(source, al.AL_POSITION, 10, 0, 0)
 al.alSource3f(source, al.AL_VELOCITY, 0, 0, 0)
 al.alSourcei(source, al.AL_LOOPING, 1)

 al.alDeleteSources(1, source)
 alc.alcDestroyContext(context)
 alc.alcCloseDevice(device)
 return 0

if __name__ == "__main__":
 raise SystemExit(main())

This does not feel very pythonic, does it? As initially said, openal is a
really simple, really thin wrapper around the OpenAL functions. If you want a
more advanced access to 3D positional audio, you might want to read on about
openal.audio.

openal.audio - advanced sound support

openal.audio is a set of advanced, pythonic classes for 3D positional
audio support via the OpenAL standard. It utilises openal, but hides all
the ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] related, sequential programming workflow from you. It is
designed to be non-invasive within a component-based application.

At least three classes need to be used for playing back audio data.
SoundSink handles the audio device connection and controls the overall
playback mechanisms. The SoundSource represents an in-application
object that emits sounds and a SoundData contains the PCM audio data
to be played.

Device handling

To actually play back sound or to stream sound to a third-party system (e.g. a
sound server or file), an audio output device needs to be opened. It usually
allows the software to access the audio hardware via the operating system, so
that audio data can be recorded or played back.

>>> sink = SoundSink() # Open the default audio output device
>>> sink = SoundSink("oss") # Open the OSS audio output device
>>> sink = SoundSink("winmm") # Open the Windows MM audio output device
...

Note

Depending on what to accomplish and what kind of quality for audio output to
have, you might want to use a specific audio output device to be passed as
argument to the SoundSink constructor.

It is possible to create multiple SoundSink instances for the same
device. OpenAL specifies an additional device-dependent execution context, so
that multiple contexts (with e.g. different settings) can be used on one
device. Likewise, multiple SoundSink objects can use the same device,
while each of them uses its own execution context.

Note

Several OpenAL functions perform context-specific operations. If you mix
function calls from openal with the openal.audio
module, you should ensure that the correct SoundSink is activated
via SoundSink.activate().

Placing the listener

The OpenAL standard supports 3D positional audio, so that a source of sound can
be placed anywhere relative to the listener (the user of the application or
some in-application avatar).

[image: _images/openalaudio.png]
The image above shows a listener surrounded by three sources of sound. Two are
in front of them, while one is behind the listener, moving from left to right.

OpenAL only knows about a single listener at each time. Each SoundSink
can manage its own listener, which represents the user or in-application
avatar. As such, it represents the ‘pick-up’ point of sounds.

Placing and moving the listener (as well as sound sources in OpenAL) is done in
a RHS coordinate system. That said, the horizontal extent of your monitor
represents the x-axis, the vertical the y-axis and the visual line between your
eyes and the monitor surface reprensents the z-axis.

[image: _images/coordinate_rhs.png]
It is crucial to understand how placing and moving sound sources and the
listener will influence the audio experience. By default, the listener for each
individual SoundSink is placed at the center of the coordinate system,
(0, 0, 0). It does not move and looks along the z-axis “into” the monitor
(most likely the same direction you are looking at right now).

>>> listener = SoundListener()
>>> listener.position = (0, 0, 0)
>>> listener.velocity = (0, 0, 0)
>>> listener.orientation = (0, 0, -1, 0, 1, 0)
...

[image: _images/listener_default.png]
While the SoundListener.position and SoundListener.velocity are
quite obvious in their doing, namely giving the listener a (initial) position
and movement, SoundListener.orientation denotes the direction the
listener “looks at”. The orientation consists of two components, the general
direction the listener is headed at and rotation. Both are expressed as 3-value
tuples for the x-, y- and z-axis of the coordinate system.

>>> listener.orientation = (0, 0, -1, 0, 1, 0)
>>> # ^^^^^^^^ ^^^^^^^
>>> # direction rotation

	Changing the first 3 values will influence the direction, the listener looks at.

	>>> listener.orientation = (1, 0, 1, 0, 1, 0)

[image: _images/listener_xz.png]
Changing the last 3 values will influence the rotation of the looking direction.

[image: _images/listener_xyz.png]
The orientation defines a orthogonal listening direction, so that any sounds the
user (or avatar) hears, are processed correctly. If you imagine a car driving
by on your right side, while you are looking straight ahead (parallel to the
car’s driving direction), you will hear the car on your right side (with your
right ear receiving the most noise). If you look on the street, following the
car with your eyes and head, the listening experience will differ (since both
ears of you receive the noise in nearly the same way).

Note

Setting the orientation in OpenAL is somehat similar ot OpenGL’s
gluLookAt function, which adjusts the view direction. You might want
to take a look at http://www.glprogramming.com/red/chapter03.html#name2 for
further details about that.

Creating sound sources

A SoundSource represents an object that can emit sounds. It can be any
kind of object and allows you to play any sound, you put into it. In an
application you can enable objects to emit sounds, by binding a
SoundSource to them.:

>>> source = SoundSource()

Todo

more details

Creating and playing sounds

To create and play sounds you use SoundData objects, which contain the
raw PCM data to be played. To play the sound, the SoundData needs to
be queued on a SoundSource, which provides all the necessary
information about the volume, the position relative to the listener and so
on.

>>> wavsound = load_wav_file("vroom.wav")

There are some helper functions, which create SoundData objects from
audio files. If you have a raw PCM data buffer, you can create a
SoundData from it directly.

>>> rawsound = SoundData(pcmbuf, size_of_buf, channels, bitrate, frequency_in_hz)

Queueing the loaded sound is done via the SoundSource.queue() method,
which appends the sound to the source for processing and playback.

>>> wavsound = load_wav_file("vroom.wav")
>>> source.queue(wavsound)

You just need to inform the SoundSink about the SoundSource
afterwards, so that it knows that a new sound emitter is available.

>>> soundsink.play(source)

When you add other sounds to play to the source, they will be picked up
automatically for playback, as long as the SoundSource is not paused
or ran out of something to play.

API

	
class openal.audio.OpenALError([msg=None[, alcdevice=None]])

	An OpenAL specific exception class. If a new OpenALError is created
and no msg is provided, the message will be set a mapped value of
openal.al.alGetError(). If an openal.alc.ALCdevice is
provided as alcdevice, openal.alc.alcGetError() will be used
instead of openal.al.alGetError().

	
class openal.audio.SoundData(data=None, channels=None, bitrate=None, size=None, frequency=None, dformat=None)

	The SoundData consists of a PCM audio data buffer, the audio
frequency and additional format information to allow easy buffering through
OpenAL.

	
channels

	The channel count for the sound data.

	
bitrate

	The bitrate of the sound data.

	
size

	The buffer size in bytes.

	
frequency

	The sound frequency in Hz.

	
data

	The buffered audio data.

	
class openal.audio.SoundListener(position=[0, 0, 0], velocity=[0, 0, 0], orientation=[0, 0, -1, 0, 1, 0])

	A listener object within the 3D audio space.

	
orientation

	The listening orientation as 6-value list.

	
position

	The listener position as 3-value list.

	
velocity

	The movement velocity as 3-value list.

	
gain

	The relative sound volume (perceiptive for the listener).

	
changed

	Indicates, if an attribute has been changed.

	
class openal.audio.SoundSource(gain=1.0, pitch=1.0, position=[0, 0, 0], velocity=[0, 0, 0])

	An object within the application world, which can emit sounds.

	
gain

	The volume gain of the source.

	
pitch

	The pitch of the source.

	
position

	The (initial) position of the source as 3-value tuple in a x-y-z
coordinate system.

	
velocity

	The velocity of the source as 3-value tuple in a x-y-z coordinate system.

	
queue(sounddata : SoundData) → None

	Adds a SoundData audio buffer to the source’s processing and
playback queue.

	
class openal.audio.SoundSink(device=None)

	Audio playback system.

The SoundSink handles audio output for sound sources. It connects to an
audio output device and manages the source settings, their buffer queues
and the playback of them.

	
device

	The used OpenAL openal.alc.ALCdevice.

	
context

	The used openal.alc.ALCcontext.

	
activate() → None

	Activates the SoundSink, marking its context as the
currently active one.

Subsequent OpenAL operations are done in the context of the
SoundSink’s bindings.

	
set_listener(listener : SoundListener) → None

	Sets the listener position for the SoundSink.

Note

This implicitly activates the SoundSink.

	
process_source(source : SoundSource) → None

	Processes a single SoundSource.

Note

This does not activate the SoundSink. If another
SoundSink is active, chances are good that the
source is processed in that SoundSink.

	
process(world, components) → None

	Processes SoundSource components, according to their
SoundSource.request

Note

This implicitly activates the SoundSink.

openal.loaders - loading sounds

Todo

Outline

API

	
openal.loaders.load_file(fname : string) → SoundData

	Loads an audio file into a SoundData object.

	
openal.loaders.load_stream(source : object) → SoundData

	Not implemented yet.

	
openal.loaders.load_wav_file(fname : string) → SoundData

	Loads a WAV audio file into a SoundData object.

Release News

This describes the latest changes between the PyAL releases.

0.2.0

Released on 2013-XX-XX.

	Nothing yet

0.1.0

Released on 2013-04-21.

	Initial Release

Todo list for PyAL

	proper unit tests

	more examples

License

This software is distributed under the Public Domain.

In cases, where the law prohibits the recognition of Public Domain software,
this software can be licensed under the zlib lincese as stated below:

Copyright (C) 2012-2013 Marcus von Appen <marcus@sysfault.org>

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 openal	
 Simple OpenAL wrapper module

 	
 	
 openal.audio	
 Advanced OpenAL audio module

 	
 	
 openal.loaders	
 Easy sound loading supports

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | O
 | P
 | Q
 | S
 | V

A

 	
 	activate() (openal.audio.SoundSink method)

B

 	
 	bitrate (openal.audio.SoundData attribute)

C

 	
 	changed (openal.audio.SoundListener attribute)

 	
 	channels (openal.audio.SoundData attribute)

 	context (openal.audio.SoundSink attribute)

D

 	
 	data (openal.audio.SoundData attribute)

 	
 	device (openal.audio.SoundSink attribute)

E

 	
 	
 environment variable

 	PYAL_DLL_PATH, [1], [2], [3]

F

 	
 	frequency (openal.audio.SoundData attribute)

G

 	
 	gain (openal.audio.SoundListener attribute)

 	(openal.audio.SoundSource attribute)

L

 	
 	load_file() (in module openal.loaders)

 	
 	load_stream() (in module openal.loaders)

 	load_wav_file() (in module openal.loaders)

O

 	
 	openal (module)

 	openal.audio (module)

 	
 	openal.loaders (module)

 	OpenALError (class in openal.audio)

 	orientation (openal.audio.SoundListener attribute)

P

 	
 	pitch (openal.audio.SoundSource attribute)

 	position (openal.audio.SoundListener attribute)

 	(openal.audio.SoundSource attribute)

 	
 	process() (openal.audio.SoundSink method)

 	process_source() (openal.audio.SoundSink method)

 	PYAL_DLL_PATH, [1], [2], [3]

Q

 	
 	queue() (openal.audio.SoundSource method)

S

 	
 	set_listener() (openal.audio.SoundSink method)

 	size (openal.audio.SoundData attribute)

 	SoundData (class in openal.audio)

 	
 	SoundListener (class in openal.audio)

 	SoundSink (class in openal.audio)

 	SoundSource (class in openal.audio)

V

 	
 	velocity (openal.audio.SoundListener attribute)

 	(openal.audio.SoundSource attribute)

 _images/listener_xyz.png
3D View 20 View (Planes)

Default Listener (Position [0,0.0], Velocity [0,0,0], Orientation [(1, -1, 1), (1, 1, 1))}

_images/openalaudio.png
Source Y.

Sound

sound

P

Listener

Source Z

Movement

Sound

>

Source X

_images/coordinate_rhs.png

_static/comment-close.png

_images/listener_default.png
3D View 2D View (Planes)

Default Listener (Position [0,0,0], Velocity [0,0,0], Orientation [(0, 0, -1), (0, 1, 0)1)

_images/listener_xz.png
3D View 2D View (Planes)

Listener (Position [0,0,0], Velocity [0,0,0], Orientation [(1, 0, 1), (0, 1, 0)))

_static/comment-bright.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Welcome to PyAL's documentation!

 		Installing PyAL

 		Prerequisites

 		Installation

 		Trying out

 		Notes on Mercurial usage

 		Integrating PyAL

 		Importing

 		Direct OpenAL interaction

 		openal.audio - advanced sound support

 		Device handling

 		Placing the listener

 		Creating sound sources

 		Creating and playing sounds

 		API

 		openal.loaders - loading sounds

 		API

 		Release News

 		0.2.0

 		0.1.0

 		Todo list for PyAL

 		License

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

