
py-processors Documentation
Release 3.2.3

Gus Hahn-Powell

Jun 14, 2018

Contents

1 Overview 1

2 Annotating text 3

3 API Reference 5

4 Odin 7

5 API Reference 9

6 A walkthrough example 19

7 Running the NLP server 21

8 OpenIE for concept recognition 27

9 Jupyter notebook visualizations 29

10 Other ways of initializing the server 31

11 Keeping the server running 33

12 FAQ 35

13 Changes 37

14 What is it? 41

15 Requirements 43

16 Installation 45

17 How to use it? 47

i

ii

CHAPTER 1

Overview

This page provides an overview of the available text processing pipelines.

1

py-processors Documentation, Release 3.2.3

2 Chapter 1. Overview

CHAPTER 2

Annotating text

a .annotate call produces a Document with the following features:

• sentence segmentation

• tokenization

• part-of-speech tagging

• lemmatization

• named entity recognition

• syntactic dependency parsing

Annotation suitable to open domain text can be performed with either a .annotate or a .fastnlp.annotate
call:

API = ProcessorsAPI(port=8886)
annotate the provided text using FastNLPProcessor (a CoreNLP wrapper)
doc = API.fastnlp.annotate("My name is Inigo Montoya. You killed my father. Prepare
→˓to die.")

For annotation tuned to the biomedical domain, use .bionlp.annotate:

API = ProcessorsAPI(port=8886)
doc = API.bionlp.annotate("In contrast, the EGFR T669A mutant increased both basal
→˓EGFR and ERBB3 tyrosine phosphorylation that was not augmented by MEK inhibition.")

3

py-processors Documentation, Release 3.2.3

4 Chapter 2. Annotating text

CHAPTER 3

API Reference

See the API reference for more details.

5

py-processors Documentation, Release 3.2.3

6 Chapter 3. API Reference

CHAPTER 4

Odin

Refer to the jupyter notebook for a tutorial on using Odin from py-processors.

The most comprehensive reference for the Odin event extraction framework is our manual, which includes a detailed
description of our rule language (rune):

• http://arxiv.org/pdf/1509.07513v1.pdf

Planned additions to Odin

• Support in rules for comparisons using distributional semantic similarity (word vectors)

• Efficient matching gazetteers

• WordNet support in patterns

• Edit distance

7

https://github.com/myedibleenso/odin-tutorial

py-processors Documentation, Release 3.2.3

8 Chapter 4. Odin

CHAPTER 5

API Reference

This section of the documentation provides detailed information on functions, classes, and methods.

Server Communication

Communicating with the NLP server (processors-server) is handled by the following classes:

ProcessorsBaseAPI

class processors.api.ProcessorsBaseAPI(**kwargs)
Bases: object

Manages a connection with processors-server and provides an interface to the API.

Parameters

• port (int) – The port the server is running on or should be started on. Default is 8886.

• hostname (str) – The host name to use for the server. Default is “localhost”.

• log_file (str) – The path for the log file. Default is py-processors.log in the user’s
home directory.

annotate(text)
Produces a Document from the provided text using the default processor.

clu.annotate(text)
Produces a Document from the provided text using CluProcessor.

fastnlp.annotate(text)
Produces a Document from the provided text using FastNLPProcessor.

bionlp.annotate(text)
Produces a Document from the provided text using BioNLPProcessor.

9

https://github.com/myedibleenso/processors-server

py-processors Documentation, Release 3.2.3

annotate_from_sentences(sentences)
Produces a Document from sentences (a list of text split into sentences). Uses the default processor.

fastnlp.annotate_from_sentences(sentences)
Produces a Document from sentences (a list of text split into sentences). Uses FastNLPProcessor.

bionlp.annotate_from_sentences(sentences)
Produces a Document from sentences (a list of text split into sentences). Uses BioNLPProcessor.

corenlp.sentiment.score_sentence(sentence)
Produces a sentiment score for the provided sentence (an instance of Sentence).

corenlp.sentiment.score_document(doc)
Produces sentiment scores for the provided doc (an instance of Document). One score is produced for each
sentence.

corenlp.sentiment.score_segmented_text(sentences)
Produces sentiment scores for the provided sentences (a list of text segmented into sentences). One score
is produced for item in sentences.

odin.extract_from_text(text, rules)
Produces a list of Mentions for matches of the provided rules on the text. rules can be a string of Odin
rules, or a url ending in .yml or .yaml.

odin.extract_from_document(doc, rules)
Produces a list of Mentions for matches of the provided rules on the doc (an instance of Document). rules
can be a string of Odin rules, or a url ending in .yml or yaml.

ProcessorsAPI

class processors.api.ProcessorsAPI(**kwargs)
Bases: processors.api.ProcessorsBaseAPI

Manages a connection with the processors-server jar and provides an interface to the API.

Parameters

• timeout (int) – The number of seconds to wait for the server to initialize. Default is
120.

• jvm_mem (str) – The maximum amount of memory to allocate to the JVM for the server.
Default is “-Xmx3G”.

• jar_path (str) – The path to the processors-server jar. Default is the jar installed with
the package.

• kee_alive (bool) – Whether or not to keep the server running when ProcessorsAPI
instance goes out of scope. Default is false (server is shut down).

• log_file (str) – The path for the log file. Default is py-processors.log in the user’s
home directory.

start_server(jar_path, **kwargs)
Starts the server using the provided jar_path. Optionally takes hostname, port, jvm_mem, and timeout.

stop_server()
Attempts to stop the server running at self.address.

10 Chapter 5. API Reference

py-processors Documentation, Release 3.2.3

OdinAPI

class processors.api.OdinAPI(address)
Bases: object

API for performing rule-based information extraction with Odin.

Parameters address (str) – The base address for the API (i.e., everything preceding /api/..)

OdinAPI

class processors.api.OpenIEAPI(address)
Bases: object

SentimentAnalysisAPI

class processors.sentiment.SentimentAnalysisAPI(address)
Bases: object

API for performing sentiment analysis

Parameters address (str) – The base address for the API (i.e., everything preceding /api/..)

corenlp
processors.sentiment.CoreNLPSentimentAnalyzer – Service using [CoreNLP‘s tree-based system](https:
//nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf) for performing sentiment analysis.

Data Structures

NLPDatum

class processors.ds.NLPDatum
Bases: object

Document

class processors.ds.Document(sentences)
Bases: processors.ds.NLPDatum

Storage class for annotated text. Based on [org.clulab.processors.Document](https://github.com/clulab/
processors/blob/master/main/src/main/scala/org/clulab/processors/Document.scala)

Parameters sentences ([processors.ds.Sentence]) – The sentences comprising the
Document.

id
str or None – A unique ID for the Document.

size
int – The number of sentences.

sentences
sentences – The sentences comprising the Document.

5.4. Data Structures 11

https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://github.com/clulab/processors/blob/master/main/src/main/scala/org/clulab/processors/Document.scala
https://github.com/clulab/processors/blob/master/main/src/main/scala/org/clulab/processors/Document.scala

py-processors Documentation, Release 3.2.3

words
[str] – A list of the Document‘s tokens.

tags
[str] – A list of the Document‘s tokens represented using part of speech (PoS) tags.

lemmas
[str] – A list of the Document‘s tokens represented using lemmas.

_entities
[str] – A list of the Document‘s tokens represented using IOB-style named entity (NE) labels.

nes
dict – A dictionary of NE labels represented in the Document -> a list of corresponding text spans.

bag_of_labeled_deps
[str] – The labeled dependencies from all sentences in the Document.

bag_of_unlabeled_deps
[str] – The unlabeled dependencies from all sentences in the Document.

text
str or None – The original text of the Document.

bag_of_labeled_dependencies_using(form)
Produces a list of syntactic dependencies where each edge is labeled with its grammatical relation.

bag_of_unlabeled_dependencies_using(form)
Produces a list of syntactic dependencies where each edge is left unlabeled without its grammatical rela-
tion.

Sentence

class processors.ds.Sentence(**kwargs)
Bases: processors.ds.NLPDatum

Storage class for an annotated sentence. Based on [org.clulab.processors.Sentence](https://github.com/clulab/
processors/blob/master/main/src/main/scala/org/clulab/processors/Sentence.scala)

Parameters

• text (str or None) – The text of the Sentence.

• words ([str]) – A list of the Sentence‘s tokens.

• startOffsets ([int]) – The character offsets starting each token (inclusive).

• endOffsets ([int]) – The character offsets marking the end of each token (exclusive).

• tags ([str]) – A list of the Sentence‘s tokens represented using part of speech (PoS)
tags.

• lemmas ([str]) – A list of the Sentence‘s tokens represented using lemmas.

• chunks ([str]) – A list of the Sentence‘s tokens represented using IOB-style phrase
labels (ex. B-NP, I-NP, B-VP, etc.).

• entities ([str]) – A list of the Sentence‘s tokens represented using IOB-style named
entity (NE) labels.

• graphs (dict) – A dictionary of {graph-name -> {edges: [{source, destination, rela-
tion}], roots: [int]}}

12 Chapter 5. API Reference

https://github.com/clulab/processors/blob/master/main/src/main/scala/org/clulab/processors/Sentence.scala
https://github.com/clulab/processors/blob/master/main/src/main/scala/org/clulab/processors/Sentence.scala

py-processors Documentation, Release 3.2.3

text
str – The text of the Sentence.

startOffsets
[int] – The character offsets starting each token (inclusive).

endOffsets
[int] – The character offsets marking the end of each token (exclusive).

length
int – The number of tokens in the Sentence

graphs
dict – A dictionary (str -> processors.ds.DirectedGraph) mapping the graph type/name to a proces-
sors.ds.DirectedGraph.

basic_dependencies
processors.ds.DirectedGraph – A processors.ds.DirectedGraph using basic Stanford dependencies.

collapsed_dependencies
processors.ds.DirectedGraph – A processors.ds.DirectedGraph using collapsed Stanford dependencies.

dependencies
processors.ds.DirectedGraph – A pointer to the prefered syntactic dependency graph type for this Sen-
tence.

_entities
[str] – The IOB-style Named Entity (NE) labels corresponding to each token.

_chunks
[str] – The IOB-style chunk labels corresponding to each token.

nes
dict – A dictionary of NE labels represented in the Document -> a list of corresponding text spans (ex.
{“PERSON”: [phrase 1, ..., phrase n]}). Built from Sentence._entities

phrases
dict – A dictionary of chunk labels represented in the Document -> a list of corresponding text spans (ex.
{“NP”: [phrase 1, ..., phrase n]}). Built from Sentence._chunks

bag_of_labeled_dependencies_using(form)
Produces a list of syntactic dependencies where each edge is labeled with its grammatical relation.

bag_of_unlabeled_dependencies_using(form)
Produces a list of syntactic dependencies where each edge is left unlabeled without its grammatical rela-
tion.

Edge

class processors.ds.Edge(source, destination, relation)
Bases: processors.ds.NLPDatum

DirectedGraph

class processors.ds.DirectedGraph(kind, deps, words)
Bases: processors.ds.NLPDatum

Storage class for directed graphs.

Parameters

5.4. Data Structures 13

py-processors Documentation, Release 3.2.3

• kind (str) – The name of the directed graph.

• deps (dict) – A dictionary of {edges: [{source, destination, relation}], roots: [int]}

• words ([str]) – A list of the word form of the tokens from the originating Sentence.

_words
[str] – A list of the word form of the tokens from the originating Sentence.

roots
[int] – A list of indices for the syntactic dependency graph’s roots. Generally this is a single token index.

edges
list[processors.ds.Edge] – A list of processors.ds.Edge

incoming
A dictionary of {int -> [int]} encoding the incoming edges for each node in the graph.

outgoing
A dictionary of {int -> [int]} encoding the outgoing edges for each node in the graph.

labeled
[str] – A list of strings where each element in the list represents an edge encoded as source index, relation,
and destination index (“source_relation_destination”).

unlabeled
[str] – A list of strings where each element in the list represents an edge encoded as source index and
destination index (“source_destination”).

graph
networkx.Graph – A networkx.graph representation of the DirectedGraph. Used by shortest_path

bag_of_labeled_dependencies_from_tokens(form)
Produces a list of syntactic dependencies where each edge is labeled with its grammatical relation.

bag_of_unlabeled_dependencies_from_tokens(form)
Produces a list of syntactic dependencies where each edge is left unlabeled without its grammatical rela-
tion.

Mention

class processors.odin.Mention(token_interval, sentence, document, foundBy, label, labels=None,
trigger=None, arguments=None, paths=None, keep=True,
doc_id=None)

Bases: processors.ds.NLPDatum

A labeled span of text. Used to model textual mentions of events, relations, and entities.

Parameters

• token_interval (Interval) – The span of the Mention represented as an Interval.

• sentence (int) – The sentence index that contains the Mention.

• document (Document) – The Document in which the Mention was found.

• foundBy (str) – The Odin IE rule that produced this Mention.

• label (str) – The label most closely associated with this span. Usually the lowest hy-
ponym of “labels”.

• labels (list) – The list of labels associated with this span.

14 Chapter 5. API Reference

py-processors Documentation, Release 3.2.3

• trigger (dict or None) – dict of JSON for Mention’s trigger (event predicate or
word(s) signaling the Mention).

• arguments (dict or None) – dict of JSON for Mention’s arguments.

• paths (dict or None) – dict of JSON encoding the syntactic paths linking a Mention’s
arguments to its trigger (applies to Mentions produces from type:”dependency” rules).

• doc_id (str or None) – the id of the document

tokenInterval
processors.ds.Interval – An Interval encoding the start and end of the Mention.

start
int – The token index that starts the Mention.

end
int – The token index that marks the end of the Mention (exclusive).

sentenceObj
processors.ds.Sentence – Pointer to the Sentence instance containing the Mention.

characterStartOffset
int – The index of the character that starts the Mention.

characterEndOffset
int – The index of the character that ends the Mention.

type
Mention.TBM or Mention.EM or Mention.RM – The type of the Mention.

See also:

[Odin manual](https://arxiv.org/abs/1509.07513)

matches(label_pattern)
Test if the provided pattern, label_pattern, matches any element in Mention.labels.

overlaps(other)
Test whether other (token index or Mention) overlaps with span of this Mention.

copy(**kwargs)
Copy constructor for this Mention.

words()
Words for this Mention’s span.

tags()
Part of speech for this Mention’s span.

lemmas()
Lemmas for this Mention’s span.

_chunks()
chunk labels for this Mention’s span.

_entities()
NE labels for this Mention’s span.

JSON serialization/deserialization is handled via processors.serialization.JSONSerializer.

5.4. Data Structures 15

https://arxiv.org/abs/1509.07513

py-processors Documentation, Release 3.2.3

Interval

class processors.ds.Interval(start, end)
Bases: processors.ds.NLPDatum

Defines a token or character span

Parameters

• start (str) – The token or character index where the interval begins.

• end (str) – The 1 + the index of the last token/character in the span.

contains(that)
Test whether that (int or Interval) overlaps with span of this Interval.

overlaps(that)
Test whether this Interval contains another. Equivalent Intervals will overlap.

Annotators (Processors)

Text annotation is performed by communicating with one of the following annotators (“processors”).

CluProcessor

class processors.annotators.CluProcessor(address)
Bases: processors.annotators.Processor

Processor for text annotation based on [org.clulab.processors.clu.CluProcessor](https://github.com/clulab/
processors/blob/master/main/src/main/scala/org/clulab/processors/clu/CluProcessor.scala)

Uses the Malt parser.

FastNLPProcessor

class processors.annotators.FastNLPProcessor(address)
Bases: processors.annotators.Processor

Processor for text annotation based on [org.clulab.processors.fastnlp.FastNLPProcessor](https://github.com/
clulab/processors/blob/master/corenlp/src/main/scala/org/clulab/processors/fastnlp/FastNLPProcessor.scala)

Uses the Stanford CoreNLP neural network parser.

BioNLPProcessor

class processors.annotators.BioNLPProcessor(address)
Bases: processors.annotators.Processor

Processor for biomedical text annotation based on [org.clulab.processors.fastnlp.FastNLPProcessor](https:
//github.com/clulab/processors/blob/master/corenlp/src/main/scala/org/clulab/processors/fastnlp/
FastNLPProcessor.scala)

CoreNLP-derived annotator.

16 Chapter 5. API Reference

https://github.com/clulab/processors/blob/master/main/src/main/scala/org/clulab/processors/clu/CluProcessor.scala
https://github.com/clulab/processors/blob/master/main/src/main/scala/org/clulab/processors/clu/CluProcessor.scala
https://github.com/clulab/processors/blob/master/corenlp/src/main/scala/org/clulab/processors/fastnlp/FastNLPProcessor.scala
https://github.com/clulab/processors/blob/master/corenlp/src/main/scala/org/clulab/processors/fastnlp/FastNLPProcessor.scala
https://github.com/clulab/processors/blob/master/corenlp/src/main/scala/org/clulab/processors/fastnlp/FastNLPProcessor.scala
https://github.com/clulab/processors/blob/master/corenlp/src/main/scala/org/clulab/processors/fastnlp/FastNLPProcessor.scala
https://github.com/clulab/processors/blob/master/corenlp/src/main/scala/org/clulab/processors/fastnlp/FastNLPProcessor.scala

py-processors Documentation, Release 3.2.3

Sentiment Analysis

SentimentAnalyzer

class processors.sentiment.SentimentAnalyzer(address)
Bases: object

CoreNLPSentimentAnalyzer

class processors.sentiment.CoreNLPSentimentAnalyzer(address)
Bases: processors.sentiment.SentimentAnalyzer

Bridge to [CoreNLP‘s tree-based sentiment analysis system](https://nlp.stanford.edu/~socherr/EMNLP2013_
RNTN.pdf)

paths

DependencyUtils

class processors.paths.DependencyUtils
Bases: object

A set of utilities for analyzing syntactic dependency graphs.

build_networkx_graph(roots, edges, name)
Constructs a networkx.Graph

shortest_path(g, start, end)
Finds the shortest path in a networkx.Graph between any element in a list of start nodes and any element
in a list of end nodes.

retrieve_edges(dep_graph, path)
Converts output of shortest_path into a list of triples that include the grammatical relation (and direction)
for each node-node “hop” in the syntactic dependency graph.

simplify_tag(tag)
Maps part of speech (PoS) tag to a subset of PoS tags to better consolidate categorical labels.

lexicalize_path(sentence, path, words=False, lemmas=False, tags=False, simple_tags=False, en-
tities=False, limit_to=None)

Lexicalizes path in syntactic dependency graph using Odin-style token constraints.

pagerank(networkx_graph, alpha=0.85, personalization=None, max_iter=1000, tol=1e-06,
nstart=None, weight=’weight’, dangling=None)

Measures node activity in a networkx.Graph using a thin wrapper around networkx implemen-
tation of pagerank algorithm (see networkx.algorithms.link_analysis.pagerank). Use with proces-
sors.ds.DirectedGraph.graph.

HeadFinder

class processors.paths.HeadFinder
Bases: object

5.6. Sentiment Analysis 17

https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf

py-processors Documentation, Release 3.2.3

Serialization

JSONSerializer

class processors.serialization.JSONSerializer
Bases: object

Utilities for serialization/deserialization of data structures.

Visualization

JupyterVisualizer

.. autoclass:: processors.Visualization.JupyterVisualizer :show-inheritance:

18 Chapter 5. API Reference

CHAPTER 6

A walkthrough example

The following examples give an overview of how to use py-processors.

Getting started

For annotation and parsing, py-processors communicates with processors-server using a REST interface.

The server can be run either via java directly or in a docker container. Let’s look at how to connect to the server.

19

https://github.com/myedibleenso/processors-server
https://hub.docker.com/r/myedibleenso/processors-server/

py-processors Documentation, Release 3.2.3

20 Chapter 6. A walkthrough example

CHAPTER 7

Running the NLP server

Option 1: processors-server.jar

This method requires java and a compatible processors-server.jar for the server. An appropriate jar will
be downloaded automatically if one is not found.

from processors import *
The constructor requires you to specify a port for running the server.
API = ProcessorsAPI(port=8886)

NOTE: It may take a minute or so for the server to initialize as there are some large model files that need to be loaded.

Option 2: docker container

You can pull the official container from Docker Hub:

docker pull myedibleenso/processors-server:latest

You can check py-processors for the appropriate version to retrieve:

import processors
print the recommended processors-server version
print(import processors.__ps_rec__)

Just replace latest in the command above with the appropriate version (3.1.0 onwards).

The following command will run the container in the background and expose the service on port 8886:

docker run -d -e _JAVA_OPTIONS="-Xmx3G" -p 127.0.0.1:8886:8888 --name procserv
→˓myedibleenso/processors-server

For a more detailed example showcasing configuration options, take a look at this docker-compose.yml file.
You’ll need to map a local port to 8888 in the container.

21

https://hub.docker.com/r/myedibleenso/processors-server/
https://github.com/myedibleenso/processors-server/blob/master/docker-compose.yml

py-processors Documentation, Release 3.2.3

Once the container is running, you can connect to it via py-processors:

from processors import *
provide the local port that you mapped to 8888 on the running container
API = ProcessorsBaseAPI(hostname="127.0.0.1", port=8886)

Annotating text

Text can be annotated automatically with these linguistic attributes.

try annotating some text using FastNLPProcessor (a CoreNLP wrapper)
doc = API.fastnlp.annotate("My name is Inigo Montoya. You killed my father. Prepare
→˓to die.")

you can also annotate text already segmented into sentences
doc = API.fastnlp.annotate_from_sentences(["My name is Inigo Montoya.", "You killed
→˓my father.", "Prepare to die."])

There should be 3 Sentence objects in this Document
doc.size

A Document contains the words, pos tags, lemmas, named entities, and syntactic
→˓dependencies of its component Sentences
doc.bag_of_labeled_deps

We can access the named entities for the Document as a dictionary mapping an NE
→˓label -> list of named entities
doc.nes

A Sentence contains words, pos tags, lemmas, named entities, and syntactic
→˓dependencies
doc.sentences[0].lemmas

get the first sentence
s = doc.sentences[0]

the number of tokens in this sentence
s.length

the named entities contained in this sentence
s.nes

generate labeled dependencies using "words", "tags", "lemmas", "entities", or token
→˓index ("index")
s.bag_of_labeled_dependencies_using("tags")

generate unlabeled dependencies using "words", "tags", "lemmas", "entities", or
→˓token index ("index")
s.bag_of_unlabeled_dependencies_using("lemmas")

play around with the dependencies directly
deps = s.dependencies

see what dependencies lead directly to the first token (i.e. token 0 is the
→˓dependent of what?)
deps.incoming[0]

22 Chapter 7. Running the NLP server

https://github.com/myedibleenso/py-processors/tree/master/docs/procesors.md#annotating-text

py-processors Documentation, Release 3.2.3

see what dependencies are originating from the first token (i.e. token 0 is the
→˓head of what?)
deps.outgoing[0]

find all shortest paths between "name" and either "Inigo" or "Montoya".
deps.shortest_paths(start=1, end=[3,4])

find the shortest path between "name" and either "Inigo" or "Montoya". Prefer a
→˓path that involves a "nsubj" relation.
sp = deps.shortest_path(start=1, end=[3,4],
scoring_func=lambda path: 9000 if any(seg[1] == "nsubj" for seg in path) else 0)

generate an Odin-like pattern with partial lexicalization
DependencyUtils.lexicalize_path(sentence=s, path=sp, lemmas=True, tags=True)

limit lexicalization to tokens 1 and 4 (if present)
DependencyUtils.lexicalize_path(sentence=s, path=sp, lemmas=True, tags=True, limit_
→˓to=[1,4])

run PageRank on the dependency graph to find nodes with the most activity.
SPOILER: When using reverse=True, the nodes with the highest weight are usually the
→˓sentential predicate and its args
deps.pagerank(reverse=True)

find out which nodes are most central to the dependency graph
deps.degree_centrality()

retrieve the likely semantic head for a sentence.
from processors.paths import HeadFinder
doc2 = API.annotate("acute renal failure")
sentence = doc2.sentences[0]
select the graph to examine (default is "stanford-collapsed") and
optionally limit to a set of PoS tags (regex or str)
head_idx = sentence.semantic_head(graph_name="stanford-collapsed", valid_tags=None)
head_word = sentence.words[head_idx] if head_idx else None

try using BioNLPProcessor
biodoc = api.bionlp.annotate("We next considered the effect of Ras monoubiquitination
→˓on GAP-mediated hydrolysis")

check out the bio-specific entities
biodoc.nes

Serializing to/from json

Once you’ve annotated text, you can serialize it to json for later loading.

serialize to/from JSON!
json_file = "serialized_doc_example.json"
ross_doc = api.fastnlp.annotate("We don't make mistakes, just happy little accidents.
→˓")

serialize to JSON
with open(json_file, "w") as out:

7.4. Serializing to/from json 23

py-processors Documentation, Release 3.2.3

out.write(ross_doc.to_JSON())

load from JSON
with open(json_file, "r") as jf:

d = Document.load_from_JSON(json.load(jf))

Perform sentiment analysis

You can perform sentiment analysis using CoreNLP‘s tree-based system.

get sentiment analysis scores
review = "The humans are dead."
doc = API.fastnlp.annotate(review)

try Stanford's tree-based sentiment analysis
you'll get a score for each Sentence
scores are between 1 (very negative) - 5 (very positive)
scores = API.sentiment.corenlp.score_document(doc)

you can pass text directly
scores = API.sentiment.corenlp.score_text(review)

... or a single sentence
score = API.sentiment.corenlp.score_sentence(doc.sentences[0])

... or from text already segmented into sentences
lyrics = ["My sugar lumps are two of a kind", "Sweet and white and highly refined",
→˓"Honeys try all kinds of tomfoolery", "to steal a feel of my family jewelry"]
scores = API.sentiment.corenlp.score_segmented_text(lyrics)

Rule-based information extraction (IE) with Odin

If you’re unfamiliar with writing Odin rules, see our manual for a primer on the language: http://arxiv.org/pdf/1509.
07513v1.pdf

Do rule-based IE with Odin!
see http://arxiv.org/pdf/1509.07513v1.pdf for details
example_rule = """
- name: "ner-person"

label: [Person, PossiblePerson, Entity]
priority: 1
type: token
pattern: |
[entity="PERSON"]+
|
[tag=/^N/]* [tag=/^N/ & outgoing="cop"] [tag=/^N/]*

"""

example_text = """
Barack Hussein Obama II is the 44th and current President of the United States and
→˓the first African-American to hold the office.
He is a Democrat.
Obama won the 2008 United States presidential election, on November 4, 2008.

24 Chapter 7. Running the NLP server

https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
http://arxiv.org/pdf/1509.07513v1.pdf
http://arxiv.org/pdf/1509.07513v1.pdf

py-processors Documentation, Release 3.2.3

He was inaugurated on January 20, 2009.
"""

take a look at the .label, .labels, and .text attributes of each mention
mentions = API.odin.extract_from_text(example_text, example_rule)
visualize the structure of a mention as colored output in the terminal
for m in mentions: print(m)

Alternatively, you can provide a rule URL. The URL should end with .yml or .yaml.
rules_url = "https://raw.githubusercontent.com/clulab/reach/
→˓508697db2217ba14cd1fa0a99174816cc3383317/src/main/resources/edu/arizona/sista/demo/
→˓open/grammars/rules.yml"

mentions = API.odin.extract_from_text(example_text, rules_url)

You can also perform IE with Odin on a Document.
barack_doc = API.annotate(example_text)
mentions = API.odin.extract_from_document(barack_doc, rules_url)

mentions can be serialized as well
mentions_json_file = "mentions.json"

with open(mentions_json_file, "w") as out:
out.write(JSONSerializer.mentions_to_JSON(mentions))

loading from a file is also handled via JSONSerializer
with open(mentions_json_file, "r") as jf:

mentions = JSONSerializer.mentions_from_JSON(json.load(jf))

7.6. Rule-based information extraction (IE) with Odin 25

py-processors Documentation, Release 3.2.3

26 Chapter 7. Running the NLP server

CHAPTER 8

OpenIE for concept recognition

coming soon

27

py-processors Documentation, Release 3.2.3

28 Chapter 8. OpenIE for concept recognition

CHAPTER 9

Jupyter notebook visualizations

py-processors supports some custom notebook-based visualizations, but you’ll need to install the extra
[jupyter] module in order to use them:

pip install "py-processors[jupyter]"

These visualizations make use of our fork of displaCy, You can now visualize a Sentence graph as an SVG image
using visualization.JupyterVisualizer.display_graph():

from processors.visualization import JupyterVisualizer as viz
run this snippet within a jupyter notebook
text = "To be loved by unicorns is the greatest gift of all."
doc = API.annotate(text)
viz.display_graph(doc.sentences[0], graph_name="stanford-collapsed")

Mentions can also be visualized in a notebook:

run this snippet within a jupyter notebook
rules = """
rules:

- name: "ner-location"
label: [Location, PossibleLocation, Entity]
priority: 1
type: token
pattern: |

[entity="LOCATION"]+ | Twin Peaks

- name: "ner-person"
label: [Person, PossiblePerson, Entity]
priority: 1
type: token
pattern: |
[entity="PERSON"]+

- name: "ner-org"
label: [Organization, Entity]

29

https://github.com/myedibleenso/displacy-processors
https://github.com/explosion/displacy

py-processors Documentation, Release 3.2.3

priority: 1
type: token
pattern: |

[entity="ORGANIZATION"]+

- name: "ner-date"
label: [Date]
priority: 1
type: token
pattern: |

[entity="DATE"]+

- name: "missing"
label: Missing
pattern: |

trigger = [lemma=go] missing
theme: Person = <xcomp nsubj
date: Date? = prep_on

"""
mentions = API.odin.extract_from_text("FBI Special Agent Dale Cooper went missing on
→˓June 10, 1991. He was last seen in the woods of Twin Peaks. ", rules=rules)

for m in mentions: viz.display_mention(m)

30 Chapter 9. Jupyter notebook visualizations

CHAPTER 10

Other ways of initializing the server

Using a custom processors-server

When initializing the API, you can specify a path to a custom processors-server.jar using the jar_path
parameter:

from processors import *

API = ProcessorsAPI(port=8886, jar_path="path/to/processors-server.jar")

Alternatively, you can set an environment variable, PROCESSORS_SERVER, with the path to the jar you wish to
use. In your .bashrc (or equivalent), add this line with the path to the jar you wish to use with py-processors:

export PROCESSORS_SERVER="path/to/processors-server.jar"

Remember to source your profile:

source path/to/your/.profile

py-processors will now prefer this jar whenever a new API is initialized.

NOTE: If you decide that you no longer want to use this enivronment variable, remember to both remove it from your
profile and run unset PROCESSORS_SERVER from the shell.

Allocating memory

By default, the server will be run with 3GB of RAM. You might be able to get by with a little less, though. You can
start the server with a different amount of memory with the jvm_mem parameter:

from processors import *
run the sever with 2GB of memory
API = ProcessorsAPI(port=8886, jvm_mem="-Xmx2G")

31

py-processors Documentation, Release 3.2.3

NOTE: This won’t have any effect if the server is already running on the given port.

32 Chapter 10. Other ways of initializing the server

CHAPTER 11

Keeping the server running

If you’ve launched the server via java, py-processors will by default attempt to shut down the server whenever
an API instance goes out of scope (ex. your script finishes or you exit the interpreter).

If you’d prefer to keep the server alive, you’ll need to initialize the API with keep_alive=True:

from processors import *

API = ProcessorsAPI(port=8886, keep_alive=True)

This is useful if you’re sharing access to the server on a network, or if you have a bunch of independent tasks and
would prefer to avoid waiting for the server to initialize again and again.

33

py-processors Documentation, Release 3.2.3

34 Chapter 11. Keeping the server running

CHAPTER 12

FAQ

I want the latest processors-server.jar

In that case, take a look over here.

Something is already running on port XXXX, but I don’t know what.
Help!

Try running the following command:

lsof -i :<portnumber>

You can then kill the responsible process using the reported PID

Does py-processors produce a (server) log?

Yep! By default, it will write to ~/py-processors.log. You can specify a different location when initializing
the API:

from processors import *

API = ProcessorsAPI(port=8886, log_file="my/desired/log/file.log")

35

https://github.com/myedibleenso/py-processors/tree/master/docs/https:github.com/myedibleenso/processors-server

py-processors Documentation, Release 3.2.3

36 Chapter 12. FAQ

CHAPTER 13

Changes

• v3.2.2:

– Improved jar download

– Removed six dependency

– More compact json

• v3.2.1:

– Fix to limit_to param of DependencyUtils.lexicalize_path

• v3.2.0:

– ProcessorsAPI now inherits from ProcessorsBaseAPI

– ProcessorsBaseAPI can be used with a docker backend

– Updated documentation

– Updated requirements for building documentation

– More tests covering syntactic dependencies

• v3.1.0:

– Upgraded processors-server version to v3.1.0

– Added support for CluProcessor

– odin variables can now be used in imports

– Log file no longer prefixed with .

– jupyter notebook visualizations now treated as an extra module that can be installed via pip
install "py-processors[jupyter]"

• v3.0.3:

– jupyter notebook visualizations for Sentence graphs (dependency parses) and Mention structure

* visualization.JupyterVisualizer.display_graph()

37

https://hub.docker.com/r/myedibleenso/processors-server/

py-processors Documentation, Release 3.2.3

* visualization.Jupyter.Visualizer.display_mention()

– Display errors for broken Odin rules

– Upgraded processors-server version to v3.0.2

– Added HeadFinder and HeadFinder.semantic_head()

– pagerank bug fix related to outdated parameter

– Make Sentence, DirectedGraph, and Mention hashable

• v3.0.2:

– Added support to reverse directed graph for pagerank, resulting in predicate and argument nodes having
higher weights

– DependencyUtils.directed_relation()

– Added DirectedGraph.degree_centrality(), DirectedGraph.
in_degree_centrality(), and DirectedGraph.out_degree_centrality()

– pagerank now returns a collections.Counter

– Optionally limit DependencyUtils.lexicalize_path() to specific token indices

• v3.0.1:

– Fixed an off-by-one error for character offsets when creating mentions

• v3.0.0:

– PageRank for dependency graphs via networkx

– Find shortest paths in dependency graphs via networkx

– Updated api to match v.3.0 of processors-server

– Support for Odin @Mention.argname

– json compatible with org.clulab.processors

• v2.9.7:

– .nes support for IOB format

• v2.9.6:

– Simplified path checks for jar

• v2.9.5:

– Docstring for ProcessorsAPI

– Updated Odin rules url for tests

– Check version of jar against recommended version

– Cleanup (kwargs usage, path resolution, etc.)

• v2.9.4:

– jar is now downloaded when first used

• v2.9.3:

– Pass hostname to command for starting server

– Fixed an Odin test and added needed resources

• v2.9.2:

38 Chapter 13. Changes

https://github.com/myedibleenso/processors-server/releases/tag/v3.0
https://github.com/clulab/processors

py-processors Documentation, Release 3.2.3

– Added .stop_server() test

• v2.9.1:

– Create Mention from Mention.trigger when trigger is not None

• v2.9:

– Mention.arguments bug fix related to creating Mentions for each arg corresponding to each role

– Dependencies.incoming and Dependencies.outgoing bug fixes

– Implemented custom eq and ne for core data structures

• v2.8:

– Dependencies bug fix related to initializing from json

– Added keep_alive boolean parameter to ProcessorsAPI constructor to provide a way to keep the
server running when instance goes out of scope

– Compatibility fixes for 2.x

– Updated api to match v.2.7 of processors-server

* handle pre-segmented text (preserve provided sentence segmentation in .annotate and .
sentiment.corenlp.score_segmented_text calls)

• v2.7:

– Added Mention class and support for rule-based information extraction with Odin

– Updated api to match v.2.5 of processors-server

• v2.6:

– Added interface to CoreNLP’s tree-based sentiment analysis

– Rewrote json serialization and loading to mirror changes in processors-server v2.2

• v2.4:

– Added support for json serialization

• v2.1:

– Added interface to BioNLPProcessor

– Download latest processors-server.jar as part of installation

• v1.0:

– Basic functionality (interface to FastNLPProcessor)

39

https://github.com/myedibleenso/processors-server/releases/tag/v2.7
https://github.com/myedibleenso/processors-server/releases/tag/v2.5
http://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf

py-processors Documentation, Release 3.2.3

40 Chapter 13. Changes

CHAPTER 14

What is it?

py-processors is a Python wrapper for the CLU Lab’s processors NLP library. py-processors relies on
processors-server.

Though compatible* with Python 2.x, this library was developed with 3.x in mind.

41

http://github.com/clulab/processors
http://github.com/myedibleenso/processors-server
https://github.com/myedibleenso/py-processors/issues?q=is%3Aopen+is%3Aissue+label%3Apython2.x

py-processors Documentation, Release 3.2.3

42 Chapter 14. What is it?

CHAPTER 15

Requirements

The server component can be run either via docker or directly with java.

Option 1

• docker and the myedibleenso/processors-server container

Option 2

• Java 8

• processor-server (v3.1.0)

– this dependency will be retrieved automatically during installation

• At least 2GB of RAM free for the server (I recommend 3GB+)

43

https://www.docker.com/
https://hub.docker.com/r/myedibleenso/processors-server/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html
http://github.com/myedibleenso/processors-server

py-processors Documentation, Release 3.2.3

44 Chapter 15. Requirements

CHAPTER 16

Installation

py-processors can be installed via pip. The library also has a jupyter extras module which adds wid-
gets/visualizations to juypter notebooks.

basic installation

pip install py-processors

basic + jupyter notebook widgets

pip install py-processors[jupyter]

bleeding edge

pip install git+https://github.com/myedibleenso/py-processors.git

45

py-processors Documentation, Release 3.2.3

46 Chapter 16. Installation

CHAPTER 17

How to use it?

See the walkthrough example

47

Index

Symbols
_chunks (Sentence attribute), 13
_chunks() (Mention method), 15
_entities (Document attribute), 12
_entities (Sentence attribute), 13
_entities() (Mention method), 15
_words (DirectedGraph attribute), 14

A
annotate() (ProcessorsBaseAPI method), 9
annotate() (ProcessorsBaseAPI.bionlp method), 9
annotate() (ProcessorsBaseAPI.clu method), 9
annotate() (ProcessorsBaseAPI.fastnlp method), 9
annotate_from_sentences() (ProcessorsBaseAPI method),

9
annotate_from_sentences() (ProcessorsBaseAPI.bionlp

method), 10
annotate_from_sentences() (ProcessorsBaseAPI.fastnlp

method), 10

B
bag_of_labeled_dependencies_from_tokens() (Directed-

Graph method), 14
bag_of_labeled_dependencies_using() (Document

method), 12
bag_of_labeled_dependencies_using() (Sentence

method), 13
bag_of_labeled_deps (Document attribute), 12
bag_of_unlabeled_dependencies_from_tokens() (Direct-

edGraph method), 14
bag_of_unlabeled_dependencies_using() (Document

method), 12
bag_of_unlabeled_dependencies_using() (Sentence

method), 13
bag_of_unlabeled_deps (Document attribute), 12
basic_dependencies (Sentence attribute), 13
BioNLPProcessor (class in processors.annotators), 16
build_networkx_graph() (DependencyUtils method), 17

C
characterEndOffset (Mention attribute), 15
characterStartOffset (Mention attribute), 15
CluProcessor (class in processors.annotators), 16
collapsed_dependencies (Sentence attribute), 13
contains() (Interval method), 16
copy() (Mention method), 15
corenlp (SentimentAnalysisAPI attribute), 11
CoreNLPSentimentAnalyzer (class in proces-

sors.sentiment), 17

D
dependencies (Sentence attribute), 13
DependencyUtils (class in processors.paths), 17
DirectedGraph (class in processors.ds), 13
Document (class in processors.ds), 11

E
Edge (class in processors.ds), 13
edges (DirectedGraph attribute), 14
end (Mention attribute), 15
endOffsets (Sentence attribute), 13
extract_from_document() (ProcessorsBaseAPI.odin

method), 10
extract_from_text() (ProcessorsBaseAPI.odin method),

10

F
FastNLPProcessor (class in processors.annotators), 16

G
graph (DirectedGraph attribute), 14
graphs (Sentence attribute), 13

H
HeadFinder (class in processors.paths), 17

I
id (Document attribute), 11

48

py-processors Documentation, Release 3.2.3

incoming (DirectedGraph attribute), 14
Interval (class in processors.ds), 16

J
JSONSerializer (class in processors.serialization), 18

L
labeled (DirectedGraph attribute), 14
lemmas (Document attribute), 12
lemmas() (Mention method), 15
length (Sentence attribute), 13
lexicalize_path() (DependencyUtils method), 17

M
matches() (Mention method), 15
Mention (class in processors.odin), 14

N
nes (Document attribute), 12
nes (Sentence attribute), 13
NLPDatum (class in processors.ds), 11

O
OdinAPI (class in processors.api), 11
OpenIEAPI (class in processors.api), 11
outgoing (DirectedGraph attribute), 14
overlaps() (Interval method), 16
overlaps() (Mention method), 15

P
pagerank() (DependencyUtils method), 17
phrases (Sentence attribute), 13
ProcessorsAPI (class in processors.api), 10
ProcessorsBaseAPI (class in processors.api), 9

R
retrieve_edges() (DependencyUtils method), 17
roots (DirectedGraph attribute), 14

S
score_document() (ProcessorsBaseAPI.corenlp.sentiment

method), 10
score_segmented_text() (Processors-

BaseAPI.corenlp.sentiment method), 10
score_sentence() (ProcessorsBaseAPI.corenlp.sentiment

method), 10
Sentence (class in processors.ds), 12
sentenceObj (Mention attribute), 15
sentences (Document attribute), 11
SentimentAnalysisAPI (class in processors.sentiment), 11
SentimentAnalyzer (class in processors.sentiment), 17
shortest_path() (DependencyUtils method), 17
simplify_tag() (DependencyUtils method), 17

size (Document attribute), 11
start (Mention attribute), 15
start_server() (ProcessorsAPI method), 10
startOffsets (Sentence attribute), 13
stop_server() (ProcessorsAPI method), 10

T
tags (Document attribute), 12
tags() (Mention method), 15
text (Document attribute), 12
text (Sentence attribute), 12
tokenInterval (Mention attribute), 15
type (Mention attribute), 15

U
unlabeled (DirectedGraph attribute), 14

W
words (Document attribute), 11
words() (Mention method), 15

Index 49

	Overview
	Annotating text
	API Reference
	Odin
	API Reference
	A walkthrough example
	Running the NLP server
	OpenIE for concept recognition
	Jupyter notebook visualizations
	Other ways of initializing the server
	Keeping the server running
	FAQ
	Changes
	What is it?
	Requirements
	Installation
	How to use it?

