
pyaardvark Documentation
Release 0.1

Kontron Europe GmbH

Oct 15, 2018

Contents

1 Introduction 3
1.1 Simple Example . 3
1.2 Tutorial . 3
1.3 FAQ . 5

2 API 7
2.1 Module Interface . 7
2.2 Constants . 7
2.3 Aardvark Object . 7

3 Indices and tables 9

i

ii

pyaardvark Documentation, Release 0.1

Contents:

Contents 1

pyaardvark Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

The pyaardvark module tries to provide a very simple API to use the Total Phase Aardvark I2C/SPI Host adatper
within your python program.

1.1 Simple Example

In this example we access an I2C-EEPROM on address 0x50 and read the first five bytes of its content:

import pyaardvark

a = pyaardvark.open()
data = a.i2c_master_write_read(0x50, '\x00', 5)
data = b'\x00\x01\x02\x03\x04'
a.close()

Easy, huh?

For those, who are not familiar with I2C-EEPROM accesses: You first write the offset to read from to the device
(0x00 in the example above) and then you read the desired amount of bytes from the device. The offset counter will
automatically be incremened. Therefore, in the example above you read the bytes at the offsets 0, 1, 2, 3 and 4.
Please note, that there are byte- and word-addressable EEPROMs. In this example we assumed a byte-addressable
one, because our offset is only one byte.

1.2 Tutorial

1.2.1 Opening an Aardvark device

You have three choices to open your Aardvark device. The first is the one you saw in the simple example above:

a = pyaardvark.open()

3

http://www.totalphase.com

pyaardvark Documentation, Release 0.1

If you have only one device connected to your machine, this is all you have to do. pyaardvark.open() automat-
ically uses the first device it finds.

If you have multiple devices connected, you can either use the port parameter:

a = pyaardvark.open(1)

or the serial number, which you can find on the device itself or in your USB properties of your machine:

a = pyaardvark.open(serial_number='1111-222222')

In all cases pyaardvark.open() returns an pyaardvark.Aardvark object, which then can be used to access
the host adapter.

1.2.2 Using the context manager protocol to open an Aardvark device

All methods of the pyaardvark.Aardvark object can raise an IOError. Instead of using try .. except .. finally
.. you can use the with statement to open the device. Closing the device will then happen automatically after the block:

with pyaardvark.open() as a:
print a.api_version

no need for a.close() here

1.2.3 Accessing your I2C and SPI devices

To issue I2C or SPI transactions you have to first configure the adapter in the corresponding output mode. Each
interface, I2C or SPI, can either be GPIOs or the actual interface. So if, for example you want to use both I2C and SPI
at the same time and none of them as GPIOs:

a.enable_i2c = True
a.enable_spi = True

After you enabled the I2C interface you can issue transactions on the bus:

a.i2c_master_write(0x50, b'\x00\x02\0x00\x00')

This will write adress device 0x50 and sends the byte sequence 0x00, 0x02, 0x00, 0x00 to it. To read from a de-
vice use pyaardvark.Aardvark.i2c_master_read(). Eventually, both can be combined and issued in one
transaction: pyaardvark.Aardvark.i2c_master_write_read().

1.2.4 Closing the device

Releasing the device can be done with pyaardvark.Aardvark.close():

a.close()

4 Chapter 1. Introduction

pyaardvark Documentation, Release 0.1

1.3 FAQ

1.3.1 On pyaardvark datatypes

Most parameters of the API take bytes (eg. pyaardvark.Aardvark.i2c_master_write_read()). Former
versions of pyaardvark used strings, which where handled differently in Python 2 and Python 3. For this reason,
pyaardvark now uses the bytes object to encapsulate data. For Python 2 compatibility, the bytes backport is used
(newbytes). This simplifies the data handling because you don’t have to explicitly convert the individual characters
of the string to integers (using ord()) anymore.

Warning: Therefore the following is only valid for older pyaardvark versions (=< 0.5).

Iterables to strings using the built-in chr function:

data = (0x01, 0xaf, 0xff)
data = ''.join(chr(c) for c in data) # data is '\x01\xaf\xff'
a.i2c_master_write(0x50, data) # writes 1h, AFh, FFh to address 50h

To convert a character/string to a number you can use the build-in ord function:

data_str = a.i2c_master_read(0x50, 3) # data_str is '\xc0\x01\xff'
data = [ord(b) for b in data_str] # data is [192, 1, 255]

1.3. FAQ 5

pyaardvark Documentation, Release 0.1

6 Chapter 1. Introduction

CHAPTER 2

API

2.1 Module Interface

2.2 Constants

2.3 Aardvark Object

7

pyaardvark Documentation, Release 0.1

8 Chapter 2. API

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

9

	Introduction
	Simple Example
	Tutorial
	FAQ

	API
	Module Interface
	Constants
	Aardvark Object

	Indices and tables

