

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

py_noaa

[image: _images/py_noaa.svg]Build Status [https://travis-ci.org/GClunies/py_noaa]
[image: _images/py_noaa1.svg]PyPI [https://pypi.python.org/pypi/py-noaa]
[image: _images/py_noaa2.svg]PyPI - Python Version [https://pypi.python.org/pypi/py-noaa]

NOTE: THIS PACKAGE HAS BEEN REPLACED BY noaa_coops [https://github.com/GClunies/noaa_coops]. NO FURTHER DEVELOPMENT IS PLANNED.

py_noaa is a Python package that wraps around the NOAA CO-OPS Tides & Currents API and returns data in convenient formats (i.e., pandas dataframe) for further analysis in python. Analysis of the data is left up to the end user.

NOTE:

This package is under development, additional functionality will be added over time.

Installation

pip install py_noaa

You can update py_noaa using:

pip install py_noaa --upgrade

NOAA CO-OPS Tides & Currents

NOAA records tides, currents, and other meteoroligical observations at various locations across the United States and the Great Lakes regions. Predictions are also available for tides [https://tidesandcurrents.noaa.gov/tide_predictions.html] and currents [https://tidesandcurrents.noaa.gov/noaacurrents/Help].

py_noaa accesses data following the NOAA CO-OPS API [https://tidesandcurrents.noaa.gov/api/] documentation.

Available Data

A list of available data products is provided in the API documentation [https://tidesandcurrents.noaa.gov/api/#products]

CO-OPS module basics

	Get the station ID for your station of interest, a summary of available stations, by data type, can be found through the following links:

	Water Level Observation Stations [https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels]

	Tidal Prediction Stations [https://tidesandcurrents.noaa.gov/tide_predictions.html]

	Current Observation Stations [https://tidesandcurrents.noaa.gov/cdata/StationList?type=Current+Data&filter=active]

	Meteorological Observation Stations [https://tidesandcurrents.noaa.gov/stations.html?type=Meteorological%20Observations]

	Read the station info if available! Useful station info is typically available based on the datatype recorded at a station. Station info for current stations are NOT the same for water level and tide stations (see examples below).

	Exmaple current station info [https://tidesandcurrents.noaa.gov/cdata/StationInfo?id=PUG1515]

	Example water level & tide station info [https://tidesandcurrents.noaa.gov/stationhome.html?id=9447130]

	Fetch data using the coops.get_data() function for various data products, listed here [https://tidesandcurrents.noaa.gov/api/#products]. The currently supported data types are:

	Currents

	Observed water levels

	Observered daily high and low water levels (use product="high_low")

	Predicted water levels

	Predicted high and low water levels

	Winds

	Air pressure

	Air temperature

	Water temperature

Compatibility with other data products listed on the NOAA CO-OPS API [https://tidesandcurrents.noaa.gov/api/#products] may exist, but is not guaranteed at this time.

Examples data requests are shown below:

Observed Currents

>>> from py_noaa import coops
>>> df_currents = coops.get_data(
... begin_date="20150727",
... end_date="20150910",
... stationid="PUG1515",
... product="currents",
... bin_num=1,
... units="metric",
... time_zone="gmt")
...
>>> df_currents.head()
 bin direction speed
date_time
2015-07-27 20:06:00 1.0 255.0 32.1
2015-07-27 20:12:00 1.0 255.0 30.1
2015-07-27 20:18:00 1.0 261.0 29.3
2015-07-27 20:24:00 1.0 260.0 27.3
2015-07-27 20:30:00 1.0 261.0 23.0

Observed Water Levels

>>> from py_noaa import coops
>>> df_water_levels = coops.get_data(
... begin_date="20150101",
... end_date="20150331",
... stationid="9447130",
... product="water_level",
... datum="MLLW",
... units="metric",
... time_zone="gmt")
...
>>> df_water_levels.head()
 flags QC sigma water_level
date_time
2015-01-01 00:00:00 0,0,0,0 v 0.023 1.799
2015-01-01 01:00:00 0,0,0,0 v 0.014 0.977
2015-01-01 02:00:00 0,0,0,0 v 0.009 0.284
2015-01-01 03:00:00 0,0,0,0 v 0.010 -0.126
2015-01-01 04:00:00 0,0,0,0 v 0.013 -0.161

Predicted Water Levels (Tides)

Note the use of the interval parameter to specify only hourly data be returned. The interval parameter works with, water level, currents, predictions, and meteorological data types.

>>> from py_noaa import coops
>>> df_predictions = coops.get_data(
... begin_date="20121115",
... end_date="20121217",
... stationid="9447130",
... product="predictions",
... datum="MLLW",
... interval="h",
... units="metric",
... time_zone="gmt")
...
>>> df_predictions.head()
 predicted_wl
date_time
2012-11-15 00:00:00 3.660
2012-11-15 01:00:00 3.431
2012-11-15 02:00:00 2.842
2012-11-15 03:00:00 1.974
2012-11-15 04:00:00 0.953

Also available for the interval parameter is the hilo key which returns High and Low tide predictions.

>>> from py_noaa import coops
>>> df_predictions = coops.get_data(
... begin_date="20121115",
... end_date="20121217",
... stationid="9447130",
... product="predictions",
... datum="MLLW",
... interval="hilo",
... units="metric",
... time_zone="gmt")
...
>>> df_predictions.head()
 hi_lo predicted_wl
date_time
2012-11-15 06:57:00 L -1.046
2012-11-15 14:11:00 H 3.813
2012-11-15 19:36:00 L 2.037
2012-11-16 00:39:00 H 3.573
2012-11-16 07:44:00 L -1.049

Filtering Data by date

All data is returned as a pandas dataframe, with a DatimeIndex which allows for easy filtering of the data by dates.

>>> from py_noaa import coops
>>> df_predictions = coops.get_data(
... begin_date="20121115",
... end_date="20121217",
... stationid="9447130",
... product="predictions",
... datum="MLLW",
... interval="h",
... units="metric",
... time_zone="gmt")
...
>>> df_predictions['201211150000':'201211151200']
 predicted_wl
date_time
2012-11-15 00:00:00 3.660
2012-11-15 01:00:00 3.431
2012-11-15 02:00:00 2.842
2012-11-15 03:00:00 1.974
2012-11-15 04:00:00 0.953
2012-11-15 05:00:00 -0.047
2012-11-15 06:00:00 -0.787
2012-11-15 07:00:00 -1.045
2012-11-15 08:00:00 -0.740
2012-11-15 09:00:00 0.027
2012-11-15 10:00:00 1.053
2012-11-15 11:00:00 2.114
2012-11-15 12:00:00 3.006

Exporting Data

Since data is returned in a pandas dataframe, exporting the data is simple using the .to_csv method on the returned pandas dataframe. This requires the pandas [https://pandas.pydata.org/] package, which should be taken care of if you installed py_noaa with pip.

>>> df_currents = coops.get_data(
... begin_date="20150727",
... end_date="20150910",
... stationid="PUG1515",
... product="currents",
... bin_num=1,
... units="metric",
... time_zone="gmt")
...
>>> df_currents.to_csv(
... 'example.csv',
... sep='\t',
... encoding='utf-8')

As shown above, you can set the delimeter type using the sep= argument in the .to_csv method and control the file encoding using the encoding= argument.

Requirements

For use:

	requests

	numpy

	pandas

Suggested for development/contributions:

	pytest

	pytest-cov

TODO

See issues [https://github.com/GClunies/py_noaa/issues] for a list of issues and to add issues of your own.

Contribution

All contributions are welcome, feel free to submit a pull request if you feel you have a valuable addition to the package or constructive feedback.

The development of py_noaa was originally intended to help me (@GClunies [https://github.com/GClunies]) learn Python packaging, git, and GitHub while also helping to alleviate the pain of downloading NOAA Tides and Current data as part of my day job as a Coastal engineer.

As this project started as a learning exercise, please be patient and willing to teach/learn.

Many thanks to the following contributors!

	@delgadom [https://github.com/delgadom]

	@CraigHarter [https://github.com/CraigHarter]

	@jcconnel [https://github.com/jcconnell]

	@fabaff [https://github.com/fabaff]

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

