py_search Documentation
Release 1.2.0

Christopher J. MacLellan

Oct 09, 2017

Contents

1 Installation

2 Important Links
2.1 Py-Search Package

22 TestProblems
23 Exampleso e

3 Indices and tables

Python Module Index

......................... 17

py_search Documentation, Release 1.2.0

This is a Python library of algorithms that implements various search algorithms written by Christopher MacLellan
(http://www.christopia.net). In particular, there are uninformed, informed, and optimization techniques implemented
with a standard interface.

Contents 1

http://www.christopia.net

py_search Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Installation

You can install this software using pip:

’pip install -U py_search

You can install the latest version of the code directly from github:

’pip install -U git+https://github.com/cmaclell/py_search@master

py_search Documentation, Release 1.2.0

4 Chapter 1. Installation

CHAPTER 2

Important Links

* Source code: https://github.com/cmaclell/py_search
e Documentation: http://py_search.readthedocs.org

Contents:

Py-Search Package

Base

This module contains the data_structures used in py_search. In particular, it contains the the Prob1em class, which is
used to represent the different search problems, and the AnnotatedProblem class, which wraps around a specific
problem and keeps track of the number of core method calls.

At a lower level this module also contains the Node class, which is used to represent a node in the search space.

Finally, the module contains the Fringe class, and its instantiations (FIFOQueue, LIFOQueue, and
PrioritySet). A Fringe is used to structure the way a search space is explored.

class py_search.base.AnnotatedProblem (problem)
Bases: py_search.base.Problem

A Problem class that wraps around another Problem and keeps stats on nodes expanded and goal tests performed.

goal_test (node)
A wrapper for the goal_test method that keeps track of the number of goal_tests performed.

node_value (node)
A wraper for the node value method that keeps track of the number of times a node value was calculated.

random_node ()
A wrapper for the random_node method.

https://github.com/cmaclell/py_search
http://py_search.readthedocs.org

py_search Documentation, Release 1.2.0

random_successor (node)
A wrapper for the random_successor method that keeps track of the number of nodes expanded.

successors (node)
A wrapper for the successor method that keeps track of the number of nodes expanded.

class py_search.base.FIFOQueue
Bases: py__search.base.Fringe

A first-in-first-out queue. Used to get breadth first search behavior.

>>> fifo = FIFOQueue ()
>>> fifo.push(0)

>>> fifo.push (1)

>>> fifo.push(2)

>>> print (fifo.pop())
0

>>> print (fifo.pop())

>>> print (fifo.pop())

pop ()
push (node)
remove (node)

class py_search.base.Fringe
Bases: object

A template for a fringe class. Used to control the strategy of different search approaches.

extend (nodes)
Given an iterator (nodes) adds all the nodes to the collection.

pop ()
Pops a node off the collection.

push (node)
Adds one node to the collection.

class py_search.base.LIFOQueue
Bases: py__search.base.FIFOQueue

A last-in-first-out queue. Used to get depth first search behavior.

>>> lifo = LIFOQueue ()
>>> lifo.push(0)

>>> lifo.push(1l)

>>> lifo.push(2)

>>> print (lifo.pop())
2

>>> print (lifo.pop())

>>> print (lifo.pop())

pop ()

class py_search.base.Node (state, parent=None, action=None, node_cost=0, extra=None)
Bases: object

6 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

A class to represent a node in the search. This node stores state information, path to the state, cost of the node,
depth of the node, and any extra information.

Parameters

* state (object for tree search and hashable object for graph
search) — the state at this node

* parent (Node) — the node from which the current node was generated

* action (typically a string, but can be any object) — the action per-
formed to transition from parent to current.

* cost (float) —the cost of reaching the current node

* extra (object) — extra information to store in this node, typically used to store non-
hashable information about the state.

cost ()

Returns the cost of the current node.

depth ()

Returns the depth of the current node. Uses a loop to compute depth (no tail recursion in python).

path ()

Returns a path (tuple of actions) from the initial to current node.

class py_search.base.PriorityQueue (node_value=<function <lambda>>, cost_limit=inf,

max_length=inf)

Bases: py_search.base.Fringe

A priority queue that sorts elements by their value. Always returns the minimum value item. A
PriorityQueue accepts a node_value function, a cost_limit (nodes with a value greater than this limit will
not be added) and a max_length parameter. If adding an item ever causes the size to exceed the max_length then
the worst nodes are removed until the list is equal to max_length.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
3

>>>

>>>

>>>

pgq = PriorityQueue (node_value=lambda x: x, max_length=3)
pg.push (6)

pg.push (0)

pg.push(2)

pg.push (6)

pg.push (7)

print (len(pq))

print (pg.pop ())
print (pg.pop())

print (pg.pop())

Parameters

* node_value (a function with one parameter for node)-The node eval-
uation function (defaults to lambda x: x.cost())

e cost_limit (float) — the maximum value for elements in the set, if an item exceeds
this limit then it will not be added (defaults to float ('inf"))

* max_length (int or float ('inf')) — The maximum length of the list (defaults to
float ('inf'")

2.1. Py-Search Package 7

py_search Documentation, Release 1.2.0

clear ()
Empties the list.

peek ()
Returns the best node.

peek_value ()
Returns the value of the best node.

pop ()
Pop the best value from the priority queue.

push (node)
Push a node into the priority queue. If the node exceeds the cost limit then it is not added. If the max_length
is exceeded by adding the node, then the worst node is discarded from the set.

update_cost_limit (cost_limit)
Updates the cost limit and removes any nodes that violate the new limit.

class py_search.base.Problem (initial, parent=None, action=None, initial_cost=0, extra=None)
Bases: object

The basic problem to solve. The main functions that must be defined include successors and goal_test. Some
search techniques also require the random_successor and predecessors methods to be implemented.

goal_test (node)
Returns true if a goal state is found. This is typically used not used by the local search / optimization
techniques.

node_value (node)
Returns the the value of the current node. This is the value being minimized by the search. By default the
cost is used, but this function can be overloaded to include a heuristic.

random_node ()
This method returns a random node in the search space. This is used by some of the local search / opti-
mization techniques.

random_successor (node)
This method should return a single successor node. This is used by some of the local search / optimization
techniques.

successors (node)
An iterator that yields all of the successors of the current node.

Uninformed Search

This module includes the core search methods tree search() and graph_search and the pri-
mary uninformed search techniques: depth_first_search(), breadth_first_search(), and
iterative_deepening_search ().

py_search.uninformed.breadth_ first_search (problem, depth_limit=inf, search=<function

graph_search>)
A simple implementation of depth-first search using a FIFO queue.

Parameters
* problem (Problem)— The problem to solve.

* search (graph_search () or :func‘tree_search‘) — A search algorithm to use (defaults
to graph_search).

8 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

* depth_limit (int or float ('inf'))— A limit for the depth of the search tree. If
set to float(‘inf”), then depth is unlimited.

py_search.uninformed.depth_first_search (problem, depth_limit=inf, search=<function

graph_search>)
A simple implementation of depth-first search using a LIFO queue.

Parameters
* problem (Problem)— The problem to solve.

* search (graph_search () or :func‘tree_search‘) — A search algorithm to use (defaults
to graph_search).

* depth_limit (int or float ('inf'))— A limit for the depth of the search tree. If
set to float(‘inf”), then depth is unlimited.

py_search.uninformed.graph_search (problem, fringe, depth_limit=inf’)
Perform graph search (i.e., no duplicate states) using the given fringe class. Returns an iterator to the solutions,
so more than one solution can be found.

Note that the closed list will allow re-expansion of nodes with a lower cost.
Parameters
* problem (Problem)— The problem to solve.
* fringe (fringe) — The fringe class to use.

* depth_limit (int or float ('inf'))— A limit for the depth of the search tree. If
set to float(‘inf”), then depth is unlimited.

py_search.uninformed.iterative_deepening search (problem, search=<function
graph_search>, initial_depth_limit=0,

depth_inc=1, max_depth_limit=inf)
An implementation of iterative deepening search. This search is basically depth-limited depth first up to the

depth limit. If no solution is found at the current depth limit then the depth limit is increased by depth_inc and
the depth-limited depth first search is restarted.

Parameters
* problem (Problem) — The problem to solve.

* search (graph_search () or :func‘tree_search‘) — A search algorithm to use (defaults
to graph_search).

* initial_depth_limit (int or float ('inf'))- The initial depth limit for the
search.

* depth_inc (int) - The amount to increase the depth limit after failure.

* max_depth_limit (int or float ('inf'))— The maximum depth limit (default
value of float(‘inf’))

py_search.uninformed.tree_search (problem, fringe, depth_limit=inf)
Perform tree search (i.e., search where states might be duplicated) using the given fringe class.Returns an itera-
tors to the solutions, so more than one solution can be found.

Parameters
* problem (Problem) — The problem to solve.
* fringe (fringe) — The fringe class to use.

* depth_1limit (int or float ('inf'))— A limit for the depth of the search tree. If
set to float(‘inf”), then depth is unlimited.

2.1. Py-Search Package 9

py_search Documentation, Release 1.2.0

Informed Search

This module includes the informed search techniques: best_first_search() (e., A¥*),
iterative_deepening best_first_search () (.e., IDA¥), beam search (), and
widening_ beam search ().

py_search.informed.beam_search (problem, beam_width=1, graph_search=True)
A variant of breadth-first search where all nodes in the fringe are expanded, but the resulting new fringe is
limited to have length beam_width, where the nodes with the worst value are dropped. The default beam width
is 1, which yields greedy best-first search (i.e., hill climbing).

There are different ways to implement beam search, namely best-first beam search and breadth-first beam search.
According to:

Wilt, C. M., Thayer, J. T., & Ruml, W. (2010). A comparison of greedy search algorithms. In Third
Annual Symposium on Combinatorial Search.

breadth-first beam search almost always performs better. They find that allowing the search to re-expand dupli-
cate nodes if they have a lower cost improves search performance. Thus, our implementation is a breadth-first
beam search that re-expand duplicate nodes with lower cost.

Parameters
* problem (Problem)— The problem to solve.
¢ beam_width (int) — The size of the beam (defaults to 1).
* graph_search (boolean)— whether to use graph or tree search.

py_search.informed.best_first_search (problem, search=<function graph_search>,
cost_limit=inf)
Cost limited best-first search. By default the cost limit is set to float(‘inf’), so it is identical to traditional best-first
search. This implementation uses a priority set (i.e., a sorted list without duplicates) to maintain the fringe.

If the problem.node_value is the cost to reach the node plus an admissible heuristic estimate of the distance from
the node to the goal, then this is the A* algorithm.

Parameters
* problem (Problem)— The problem to solve.

* search (graph_search () or :func‘tree_search®) — A search algorithm to use (defaults
to graph_search).

* cost_limit (float) - The cost limit for the search (default = float(‘inf’))

py_search.informed.iterative_deepening best_first_search (problem,
search=<function
graph_search>, ini-
tial_cost_limit=0,
cost_inc=1,
max_cost_limit=inf)
A variant of iterative deepening that uses cost to determine the limit for expansion. When search fails, the cost
limit is increased according to cost_inc. If the heuristic is admissible, then this is guranteed to find the best
solution (similar to best first serach), but uses less memory.

If the problem.node_value is the cost to reach the node plus an admissible heuristic estimate of the distance from
the node to the goal, then this is the IDA* algorithm.

Parameters

* problem (Problem)— The problem to solve.

10 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

* search (graph_search () or :func‘tree_search‘) — A search algorithm to use (defaults
to graph_search).

e initial_cost_limit (float)— The initial cost limit for the search.
e cost_inc (float) - The amount to increase the cost limit after failure.
* max_cost_limit (f1oat) - The maximum cost limit (default value of float(‘inf’))

py_search.informed.widening_beam_search (problem, initial_beam_width=1,

max_beam_width=1000, graph_search=True)
A variant of beam search that successively increase the beam width when search fails. This ensures that if a

solution exists, and you’re using graph search, and the solution space is finite, then that beam search will find it.

However, if you are looking for multiple solutions, then it might return duplicates as the width is increased. As
the beam width increase, behavior is closer and closer to breadth-first search.

Parameters
* problem (Problem)— The problem to solve.
e initial_beam width (int) - The initial size of the beam (defaults to 1).

* max_beam width (int) - The maximum size of the beam (defaults to 1000).

Optimization / Local Search

This module contains the local search / optimization techniques. Instead of trying to find a goal state, these algorithms
try to find the lowest cost state.

py_search.optimization.branch_and_bound (problem, graph_search=True, depth_limit=inf)
An exhaustive optimization technique that is guranteed to give the best solution. In general the algorithm starts
with some (potentially non-optimal) solution. Then it uses the cost of the current best solution to prune branches
of the search that do not have any chance of being better than this solution (i.e., that have a node_value > current
best cost).

In this implementation, node_value should provide an admissible lower bound on the cost of solutions reachable
from the provided node. If node_value is inadmissible, then optimality guarantees are lost.

Also, if the search space is infinite and/or the node_value function provides too little guidance (e.g., node_value
= float(‘-inf”)), then the search might never terminate. To counter this, a depth_limit can be provided that stops
expanding nodes after the provided depth. This will ensure the search is finite and guaranteed to terminate.

Finally, the problem.goal_test function can be used to terminate search early if a good enough solution has been
found. If goal_test(node) return True, then search is immediately terminated and the node is returned.

Note, the current implementation uses best-first search via a priority queue data structure.
Parameters
* problem (py_search.base.Problem)— The problem to solve.

* graph_search (Boolean)— Whether to use graph search (no duplicates) or tree search
(duplicates)

py_search.optimization.hill_climbing (problem, random_restarts=0, max_sideways=0,

graph_search=True)
Probably the simplest optimization approach. It expands the list of neighbors and chooses the best neighbor

(steepest descent hill climbing).

Default configuration should yield similar behavior to local_ beam search () when it has a width of 1, but
doesn’t need to maintain alternatives, so might use slightly less memory (just stores the best node instead of
limited length priority queue).

2.1. Py-Search Package 11

py_search Documentation, Release 1.2.0

If graph_search is true (the default), then a closed list is maintained. This is imporant for search spaces with
platues because it keeps the algorithm from reexpanding neighbors with the same value and getting stuck in a
loop.

If random_restarts > 0, then search is restarted multiple times. This can be useful for getting out of local
minimums.

The problem.goal_test function can be used to terminate search early if a good enough solution has been found.
If goal_test(node) return True, then search is immediately terminated and the node is returned.

Parameters
* problem (py_search.base.Problem)— The problem to solve.

* random_restarts (int) — The number of times to restart search. The initial state is
used for the first search and subsequent starts begin at a random state.

* max_sideways (int) — Specifies the max number of contiguous sideways moves.

* graph_search (Boolean)— Whether to use graph search (no duplicates) or tree search
(duplicates)

py_search.optimization.local_beam_search (problem, beam_width=1, max_sideways=0,

graph_search=True)
A variant of py_search.informed_search.beam_search () that can be applied to local search prob-

lems. When the beam width of 1 this approach yields behavior similar to hill_climbing ().

The problem.goal_test function can be used to terminate search early if a good enough solution has been found.
If goal_test(node) return True, then search is immediately terminated and the node is returned.

Parameters
* problem (py_search.base.Problem)— The problem to solve.
e beam_width (int) — The size of the search beam.
* max_sideways (int)— Specifies the max number of contiguous sideways moves.

* graph_search (Boolean)— Whether to use graph search (no duplicates) or tree search

(duplicates)
py_search.optimization.random () — X in the interval [0, 1).
py_search.optimization.simulated annealing (problem, temp_factor=0.95,
temp_length=None, initial_temp=None,
init_prob=0.4, min_accept=0.02,

min_change=1e-00, limit=inf)
A more complicated optimization technique. At each iteration a random successor is expanded if it is better
than the current node. If the random successor is not better than the current node, then it is expanded with some

probability based on the temperature.

Used the formulation of simulated annealing found in: Johnson, D. S., Aragon, C. R., McGeoch, L. A, &
Schevon, C. (1989). Optimization by simulated annealing: an experimental evaluation; part I, graph parti-
tioning. Operations research, 37(6), 865-892.

Also, the problem.goal_test function can be used to terminate search early if a good enough solution has been
found. If goal_test(node) return True, then search is immediately terminated and the node is returned.

Parameters
* problem (py_search.base.Problem)— The problem to solve.

* temp_factor (float)— The factor for geometric cooling, a value between 0 and 1, but
usually very close to 1.

12 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

* temp_length (int)— The number of nodes to expand at each temperature. If set to None
(the default) then it is automatically chosen to be equal to the length of the successors list.

* initial temp (float or None) — The initial temperature for the annealing. The
number is objective function specific. If set to None (the default), then a semi-random walk
is used to select an initial temperature that will yield approx. init_prob acceptance rate for
worse states.

* min_accept (float between 0 and 1) - The fraction of states that must be ac-
cepted in temp_length iterations (taken from a single temperature) to not be frozen. Every
time this is not exceeded, the frozen counter is incremented until it hits 5. If a better state is
found, then the frozen counter is reset to 0.

* min_change (float) — The amount of change that must be achieved in temp_length
iterations (taken from a single temperature) to not be frozen. Everytime this is not exceeded,
the frozen counter is incremented until it hits 5. If a better state is found, then the frozen
counter is reset to 0.

e limit (float) — The maximum number of iterations (random neighbors) to expand be-
fore stopping.

Test Problems

Eight Puzzle

class py_search.problems.eight_puzzle.EightPuzzle
An eight puzzle class that can be used to test different search algorithms. When first created the puzzle is in the
solved state.

copy ()
Makes a deep copy of an EightPuzzle object.

executeAction (action)
Executes an action to the EightPuzzle object.

Parameters action ("up”, "left", "right", or "down")- the action to execute

legalActions ()
Returns an iterator to the legal actions that can be executed in the current state.

randomize (num_shuffles)
Randomizes an EightPuzzle by executing a random action num_suffles times.

class py_search.problems.eight_puzzle.EightPuzzleProblem (initial, parent=None, ac-
tion=None, initial_cost=0,

extra=None)
Bases: py__search.base.Problem

This class wraps around an Eight Puzzle object and instantiates the successor and goal test functions necessary
for conducting search.

This class also implements an heuristic function which is used to compute the value for each successor as cost
to node + heuristic estimate of distance to goal. This yield A* search when used with best first search or a more
greedy variant when used with Beam Search.

goal_test (node)
Check if the goal state has been reached.

2.2. Test Problems 13

py_search Documentation, Release 1.2.0

misplaced_tile_heuristic (state)
The misplaced tiles heuristic.

node_value (node)
The function used to compute the value of a node.

successors (node)
Computes successors and computes the value of the node as cost + heuristic, which yields A* search when
using best first search.

class py_search.problems.eight_puzzle.NoHeuristic (initial, parent=None, action=None, ini-

tial_cost=0, extra=None)
Bases: py_search.problems.eight_puzzle.EightPuzzleProblem

A variation on the Eight Puzzle Problem that has a heuristic for 0. This yields something equivelent to dijkstra’s
algorithm when used with best first search and a more greedy variant when used with Beam Search.

node_value (node)

N-Queens Problem

class py_search.problems.nqueens.LocalnQueensProblem (initial, parent=None, ac-
tion=None, initial_cost=0, ex-
tra=None)

Bases: py_search.base.Problem

A class that wraps around the nQueens object. This version of the problem starts with an empty board and then
progressively adds queens.

goal_test (node)
Check if the goal state (i.e., no queen conflicts) has been reached.

random_node ()

random_successor (node)
Generate all permutations of rows.

successors (node)
Generate all permutations of rows.

class py_search.problems.nqueens.nQueens (n)
An nQueens puzzle object

copy ()
Makes a deep copy of an nQueens object.

num_conflicts ()
Returns a count of the number of conflicts. First checks if there are column conflicts (row conflicts are
impossible because of representation). Then checks for diagonals.

randomize ()
Randomizes an nQueens by shuffling a list of row to columns assignments.

class py_search.problems.nqueens.nQueensProblem (initial, parent=None, action=None, ini-
tial_cost=0, extra=None)
Bases: py_search.base.Problem
A class that wraps around the nQueens object. This version of the problem starts with an empty board and then
progressively adds queens.

goal_test (node)
Check if the goal state (i.e., no queen conflicts) has been reached.

14 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

node_value (node)
The function used to compute the value of a node.

successors (node)
Generate all possible next queen states.

Assignment Problem

class py_search.problems.assignment_problem.AssignmentProblem (initial, parent=None,

action=None, ini-
tial_cost=0, ex-
tra=None)

Bases: py._search.base.Problem

A tree search version of the assignment problem. Starts with an initially empty assignment and then incremen-
tally builds the assignment up adding one assignment per expansion.

goal_test (node)
A test of whether a complete assignment has been reached.

min_cost_heuristic (node)
A huristic specifying the minimum cost that could be achieved for unassigned rows.

node_value (node)
The value of a node is the combination of the node cost and the min_cost heuristic

successors (node)
An iterator that yields the sucessors of the provided node.

class py_search.problems.assignment_problem.LocalAssignmentProblem (initial, par-

ent=None,
action=None,
ini-
tial_cost=0,
extra=None)

Bases: py__search.base.Problem

This class represents a local search version of the assignment problem. IL.e., a random state is generated to start

the search and then neighbors of the state can be expanded in order to reduce the solution cost.

goal_test (node)

node_value (node)
Returns a lower bound on the solution cost reachable from the given node (or its children)

random_node ()
Generates a node that has a random assignment.

random_successor (node)
A function that returns a random successor of the current node. This is used by the simulated annealing
function, so it doesn’t have to expand all successors.

A successor is generated by randomly flipping a pair of row to column assignments.

successors (node)
Generates successor states by flipping each pair of row to column assignments.

py_search.problems.assignment_problem.cost (assignment, costs)
Given an assignemnt and a cost matrix, returns the cost of the assignment.

py_search.problems.assignment_problem.print_matrix (m)
Print a matrix

2.2. Test Problems 15

py_search Documentation, Release 1.2.0

py_search.problems.assignment_problem.random_assignment (n)
Returns a random valid assignment for an n X n matrix

py_search.problems.assignment_problem.random matrix (n)
Generates an a list of list of floats (representing an n X n matrix) where the values have mean 0 and std 1.

This is used as cost matrix for an assignment problem.

Graph Partition Problem

class py_search.problems.graph_partition.LocalGraphPartitionProblem (initial, par-

ent=None,
ac-
tion=None,
ini-
tial_cost=0,
ex-
tra=None)

Bases: py._search.base.Problem

This class represents a local search version of the graph partition problem. l.e., a random state is generated to
start the search and then neighbors of the state can be expanded in order to reduce the solution cost.

goal_test (node)
The search should never terminate early.

node_value (node)
This function is used by the branch_and_bound approach to determine whether successor nodes have the
potential to be better than the current node. If this just returns the node cost, then the algorithm will explore
nodes greedily.

random node ()
Generates a node that has a random assignment.

random_successor (node)
A function that returns a random successor of the current node. This is used by the simulated annealing
function, so it doesn’t have to expand all successors.

A successor is generated by randomly flipping a pair of row to column assignments.

successors (node)
Generates successor states by flipping each pair of row to column assignments.

py_search.problems.graph_partition.cutsize (E, p)

py_search.problems.graph_partition.generate_graph (n,p)
Generates a random graph for graph partitioning. n specifies the number of nodes and p specifies the probability
that any pair of nodes has a transition.

py_search.problems.graph_partition.random () — X in the interval [0, 1).

py_search.problems.graph_partition.random_partition (V)

16 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

Examples

Eight Puzzle Search Example

from py search.problems.eight_puzzle import EightPuzzle

from py_ search.problems.eight_puzzle import EightPuzzleProblem
from py search.utils import compare_searches

from py_ search.uninformed import depth_first_search

from py_ search.uninformed import breadth_first_search

from py_ search.uninformed import iterative_deepening_search
from py search.informed import best_first_search

from py search.informed import iterative_deepening_best_first_search
from py_ search.informed import widening_beam_search

puzzle = EightPuzzle ()

puzzle.randomize (20)

initial = puzzle

print ("Eight puzzle being solved:")

print (puzzle)

print ()

In [1]:

compare_searches (problems=[EightPuzzleProblem(initial)],
searches=[depth_first_search,
breadth_first_search,
iterative_deepening_search,
best_first_search,
iterative_deepening_best_first_search,
widening_beam_search])

Eight puzzle being solved:

245

318

670

0)

Problem Search Alg Goal Tests Nodes_,
—Expanded Nodes Evaluated Solution Cost Runtime
e

EightPuzzleProblem depth_first_search 220 L
—635 0 202 0.0118

EightPuzzleProblem breadth_first_search 1716 o
—4596 0 12 0.1117

EightPuzzleProblem iterative_deepening_search 3469 o
—5651 0 12 0.1458

EightPuzzleProblem best_first_search 78 L
—204 124 12 0.0059

EightPuzzleProblem iterative_deepening best_first_search 262 o
—694 446 12 0.0183

EightPuzzleProblem widening beam_ search 475 .
—1330 843 46 0.0295

N-Queens Search Example

In [1]: from py_search.problems.nqueens import nQueens
from py_ search.problems.nqueens import nQueensProblem

from py_ search.problems.nqueens import LocalnQueensProblem

2.3. Examples 17

py_search Documentation, Release 1.2.0

from py_ search.uninformed import depth_first_search
from py_search.uninformed import breadth_first_search
from py search.informed import best_first_search

from py search.informed import beam_ search

from py search.optimization import simulated_annealing
from py search.optimization import hill_climbing

from py search.optimization import branch_and_bound
from py_ search.optimization import local_beam_search
from py_ search.utils import compare_searches

print ("#HEHHHEFEFEEEFEEEFHE")

print ("BACKTRACKING SEARCH")

print ("HHEHFHFHEFHSEFHEEEHAE")

initial = nQueens (5)

print ("Empty %i-Queens Problem" % initial.n)

print (initial)

print ()

compare_searches (problems=[nQueensProblem(initial)],

searches=[depth_first_search,

breadth_first_search,
best_first_search,
beam_search])

print ()

print ("#HHEHHHFEHEFESFHFEFFSEFESEFHE")

print ("LOCAL SEARCH / OPTIMZATION")

print ("#EHHHEHEFEESH S AR EFESEEHET)

initial = nQueens (10)
initial.randomize ()
cost = initial.num_conflicts()

o

print ("Random $i-Queens Problem" % initial.n)
print (initial)
print ()

def beam2 (problem) :
return local_beam_search (problem, beam width=2)

def steepest_hill (problem):
return hill_climbing (problem)

def annealing(problem) :
size = problem.initial.state.n
n_neighbors = (size * (size-1)) // 2
return simulated_annealing(problem,
initial_temp=1.8,
temp_length=n_neighbors)

def greedy_annealing(problem) :
size = problem.initial.state.n
n_neighbors = (size * (size-1)) // 2
return simulated_annealing (problem,
initial_temp=0,
temp_length=n_neighbors)

compare_searches (problems=[LocalnQueensProblem(initial,
initial_cost=cost)],
searches=[best_first_search,
branch_and_bound,
beam?2,

18 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

steepest_hill,
annealing, greedy_annealing])

print ()

initial = nQueens (20)

initial.randomize ()

cost = initial.num_conflicts()

print ("Random %i-Queens Problem" % initial.n)
print (initial)

print ()

compare_searches (problems=[LocalnQueensProblem(initial,
initial_cost=cost)],
searches=[steepest_hill,
annealing, greedy_annealing])

RS EEE LR AR kS LR
BACKTRACKING SEARCH
FHAHHH AR
Empty 5-Queens Problem
[T

Problem Search Alg Goal Tests Nodes Expanded Nodes_,
—Evaluated Solution Cost Runtime

nQueensProblem depth_first_search 54 134 o
-0 0 0.0060

nQueensProblem breadth_first_search 1437 5225 o
-0 0 0.1214

nQueensProblem best_first_search 790 3658 o
—1400 O 0.1872

nQueensProblem beam_search 6 55 o
—~56 Failed Failed

0)

FHAFFFAESF AR AR A
LOCAL SEARCH / OPTIMZATION
FHEHHH A

Random 10-Queens Problem

[2 e O O B

er 1

[T A O N B KON

[O 2 e Y B B A

[O O Y B B A

[T A O O B

[(R A N O % B B

[R O B B I

[T A O N B KO

[R O R) B

0)

Problem Search Alg Goal Tests Nodes Expanded Nodes_,
—Evaluated Solution Cost Runtime
e

2.3. Examples 19

py_search Documentation, Release 1.2.0

LocalnQueensProblem best_first_search 4
133 0 0.0095
LocalnQueensProblem branch_and_bound 4
—133 0 0.0045
LocalnQueensProblem beam?2 3
-~ 0 0 0.0052
LocalnQueensProblem steepest_hill 16
- 0 0 0.0026
LocalnQueensProblem annealing 23
— 0 0 0.001

LocalnQueensProblem greedy_annealing 18
-~ 0 0 0.001

()

Random 20-Queens Problem

O 1 e e e O e e

1 O e e O e T e e

O O e e e e T D O

(N e e e e e N N Il e e e e

O O e e e A S O e

O e e e A O B O

[2 e L e e e e

O e e e O e T O

O e e e e O 2 e O

O L e N o e e

O o e M T D e O

O O e L O T e T e O

O e e e e O I e e

O O e e S O

O O O 2 e e e e S
A e e e O % B

O e e e e e A O e O B RO

e O R e O e e e O O O O e
T A e e T A KO I

O O e e e O e e e O O A

()

Problem Search Alg Goal Tests
—Evaluated Solution Cost Runtime

e

LocalnQueensProblem steepest_hill 36
— 0 0 0.0305

LocalnQueensProblem annealing 20
— 0 0 0.0018

LocalnQueensProblem greedy_annealing 11
- 0 0 0.0044

Nodes Expanded

135

135

90

93

28

27

422

23

56

Assignment Problem Optimization Example

from munkres import Munkres

In [1]:

from py_ search.

from py_search.
from py_ search.
from py_search.
from py_search.
from py_ search.

problems.
problems.
problems.
problems.
problems.
problems.

assignment_problem
assignment_problem
assignment_problem
assignment_problem
assignment_problem
assignment_problem

import
import
import
import
import
import

random_matrix
print_matrix

cost

random_assignment
LocalAssignmentProblem
AssignmentProblem

20

Chapter 2. Important Links

py_search Documentation, Release 1.2.0

—costs),

from py search.optimization import local_beam_ search
from py search.optimization import simulated_annealing
from py search.optimization import hill_climbing

from py search.informed import beam_ search

from py_search.informed import best_first_search

from py_ search.utils import compare_searches

n =8
costs = random_matrix (n)

print ("##HHEHFHFEHEHEESFHEESF A A A EE A ES SRS
print ("Optimial solution using Munkres/Hungarian Algorithm")

print ("###HHHHAHFAERFAARF A F AR E A S A AR A AA RS A SIS SRS E SRS

m = Munkres ()

indices = m.compute (costs)

best = tuple([v[l] for v in indices])
print ("Munkres Solution:")

print (best)

print ("Munkres Cost:")

print (cost (best, costs))
print ()

print ("##HHHHSHHSFESHSEA A E A S S A EE RS ESEEESEET)
print ("Local Search / Optimization Techniques")

print ("###HHFHEHFHEREEAHFEEHHESHES S S AR EES ST

initial = random_assignment (n)
problem

extra=(costs,))
print ("Initial Assignment (randomly generated):")
print (initial)
print ("Initial Assignment Cost:")
print (problem.initial.cost ())
print ()

def local_beam_width2 (problem) :
return local_beam_ search (problem, beam width=2)

def greedy_annealing (problem) :
num_neighbors = (n ~ (n-1)) // 2
return simulated_annealing(problem, initial_temp=0,
temp_length=num_neighbors)

def annealing(problem) :
num_neighbors = (n * (n-1)) // 2
return simulated_annealing(problem, initial_temp=1.5,
temp_length=num_neighbors)
compare_searches (problems=[problem],
searches=[hill_climbing, local_beam_width2,
annealing, greedy_annealing])

print ()

print ("H###HHHFEEHEFFHFEEER B AEEET)

print ("Informed Search Techniques")
(

print ("###HHFHEEFHERFHARFFESFEEREE")

LocalAssignmentProblem(initial, initial_cost=cost (initial,

2.3. Examples

21

py_search Documentation, Release 1.2.0

TREE SEARCH APPROACH
empty = tuple([None for i in range(len(costs))])

unassigned = [i for 1 in range (len(costs))]

new_costs = [[c — min(row) for ¢ in row] for row in costs]

min_c = [min([row[c] for row in costs]) for c,v in enumerate (costs[0])]
new_costs = [[v — min_c[c] for ¢, v in enumerate (row)] for row in costs]

tree_problem = AssignmentProblem(empty, extra=(costs, unassigned))

def beam_width2 (problem) :
return beam_search (problem, beam_width=2)

print ()
compare_searches (problems=[tree_problem],
searches=[beam_width2,
best_first_search])

S i
Optimial solution using Munkres/Hungarian Algorithm
SR i i i i
Munkres Solution:

(2, 1, 4, 0, 7, 5, 3, 6)

Munkres Cost:

-8.58705096362

0)

FHEHEHAHF AR

Local Search / Optimization Techniques
B i i

Initial Assignment (randomly generated):

(4, 5, 6, 1, 3, 2, 7, 0)

Initial Assignment Cost:

2.42410175219

0

Problem Search Alg Goal Tests Nodes Expanded Nodes,_,
—Evaluated Solution Cost Runtime

LocalAssignmentProblem hill_ climbing 15 196 o
— 0 -7.72 0.0021

LocalAssignmentProblem local_beam_width2 14 392 o
- 0 -8.587 0.0039

LocalAssignmentProblem annealing 257 1092 L
— 0 -8.587 0.0143

LocalAssignmentProblem greedy_annealing 9 224 o
— 0 -7.72 0.0023

0)

FHAEHSH AR
Informed Search Techniques
[fdds s s LA AL ALEEEEEEEEE
0

Problem Search Alg Goal Tests Nodes Expanded Nodes,_,

—Evaluated Solution Cost Runtime

e

AssignmentProblem beam_width2 16 344 .

—341 -8.121 0.0096

AssignmentProblem best_first_search 1481 31949 o
1O L O JO7 R N)

22 Chapter 2. Important Links

py_search Documentation, Release 1.2.0

Graph Partition Optimization Example

In [1]:

from py_ search.problems.graph_partition import generate_graph
from py search.problems.graph partition import random_partition

from py search.problems.graph partition import LocalGraphPartitionProblem

from py_ search.problems.graph partition import cutsize
from py search.optimization import simulated_annealing
from py search.optimization import hill_climbing

from py_ search.utils import compare_searches

print (n, p)

V, E = generate_graph(n, p)
initial = random_partition (V)
cost = cutsize(E, initial)

print ("##HHHHSHESESHSEA A E A S S A EE AR S ESEEESEET)
print ("Local Search / Optimization Techniques")

print ("###HHFHEHFEEHEEREHEEHHERHES A H AR EESSET)

problem = LocalGraphPartitionProblem(initial,

initial_cost=cost,

extra=(V,E))

print ("Initial Partition Cost:")
print (cost)
print ()

def annealing(problem) :
size = (n » (n//2)) // 2

return simulated_annealing(problem, initial_temp=5.5,
temp_length=size)

def greedy_annealing(problem) :
size = (n » (n//2)) // 2

return simulated_annealing(problem, initial_temp=0,
temp_length=size)

compare_searches (problems=[problem],

searches=[hill_climbing, annealing,

greedy_annealing])

(10, 0)
B
Local Search / Optimization Techniques
FHEFE AR FE AR AR
Initial Partition Cost:

0

0

Problem Search Alg Goal Tests Nodes Expanded Nodes,,

—Evaluated Solution Cost Runtime

e

LocalGraphPartitionProblem hill_ climbing 26 25 o

- 0 0 0.0002

LocalGraphPartitionProblem annealing 126 125 o
© 8 86616

2.3. Examples 23

py_search Documentation, Release 1.2.0

LocalGraphPartitionProblem
— 0

0

greedy_annealing
0.0011

126

125

24

Chapter 2. Important Links

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

25

py_search Documentation, Release 1.2.0

26 Chapter 3. Indices and tables

Python Module Index

P

py_search.base, 5
py_search.informed, 10
py_search.optimization, 11
py_search.problems.assignment_problem,
15
py_search.problems.eight_puzzle, 13
py_search.problems.graph_partition, 16
py_search.problems.nqueens, 14
py_search.uninformed, 8

27

py_search Documentation, Release 1.2.0

28 Python Module Index

Index

A F

AnnotatedProblem (class in py_search.base), 5 FIFOQueue (class in py_search.base), 6
AssignmentProblem (class in Fringe (class in py_search.base), 6
py_search.problems.assignment_problem),

15 G

B generate_graph() (in module
py_search.problems.graph_partition), 16
beam_search() (in module py_search.informed), 10 goal_test() (py_search.base.AnnotatedProblem method),
best_first_search() (in module py_search.informed), 10 5
branch_and_bound() (in module py_search.optimization), goal_test() (py_search.base.Problem method), 8
11 goal_test() (py_search.problems.assignment_problem.AssignmentProblem
breadth_first_search() (in module method), 15
py_search.uninformed), 8 goal_test() (py_search.problems.assignment_problem.Local AssignmentProl
method), 15
C goal_test() (py_search.problems.eight_puzzle.EightPuzzleProblem
clear() (py_search.base.PriorityQueue method), 7 method), 13
copy() (py_search.problems.eight_puzzle.EightPuzzle goal_test() (py_search.problems.graph_partition.LocalGraphPartitionProble
method), 13 method), 16
copy() (py_search.problems.nqueens.nQueens method), goal_test() (py_search.problems.nqueens.LocalnQueensProblem
14 method), 14
cost() (in module py_search.problems.assignment_problem)goal_test() (py_search.problems.nqueens.nQueensProblem
15 method), 14
cost() (py_search.base.Node method), 7 graph_search() (in module py_search.uninformed), 9
cutsize() (in module py_search.problems.graph_partition),
16
D hill_climbing() (in module py_search.optimization), 11

depth() (py_search.base.Node method), 7 |
depth_first_search() (in module py_search.uninformed), 9 iterative_deepening_best_first_search() (in module

E py_search.informed), 10
iterative_deepening_search() (in module

EightPuzzle (class in py_search.problems.eight_puzzle), py_search.uninformed), 9

13
EightPuzzleProblem (class in L

py_search.problems.eight_puzzle), 13 legal Actions() (py_search.problems.eight_puzzle .EightPuzzle
executeAction() (py_search.problems.eight_puzzle.EightPuzzle method), 13

method), 13) LIFOQueue (class in py_search.base), 6
extend() (py_search.base.Fringe method), 6 local_beam_search() (in module py_search.optimization),

12

29

py_search Documentation, Release 1.2.0

Local AssignmentProblem (class in push() (py_search.base.Fringe method), 6
py_search.problems.assignment_problem), push() (py_search.base.PriorityQueue method), 8
15 py_search.base (module), 5
LocalGraphPartitionProblem (class in py_search.informed (module), 10
py_search.problems.graph_partition), 16 py_search.optimization (module), 11
LocalnQueensProblem (class in py_search.problems.assignment_problem (module), 15
py_search.problems.nqueens), 14 py_search.problems.eight_puzzle (module), 13
py_search.problems.graph_partition (module), 16
M py_search.problems.nqueens (module), 14
min_cost_heuristic() (py_search.problems.assignment_probRyn S&85¢bnméniProisid sinodule), 8
method), 15
misplaced_tile_heuristic() R
(py_search.problems.eight_puzzle EightPuzzlePrahledom() (in module py_search.optimization), 12
method), 13 random() (in module py_search.problems.graph_partition),
16
N random_assignment() (in module
Node (class in py_search.base), 6 py_search.problems.assignment_problem),
node_value() (py_search.base.AnnotatedProblem 15
method), 5 random_matrix() (in module
node_value() (py_search.base.Problem method), 8 py_search.problems.assignment_problem),
node_value() (py_search.problems.assignment_problem.AssignmentPiéblem
method), 15 random_node() (py_search.base.AnnotatedProblem
node_value() (py_search.problems.assignment_problem.Local AssignmegitRidhlém
method), 15 random_node() (py_search.base.Problem method), 8
node_value() (py_search.problems.eight_puzzle.EightPuzzlgBnelslexunode() (py_search.problems.assignment_problem.Local Assignmer
method), 14 method), 15
node_value() (py_search.problems.eight_puzzle.NoHeuristi¢andom_node() (py_search.problems.graph_partition.LocalGraphPartitionP
method), 14 method), 16
node_value() (py_search.problems.graph_partition.Local GraghBartitioadzObleyn search.problems.nqueens.LocalnQueensProblem
method), 16 method), 14
node_value() (py_search.problems.nqueens.nQueensProblemandom_partition() (in module
method), 14 py_search.problems.graph_partition), 16
NoHeuristic (class in py_search.problems.eight_puzzle), random_successor() (py_search.base.AnnotatedProblem
14 method), 5
nQueens (class in py_search.problems.nqueens), 14 random_successor() (py_search.base.Problem method), 8
nQueensProblem (class in py_search.problems.nqueens), random_successor() (py_search.problems.assignment_problem.LocalAssig
14 method), 15
num_conflicts() (py_search.problems.nqueens.nQueens random_successor() (py_search.problems.graph_partition.LocalGraphPartit
method), 14 method), 16
random_successor() (py_search.problems.nqueens.LocalnQueensProblem
P method), 14
path() (py_search.base.Node method), 7 randomize() (py_search.problems.eight_puzzle.EightPuzzle
peek() (py_search.base.PriorityQueue method), 8 method), 13
peek_value() (py_search.base.PriorityQueue method), 8 randomize() (py_search.problems.nqueens.nQueens
pop() (py_search.base. FIFOQueue method), 6 method), 14
pop() (py_search.base.Fringe method), 6 remove() (py_search.base. FIFOQueue method), 6
pop() (py_search.base.LIFOQueue method), 6
pop() (py_search.base.PriorityQueue method), 8 S
print_matrix() (in module simulated_annealing() (in module
py_search.problems.assignment_problem), py_search.optimization), 12
15 successors() (py_search.base.AnnotatedProblem
PriorityQueue (class in py_search.base), 7 method), 6
Problem (class in py_search.base), 8 successors() (py_search.base.Problem method), 8

push() (py_search.base. FIFOQueue method), 6

30 Index

py_search Documentation, Release 1.2.0

successors() (py_search.problems.assignment_problem.AssignmentProblem
method), 15

successors() (py_search.problems.assignment_problem.Local AssignmentProblem
method), 15

successors() (py_search.problems.eight_puzzle.EightPuzzleProblem
method), 14

successors() (py_search.problems.graph_partition.LocalGraphPartitionProblem
method), 16

successors() (py_search.problems.nqueens.LocalnQueensProblem
method), 14

successors() (py_search.problems.nqueens.nQueensProblem
method), 15

T

tree_search() (in module py_search.uninformed), 9

U

update_cost_limit() (py_search.base.PriorityQueue
method), 8

W

widening_beam_search() (in module
py_search.informed), 11

Index 31

	Installation
	Important Links
	Py-Search Package
	Test Problems
	Examples

	Indices and tables
	Python Module Index

