
PurePNG Documentation
Release 0.2.0

Pavel Zlatovratskii

2017-11-10

Contents

1 What is PurePNG? 3
1.1 Comparison to other PNG tools . 3
1.2 Installation . 4
1.3 PIL Plugin . 4
1.4 PurePNG compare to PyPNG . 4

2 PurePNG Code Examples 7
2.1 Writing . 7
2.2 Reading . 9
2.3 NumPy . 9

3 The png Module 11
3.1 A note on spelling and terminology . 11
3.2 A note on formats . 11
3.3 And now, my famous members . 12

4 Acceleration with Cython 21
4.1 Compilation . 21
4.2 Developing with Cython . 21

5 Roadmap and versions 23
5.1 PyPNG . 23
5.2 0.2 . 23
5.3 0.3 ==> 0.4 . 23
5.4 Future . 24

6 PNG: Chunk by Chunk 25
6.1 Critical Chunks . 25
6.2 Ancillary Chunks . 26
6.3 PNG Extensions Chunks . 27
6.4 Non-standard Chunks . 28

7 Indices and tables 29

Python Module Index 31

i

ii

PurePNG Documentation, Release 0.2.0

Contents:

Contents 1

PurePNG Documentation, Release 0.2.0

2 Contents

CHAPTER 1

What is PurePNG?

PurePNG is pure-Python package for reading and writing PNG.

PurePNG can read and write all PNG formats. PNG supports a generous variety of image formats: RGB or
greyscale, with or without an alpha channel; and a choice of bit depths from 1, 2 or 4 (as long as you want
greyscale or a pallete), 8, and 16 (but 16 bits is not allowed for palettes). A pixel can vary in size from 1 to 64 bits:
1/2/4/8/16/24/32/48/64. In addition a PNG file can be interlaced or not. An interlaced file allows an incrementally
refined display of images being downloaded over slow links (yet it’s not implemented in PurePNG for now).

PurePNG is written in pure Python(that’s why it’s called Pure). So if you write in Python you can understand code
of PurePNG or inspect raw data while debugging.

1.1 Comparison to other PNG tools

The most obvious “competitor” to PurePNG is PIL. Depending on what job you want to do you might also want
to use Netpbm (PurePNG can convert to and from the Netpbm PNM format), or use ctypes to interface directly
to a compiled version of libpng. If you know of others, let me know.

PIL’s focus is not PNG. PIL’s focus is image processing, and this is where PurePNG sucks. If you want to actually
process an image—resize, rotate, composite, crop–then you should use PIL. You may use PIL Plugin if you want
to use both PurePNG and PIL. In PurePNG you get the image as basically an array of numbers. So some image
processing is possible fairly easily, for example cropping to integer coordinates, or gamma conversion, but this
very basic.

PurePNG can read and write Netpbm PAM files. PAM is useful as an intermediary format for performing pro-
cessing; it allows the pixel data to be transferred in a simple format that is easily processed. Netpbm’s support
for PAM to PNG conversion is more limited than PurePNG’s. Netpbm will only convert a source PAM that has
4 channels (for example it does not create greyscale–alpha PNG files from GRAYSCALE_ALPHA PAM files).
Netpbm’s usual tool for create PNG files, pnmtopng, requires an alpha channel to be specified in a separate file.

PurePNG has good support for PNG’s sBIT chunk. This allows end to end processing of files with any bit depth
from 1 to 16 (for example a 10-bit scanner may use the sBIT chunk to declare that the samples in a 16-bit PNG
file are rescaled 10-bit samples; in this case, PurePNG delivers 10-bit samples). Netpbm handle’s the sBIT chunk
in a similar way, but other toolsets may not (e.g. PIL).

libpng is made by the PNG gods, so if want to get at all that goodness, then you may want to interface directly
to libpng via ctypes. That could be a good idea for some things. Installation would be trickier.

3

https://docs.python.org/2.7/library/ctypes.html#module-ctypes

PurePNG Documentation, Release 0.2.0

1.2 Installation

Because PurePNG is written in Python it’s trivial to install into a Python installation. Just use python setup.
py install.

There is also “light” mode: you can just copy the ../code/png/png.py file. You can even curl it
straight into wherever you need it: curl -LO https://raw.githubusercontent.com/Scondo/
purepng/master/code/png/png.py. This “light” module mode contains all features required for PNG
reading and writing, while “full” package mode contains extra features like Cython speedup, other format support,
PIL plugin etc.

1.3 PIL Plugin

In “full” package PurePNG provide plugin for usage with PIL instead of PIL’s native PNG support. This plugin is
in very early stage yet can be useful. Just try it with from png import PngImagePlugin

1.3.1 Benefit

• PurePNG rely on python’s zlib instead of PIL. So this plugin can be useful when PIL built without zlib
support.

• PurePNG handle sBIT chunk and rescale values if it’s not correctly rescaled on write.

• PurePNG does not use separate palette or transparency when reading, providing full RGB and alpha channel
instead.

• PurePNG should write gamma

1.3.2 Miss

• PurePNG does not save custom chunks

• PurePNG does not use zlib dictionary and method (compression level used)

1.4 PurePNG compare to PyPNG

PurePNG is fork of PyPNG - nice and simple module to work with png.

If you work with PyPNG in most cases you can use PurePNG as drop-in replace, but few things are changed:

1.4.1 Buffer, not array

PyPNG document that rows in boxed flat row could be any sequence, but in practice even unit-test check that it
should be array.array. This changed from array.array to any buffer-compatible sequence.

You can use buffer() or memoryview() functions to fetch row bytes depending on your version of python
if you have used tostring() before. And of course you may just use rows as sequence.

1.4.2 Python 2.2 no longer supported

Most features were already broken in Python 2.2 and it couldn’t be fixed. So support of Python 2.2 is completely
removed.

Python 2.2 is pretty old, you know?

4 Chapter 1. What is PurePNG?

https://docs.python.org/2.7/library/array.html#array.array
https://docs.python.org/2.7/library/array.html#array.array
https://docs.python.org/2.7/library/functions.html#buffer
https://docs.python.org/2.7/library/array.html#array.array.tostring

PurePNG Documentation, Release 0.2.0

1.4.3 PNM|PBM|PAM deprecated in module

For now Netpbm image format kept in png module, but it will be moved to a separate module within package. So
if you want to work with Netpbm images using PurePNG do not rely on “light” module mode, use “full” package.
(see Installation)

1.4. PurePNG compare to PyPNG 5

PurePNG Documentation, Release 0.2.0

6 Chapter 1. What is PurePNG?

CHAPTER 2

PurePNG Code Examples

This section discusses some example Python programs that use the png module for reading and writing PNG files.

2.1 Writing

The basic strategy is to create a Writer object (instance of png.Writer) and then call its png.write()
method with an open (binary) file, and the pixel data. The Writer object encapsulates all the information about
the PNG file: image size, colour, bit depth, and so on.

2.1.1 A Ramp

Create a one row image, that has all grey values from 0 to 255. This is a bit like Netpbm’s pgmramp.

import png
f = open('ramp.png', 'wb') # binary mode is important
w = png.Writer(255, 1, greyscale=True)
w.write(f, [range(256)])
f.close()

Note that our single row, generated by range(256), must itself be enclosed in a list. That’s because the png.
write() method expects a list of rows.

From now on import png will not be mentioned.

2.1.2 A Little Message

A list of strings holds a graphic in ASCII graphic form. We convert it to a list of integer lists (the required form
for the write() method), and write it out as a black-and-white PNG (bilevel greyscale).

s = ['110010010011',
'101011010100',
'110010110101',
'100010010011']

s = map(lambda x: map(int, x), s)

f = open('png.png', 'wb')

7

PurePNG Documentation, Release 0.2.0

w = png.Writer(len(s[0]), len(s), greyscale=True, bitdepth=1)
w.write(f, s)
f.close()

Note how we use len(s[0]) (the length of the first row) for the x argument and len(s) (the number of rows)
for the y argument.

2.1.3 A Palette

The previous example, “a little message”, can be converted to colour simply by creating a PNG file with a palette.
The only difference is that a palette argument is passed to the write() method instead of greyscale=True:

Assume f and s have been set up as per previous example
palette=[(0x55,0x55,0x55), (0xff,0x99,0x99)]
w = png.Writer(len(s[0]), len(s), palette=palette, bitdepth=1)
w.write(f, s)

Note that the palette consists of two entries (the bit depth is 1 so there are only 2 possible colours). Each entry is
an RGB triple. If we wanted transparency then we can use RGBA 4-tuples for each palette entry.

2.1.4 Colour

For colour images the input rows are generally 3 times as long as for greyscale, because there are 3 channels,
RGB, instead of just one, grey. Below, the p literal has 2 rows of 9 values (3 RGB pixels per row). The spaces are
just for your benefit, to mark out the separate pixels; they have no meaning in the code.

p = [(255,0,0, 0,255,0, 0,0,255),
(128,0,0, 0,128,0, 0,0,128)]

f = open('swatch.png', 'wb')
w = png.Writer(3, 2)
w.write(f, p) ; f.close()

2.1.5 More Colour

A further colour example illustrates some of the manoeuvres you have to perform in Python to get the pixel data
in the right format.

Say we want to produce a PNG image with 1 row of 8 pixels, with all the colours from a 3-bit colour system (with
1-bit for each channel; such systems were common on 8-bit micros from the 1980s).

We produce all possible 3-bit numbers:

>>> range(8)
[0, 1, 2, 3, 4, 5, 6, 7]

We can convert each number into an RGB triple by assigning bit 0 to blue, bit 1 to red, bit 2 to green (the
convention used by a certain 8-bit micro):

>>> map(lambda x: (bool(x&2), bool(x&4), bool(x&1)), _)
[(False, False, False), (False, False, True), (True, False, False),
(True, False, True), (False, True, False), (False, True, True), (True,
True, False), (True, True, True)]

(later on we will convert False into 0, and True into 255, so don’t worry about that just yet). Here we have each
pixel as a tuple. We want to flatten the pixels so that we have just one row. In other words instead of [(R,G,B),
(R,G,B), ...] we want [R,G,B,R,G,B,...]. It turns out that itertools.chain(*...) is just what we need:

8 Chapter 2. PurePNG Code Examples

PurePNG Documentation, Release 0.2.0

>>> list(itertools.chain(*_))
[False, False, False, False, False, True, True, False, False, True,
False, True, False, True, False, False, True, True, True, True, False,
True, True, True]

Note that the list is not necessary, we can usually use the iterator directly instead. I just used list here so we
can see the result.

Now to convert False to 0 and True to 255 we can multiply by 255 (Python use’s Iverson’s convention, so
False==0, True==1). We could do that with map(lambda x:255*x, _). Or, we could use a “magic”
bound method:

>>> map((255).__mul__, _)
[0, 0, 0, 0, 0, 255, 255, 0, 0, 255, 0, 255, 0, 255, 0, 0, 255, 255,
255, 255, 0, 255, 255, 255]

Now we write the PNG file out:

>>> p=_
>>> f=open('speccy.png', 'wb')
>>> w.write(f, [p]) ; f.close()

2.2 Reading

The basic strategy is to create a Reader object (a png.Reader instance), then call its png.read() method
to extract the size, and pixel data.

2.2.1 PngSuite

The Reader() constructor can take either a filename, a file-like object, or a sequence of bytes directly. Here we
use urllib to download a PNG file from the internet.

>>> r=png.Reader(file=urllib.urlopen('http://www.schaik.com/pngsuite/basn0g02.png
→˓'))
>>> r.read()
(32, 32, <itertools.imap object at 0x10b7eb0>, {'greyscale': True,
'alpha': False, 'interlace': 0, 'bitdepth': 2, 'gamma': 1.0})

The png.read() method returns a 4-tuple. Note that the pixels are returned as an iterator (not always, and the
interface doesn’t guarantee it; the returned value might be an iterator or a sequence).

>>> l=list(_[2])
>>> l[0]
array('B', [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3])

We have extracted the top row of the image. Note that the row itself is an array (see module array), but in
general any suitable sequence type may be returned by read(). The values in the row are all integers less than
4, because the image has a bit depth of 2.

2.3 NumPy

NumPy is a package for scientific computing with Python. It is not part of a standard Python installation, it is
downloaded and installed separately if needed. Numpy’s array manipulation facilities make it good for doing
certain type of image processing, and scientific users of NumPy may wish to output PNG files for visualisation.

2.2. Reading 9

http://numpy.scipy.org/
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103

PurePNG Documentation, Release 0.2.0

PyPNG does not have any direct integration with NumPy, but the basic data format used by PyPNG, an iterator
over rows, is fairly easy to get into two- or three-dimensional NumPy arrays.

The code in this section is extracted from exnumpy.py, which is a complete runnable example in the code/
subdirectory of the source distribution. Code was originally written by Mel Raab, but has been hacked around
since then.

2.3.1 PNG to NumPy array (reading)

The best thing to do (I think) is to convert each PyPNG row to a 1-dimensional numpy array, then stack all of
those arrays together to make a 2-dimensional array. A number of features make this surprising compact. Say
pngdata is the row iterator returned from png.Reader.asDirect(). The following code will slurp it into a
2-dimensional numpy array:

image_2d = numpy.vstack(itertools.imap(numpy.uint16, pngdata))

Note that the use of numpy.uint16, above, means that an array with data type numpy.uint16 is created
which is suitable for bit depth 16 images. Replace numpy.uint16 with numpy.uint8 to create an array with
a byte data type (suitable for bit depths up to 8).

2.3.2 Reshaping

For some operations it’s easier to have the image data in a 3-dimensional array. This plays to NumPy’s strengths:

image_3d = numpy.reshape(image_2d,
(row_count,column_count,plane_count))

2.3.3 NumPy array to PNG (writing)

Reshape your NumPy data into a 2-dimensional array, then use the fact that a NumPy array is an iterator over its
rows:

pngWriter.write(pngfile,
numpy.reshape(image_3d, (-1, column_count*plane_count)))

Currently (writing on 2009-04-16) this generates a warning; this warning appears to be a bug/limitation in NumPy,
but it is harmless.

10 Chapter 2. PurePNG Code Examples

CHAPTER 3

The png Module

Pure Python PNG Reader/Writer

This Python module implements support for PNG images (see PNG specification at http://www.w3.org/TR/2003/
REC-PNG-20031110/). It reads and writes PNG files with all allowable bit depths (1/2/4/8/16/24/32/48/64 bits
per pixel) and colour combinations: greyscale (1/2/4/8/16 bit); RGB, RGBA, LA (greyscale with alpha) with 8/16
bits per channel; colour mapped images (1/2/4/8 bit). Adam7 interlacing is supported for reading and writing. A
number of optional chunks can be specified (when writing) and understood (when reading): tRNS, bKGD, gAMA.

For help, type import png; help(png) in your python interpreter.

A good place to start is the Reader and Writer classes.

Requires Python 2.3. Best with Python 2.6 and higher. Installation is trivial, but see the README.txt file (with
the source distribution) for details.

This file can also be used as a command-line utility to convert Netpbm PNM files to PNG, and the reverse conver-
sion from PNG to PNM. The interface is similar to that of the pnmtopng program from Netpbm. Type python
png.py --help at the shell prompt for usage and a list of options.

3.1 A note on spelling and terminology

Generally British English spelling is used in the documentation. So that’s “greyscale” and “colour”. This not only
matches the author’s native language, it’s also used by the PNG specification.

The major colour models supported by PNG (and hence by this module) are: greyscale, RGB, greyscale–alpha,
RGB–alpha. These are sometimes referred to using the abbreviations: L, RGB, LA, RGBA. In this case each letter
abbreviates a single channel: L is for Luminance or Luma or Lightness which is the channel used in greyscale
images; R, G, B stand for Red, Green, Blue, the components of a colour image; A stands for Alpha, the opacity
channel (used for transparency effects, but higher values are more opaque, so it makes sense to call it opacity).

3.2 A note on formats

When getting pixel data out of this module (reading) and presenting data to this module (writing) there are a
number of ways the data could be represented as a Python value. Generally this module uses one of three formats
called “flat row flat pixel”, “boxed row flat pixel”, and “boxed row boxed pixel”. Basically the concern is whether
each pixel and each row comes in its own little tuple (box), or not.

11

http://www.w3.org/TR/2003/REC-PNG-20031110/
http://www.w3.org/TR/2003/REC-PNG-20031110/
http://netpbm.sourceforge.net/

PurePNG Documentation, Release 0.2.0

Consider an image that is 3 pixels wide by 2 pixels high, and each pixel has RGB components:

Boxed row flat pixel:

iter([R,G,B, R,G,B, R,G,B],
[R,G,B, R,G,B, R,G,B])

Each row appears as its own sequence, but the pixels are flattened so that three values for one pixel simply
follow the three values for the previous pixel. This is the most common format used, because it provides a good
compromise between space and convenience. Row sequence supposed to be compatible with ‘buffer’ protocol in
addition to standard sequence methods so ‘buffer()’ can be used to get fast per-byte access. All rows are contained
in iterable or iterable-compatible container. (use ‘iter()’ to ensure)

Flat row flat pixel:

[R,G,B, R,G,B, R,G,B,
R,G,B, R,G,B, R,G,B]

The entire image is one single giant sequence of colour values. Generally an array will be used (to save space),
not a list.

Boxed row boxed pixel:

list([(R,G,B), (R,G,B), (R,G,B)],
[(R,G,B), (R,G,B), (R,G,B)])

Each row appears in its own list, but each pixel also appears in its own tuple. A serious memory burn in Python.

In all cases the top row comes first, and for each row the pixels are ordered from left-to-right. Within a pixel the
values appear in the order, R-G-B-A (or L-A for greyscale–alpha).

There is a fourth format, mentioned because it is used internally, is close to what lies inside a PNG file itself,
and has some support from the public API. This format is called packed. When packed, each row is a sequence
of bytes (integers from 0 to 255), just as it is before PNG scanline filtering is applied. When the bit depth is 8
this is essentially the same as boxed row flat pixel; when the bit depth is less than 8, several pixels are packed
into each byte; when the bit depth is 16 (the only value more than 8 that is supported by the PNG image format)
each pixel value is decomposed into 2 bytes (and packed is a misnomer). This format is used by the Writer.
write_packed() method. It isn’t usually a convenient format, but may be just right if the source data for the
PNG image comes from something that uses a similar format (for example, 1-bit BMPs, or another PNG file).

3.3 And now, my famous members

class png.Image(rows, info)
A PNG image.

You can create an Image object from an array of pixels by calling png.from_array(). It can be saved
to disk with the save() method.

The constructor is not public. Please do not call it.

save(file)
Save the image to file.

If file looks like an open file descriptor then it is used, otherwise it is treated as a filename and a fresh
file is opened.

In general, you can only call this method once; after it has been called the first time and the PNG
image has been saved, the source data will have been streamed, and cannot be streamed again.

class png.Reader(_guess=None, **kw)
PNG decoder in pure Python.

Create a PNG decoder object.

12 Chapter 3. The png Module

PurePNG Documentation, Release 0.2.0

The constructor expects exactly one keyword argument. If you supply a positional argument instead, it will
guess the input type. You can choose among the following keyword arguments:

filename Name of input file (a PNG file).

file A file-like object (object with a read() method).

bytes array or string with PNG data.

asDirect()
Returns the image data as a direct representation of an x * y * planes array. This method is
intended to remove the need for callers to deal with palettes and transparency themselves. Images
with a palette (colour type 3) are converted to RGB or RGBA; images with transparency (a tRNS
chunk) are converted to LA or RGBA as appropriate. When returned in this format the pixel values
represent the colour value directly without needing to refer to palettes or transparency information.

Like the read() method this method returns a 4-tuple:

(width, height, pixels, meta)

This method normally returns pixel values with the bit depth they have in the source image, but when
the source PNG has an sBIT chunk it is inspected and can reduce the bit depth of the result pixels;
pixel values will be reduced according to the bit depth specified in the sBIT chunk (PNG nerds should
note a single result bit depth is used for all channels; the maximum of the ones specified in the sBIT
chunk. An RGB565 image will be rescaled to 6-bit RGB666).

The meta dictionary that is returned reflects the direct format and not the original source image.
For example, an RGB source image with a tRNS chunk to represent a transparent colour, will have
planes=3 and alpha=False for the source image, but the meta dictionary returned by this method
will have planes=4 and alpha=True because an alpha channel is synthesized and added.

pixels is the pixel data in boxed row flat pixel format (just like the read() method).

All the other aspects of the image data are not changed.

asFloat(maxval=1.0)
Return image pixels as per asDirect() method, but scale all pixel values to be floating point values
between 0.0 and maxval.

asRGB()
Return image as RGB pixels.

RGB colour images are passed through unchanged; greyscales are expanded into RGB triplets (there
is a small speed overhead for doing this).

An alpha channel in the source image will raise an exception.

The return values are as for the read() method except that the metadata reflect the returned pixels,
not the source image. In particular, for this method metadata['greyscale'] will be False.

asRGB8()
Return the image data as an RGB pixels with 8-bits per sample.

This is like the asRGB() method except that this method additionally rescales the values so that
they are all between 0 and 255 (8-bit). In the case where the source image has a bit depth < 8 the
transformation preserves all the information; where the source image has bit depth > 8, then rescaling
to 8-bit values loses precision. No dithering is performed. Like asRGB(), an alpha channel in the
source image will raise an exception.

This function returns a 4-tuple: (width, height, pixels, metadata). width, height, metadata are as per
the read() method.

pixels is the pixel data in boxed row flat pixel format.

asRGBA()
Return image as RGBA pixels.

Greyscales are expanded into RGB triplets; an alpha channel is synthesized if necessary. The re-
turn values are as for the read() method except that the metadata reflect the returned pixels, not

3.3. And now, my famous members 13

PurePNG Documentation, Release 0.2.0

the source image. In particular, for this method metadata['greyscale'] will be False, and
metadata['alpha'] will be True.

asRGBA8()
Return the image data as RGBA pixels with 8-bits per sample.

This method is similar to asRGB8() and asRGBA(): The result pixels have an alpha channel, and
values are rescaled to the range 0 to 255. The alpha channel is synthesized if necessary (with a small
speed penalty).

chunk(seek=None, lenient=False)
Read the next PNG chunk from the input file

returns a (chunk_type, data) tuple. chunk_type is the chunk’s type as a byte string (all PNG chunk
types are 4 bytes long). data is the chunk’s data content, as a byte string.

If the optional seek argument is specified then it will keep reading chunks until it either runs out of file
or finds the chunk_type specified by the argument. Note that in general the order of chunks in PNGs
is unspecified, so using seek can cause you to miss chunks.

If the optional lenient argument evaluates to True, checksum failures will raise warnings rather than
exceptions.

chunklentype()
Reads just enough of the input to determine the next chunk’s length and type, returned as a (length,
chunk_type) pair where chunk_type is a string. If there are no more chunks, None is returned.

chunks()
Return an iterator that will yield each chunk as a (chunktype, content) pair.

deinterlace(raw)
Read raw pixel data, undo filters, deinterlace, and flatten.

Return in flat row flat pixel format.

idat(lenient=False)
Iterator that yields all the IDAT chunks as strings.

idatdecomp(lenient=False, max_length=0)
Iterator that yields decompressed IDAT strings.

iterboxed(rows)
Iterator that yields each scanline in boxed row flat pixel format.

rows should be an iterator that yields the bytes of each row in turn.

iterstraight(raw)
Iterator that undoes the effect of filtering

Yields each row in serialised format (as a sequence of bytes). Assumes input is straightlaced. raw
should be an iterable that yields the raw bytes in chunks of arbitrary size.

palette(alpha=’natural’)
Returns a palette that is a sequence of 3-tuples or 4-tuples

Synthesizing it from the PLTE and tRNS chunks. These chunks should have already been processed
(for example, by calling the preamble() method). All the tuples are the same size: 3-tuples if there
is no tRNS chunk, 4-tuples when there is a tRNS chunk. Assumes that the image is colour type 3 and
therefore a PLTE chunk is required.

If the alpha argument is 'force' then an alpha channel is always added, forcing the result to be a
sequence of 4-tuples.

preamble(lenient=False)
Extract the image metadata

Extract the image metadata by reading the initial part of the PNG file up to the start of the IDAT chunk.
All the chunks that precede the IDAT chunk are read and either processed for metadata or discarded.

14 Chapter 3. The png Module

PurePNG Documentation, Release 0.2.0

If the optional lenient argument evaluates to True, checksum failures will raise warnings rather than
exceptions.

process_chunk(lenient=False)
Process the next chunk and its data.

If the optional lenient argument evaluates to True, checksum failures will raise warnings rather than
exceptions.

read(lenient=False)
Read the PNG file and decode it.

Returns (width, height, pixels, metadata).

May use excessive memory.

pixels are returned in boxed row flat pixel format.

If the optional lenient argument evaluates to True, checksum failures will raise warnings rather than
exceptions.

read_flat()
Read a PNG file and decode it into flat row flat pixel format.

Returns (width, height, pixels, metadata).

May use excessive memory.

pixels are returned in flat row flat pixel format.

See also the read() method which returns pixels in the more stream-friendly boxed row flat pixel
format.

serialtoflat(raw, width=None)
Convert serial format (byte stream) pixel data to flat row flat pixel.

validate_signature()
If signature (header) has not been read then read and validate it

class png.Writer(width=None, height=None, greyscale=False, alpha=False, bitdepth=8,
palette=None, transparent=None, background=None, gamma=None, com-
pression=None, interlace=False, chunk_limit=1048576, filter_type=None,
icc_profile=None, icc_profile_name=’ICC Profile’, **kwargs)

PNG encoder in pure Python.

Create a PNG encoder object.

Arguments:

width, height Image size in pixels, as two separate arguments.

greyscale Input data is greyscale, not RGB.

alpha Input data has alpha channel (RGBA or LA).

bitdepth Bit depth: from 1 to 16.

palette Create a palette for a colour mapped image (colour type 3).

transparent Specify a transparent colour (create a tRNS chunk).

background Specify a default background colour (create a bKGD chunk).

gamma Specify a gamma value (create a gAMA chunk).

compression zlib compression level: 0 (none) to 9 (more compressed); default: -1 or None.

interlace Create an interlaced image.

chunk_limit Write multiple IDAT chunks to save memory.

filter_type Enable and specify PNG filter

3.3. And now, my famous members 15

PurePNG Documentation, Release 0.2.0

icc_profile Write ICC Profile

icc_profile_name Name for ICC Profile

Extra keywords:

text see set_text()

modification_time see set_modification_time()

resolution see set_resolution()

The image size (in pixels) can be specified either by using the width and height arguments, or with the single
size argument. If size is used it should be a pair (width, height).

greyscale and alpha are booleans that specify whether an image is greyscale (or colour), and whether it has
an alpha channel (or not).

bitdepth specifies the bit depth of the source pixel values. Each source pixel value must be an integer
between 0 and 2**bitdepth-1. For example, 8-bit images have values between 0 and 255. PNG only
stores images with bit depths of 1,2,4,8, or 16. When bitdepth is not one of these values, the next highest
valid bit depth is selected, and an sBIT (significant bits) chunk is generated that specifies the original
precision of the source image. In this case the supplied pixel values will be rescaled to fit the range of the
selected bit depth.

The details of which bit depth / colour model combinations the PNG file format supports directly, are
somewhat arcane (refer to the PNG specification for full details). Briefly: “small” bit depths (1,2,4) are only
allowed with greyscale and colour mapped images; colour mapped images cannot have bit depth 16.

For colour mapped images (in other words, when the palette argument is specified) the bitdepth argument
must match one of the valid PNG bit depths: 1, 2, 4, or 8. (It is valid to have a PNG image with a palette and
an sBIT chunk, but the meaning is slightly different; it would be awkward to press the bitdepth argument
into service for this.)

The palette option, when specified, causes a colour mapped image to be created: the PNG colour type is set
to 3; greyscale must not be set; alpha must not be set; transparent must not be set; the bit depth must be
1, 2, 4, or 8. When a colour mapped image is created, the pixel values are palette indexes and the bitdepth
argument specifies the size of these indexes (not the size of the colour values in the palette).

The palette argument value should be a sequence of 3- or 4-tuples. 3-tuples specify RGB palette entries;
4-tuples specify RGBA palette entries. If both 4-tuples and 3-tuples appear in the sequence then all the
4-tuples must come before all the 3-tuples. A PLTE chunk is created; if there are 4-tuples then a tRNS
chunk is created as well. The PLTE chunk will contain all the RGB triples in the same sequence; the tRNS
chunk will contain the alpha channel for all the 4-tuples, in the same sequence. Palette entries are always
8-bit.

If specified, the transparent and background parameters must be a tuple with three integer values for red,
green, blue, or a simple integer (or singleton tuple) for a greyscale image.

If specified, the gamma parameter must be a positive number (generally, a float). A gAMA chunk will be
created. Note that this will not change the values of the pixels as they appear in the PNG file, they are
assumed to have already been converted appropriately for the gamma specified.

The compression argument specifies the compression level to be used by the zlib module. Values from
1 to 9 specify compression, with 9 being “more compressed” (usually smaller and slower, but it doesn’t
always work out that way). 0 means no compression. -1 and None both mean that the default level of
compession will be picked by the zlib module (which is generally acceptable).

If interlace is true then an interlaced image is created (using PNG’s so far only interace method, Adam7).
This does not affect how the pixels should be presented to the encoder, rather it changes how they are
arranged into the PNG file. On slow connexions interlaced images can be partially decoded by the browser
to give a rough view of the image that is successively refined as more image data appears.

Note: Enabling the interlace option requires the entire image to be processed in working memory.

16 Chapter 3. The png Module

PurePNG Documentation, Release 0.2.0

chunk_limit is used to limit the amount of memory used whilst compressing the image. In order to avoid
using large amounts of memory, multiple IDAT chunks may be created.

filter_type is number or name of filter type for better compression see http://www.w3.org/TR/
PNG/#9Filter-types for details It’s also possible to use adaptive strategy for choosing filter
type per row. Predefined strategies are sum and entropy. Custom strategies can be added
with register_extra_filter() or be callable passed with this argument. (see more at
register_extra_filter())

array_scanlines(pixels)
Generates boxed rows (flat pixels) from flat rows (flat pixels) in an array.

array_scanlines_interlace(pixels)
Generator for interlaced scanlines from an array.

pixels is the full source image in flat row flat pixel format. The generator yields each scanline of the
reduced passes in turn, in boxed row flat pixel format.

convert_pnm(infile, outfile)
Convert a PNM file containing raw pixel data into a PNG file with the parameters set in the writer
object. Works for (binary) PGM, PPM, and PAM formats.

convert_ppm_and_pgm(ppmfile, pgmfile, outfile)
Convert a PPM and PGM file containing raw pixel data into a PNG outfile with the parameters set in
the writer object.

file_scanlines(infile)
Generates boxed rows in flat pixel format, from the input file.

It assumes that the input file is in a “Netpbm-like” binary format, and is positioned at the beginning
of the first pixel. The number of pixels to read is taken from the image dimensions (width, height,
planes) and the number of bytes per value is implied by the image bitdepth.

idat(rows, packed=False)
Generator that produce IDAT chunks from rows

set_modification_time(modification_time=True)
Add time to be written as last modification time

When called after initialisation configure to use time of writing file

set_rendering_intent(rendering_intent)
Set rendering intent variant for sRGB chunk

set_resolution(resolution=None)
Add physical pixel dimensions

resolution supposed two be tuple of two parameterts: pixels per unit and unit type; unit type may be
omitted pixels per unit could be simple integer or tuple of (ppu_x, ppu_y) Also possible to use all three
parameters im row

• resolution = ((1, 4),) # wide pixels (4:1) without unit specifier

• resolution = (300, ‘inch’) # 300dpi in both dimensions

• resolution = (4, 1, 0) # tall pixels (1:4) without unit specifier

set_rgb_points(rgb_points, *args)
Set rgb points part of cHRM chunk

set_text(text=None, **kwargs)
Add textual information.

All pairs in dictionary will be written, but keys should be latin-1; registered keywords could be used
as arguments.

When called more than once overwrite exist data.

3.3. And now, my famous members 17

http://www.w3.org/TR/PNG/#9Filter-types
http://www.w3.org/TR/PNG/#9Filter-types

PurePNG Documentation, Release 0.2.0

set_white_point(white_point, point2=None)
Set white point part of cHRM chunk

write(outfile, rows)
Write a PNG image to the output file.

rows should be an iterable that yields each row in boxed row flat pixel format. The rows should be
the rows of the original image, so there should be self.height rows of self.width * self.
planes values. If interlace is specified (when creating the instance), then an interlaced PNG file will
be written. Supply the rows in the normal image order; the interlacing is carried out internally.

Note: Interlacing will require the entire image to be in working memory.

write_array(outfile, pixels)
Write an array in flat row flat pixel format as a PNG file on the output file. See also write() method.

write_idat(outfile, idat_sequence)
Write png with IDAT to file

idat_sequence should be iterable that produce IDAT chunks compatible with Writer configuration.

write_packed(outfile, rows)
Write PNG file to outfile.

The pixel data comes from rows which should be in boxed row packed format. Each row should be a
sequence of packed bytes.

Technically, this method does work for interlaced images but it is best avoided. For interlaced images,
the rows should be presented in the order that they appear in the file.

This method should not be used when the source image bit depth is not one naturally supported by
PNG; the bit depth should be 1, 2, 4, 8, or 16.

write_passes(outfile, rows, packed=False)
Write a PNG image to the output file.

Most users are expected to find the write() or write_array() method more convenient.

The rows should be given to this method in the order that they appear in the output file. For straight-
laced images, this is the usual top to bottom ordering, but for interlaced images the rows should have
already been interlaced before passing them to this function.

rows should be an iterable that yields each row. When packed is False the rows should be in boxed
row flat pixel format; when packed is True each row should be a packed sequence of bytes.

exception png.Error
Generic PurePNG error

exception png.FormatError
Problem with input file format.

In other words, PNG file does not conform to the specification in some way and is invalid.

exception png.ChunkError
Error in chunk handling

png.register_extra_filter(selector, name)
Register adaptive filter selection strategy for futher usage.

selector - callable like def(line, cfg, filter_obj)

• line - line for filtering

• cfg - dict with optional tuning

• filter_obj - instance of this class to get context or apply base filters

18 Chapter 3. The png Module

PurePNG Documentation, Release 0.2.0

callable should return chosen line

name - name which may be used later to recall this strategy

png.write_chunks(out, chunks)
Create a PNG file by writing out the chunks.

png.from_array(a, mode=None, info=None)
Create a PNG Image object from a 2- or 3-dimensional array.

One application of this function is easy PIL-style saving: png.from_array(pixels, 'L').
save('foo.png').

Unless they are specified using the info parameter, the PNG’s height and width are taken from the array
size. For a 3 dimensional array the first axis is the height; the second axis is the width; and the third axis is
the channel number. Thus an RGB image that is 16 pixels high and 8 wide will use an array that is 16x8x3.
For 2 dimensional arrays the first axis is the height, but the second axis is width*channels, so an RGB
image that is 16 pixels high and 8 wide will use a 2-dimensional array that is 16x24 (each row will be 8*3
= 24 sample values).

mode is a string that specifies the image colour format in a PIL-style mode. It can be:

'L' greyscale (1 channel)

'LA' greyscale with alpha (2 channel)

'RGB' colour image (3 channel)

'RGBA' colour image with alpha (4 channel)

The mode string can also specify the bit depth (overriding how this function normally derives the bit depth,
see below). Appending ';16' to the mode will cause the PNG to be 16 bits per channel; any decimal from
1 to 16 can be used to specify the bit depth.

When a 2-dimensional array is used mode determines how many channels the image has, and so allows the
width to be derived from the second array dimension.

The array is expected to be a numpy array, but it can be any suitable Python sequence. For example, a list of
lists can be used: png.from_array([[0, 255, 0], [255, 0, 255]], 'L'). The exact rules
are: len(a) gives the first dimension, height; len(a[0]) gives the second dimension; len(a[0][0])
gives the third dimension, unless an exception is raised in which case a 2-dimensional array is assumed. It’s
slightly more complicated than that because an iterator of rows can be used, and it all still works. Using an
iterator allows data to be streamed efficiently.

The bit depth of the PNG is normally taken from the array element’s datatype (but if mode specifies a
bitdepth then that is used instead). The array element’s datatype is determined in a way which is supposed
to work both for numpy arrays and for Python array.array objects. A 1 byte datatype will give a bit
depth of 8, a 2 byte datatype will give a bit depth of 16. If the datatype does not have an implicit size, for
example it is a plain Python list of lists, as above, then a default of 8 is used.

The info parameter is a dictionary that can be used to specify metadata (in the same style as the arguments
to the png.Writer class). For this function the keys that are useful are:

height overrides the height derived from the array dimensions and allows a to be an iterable.

width overrides the width derived from the array dimensions.

bitdepth overrides the bit depth derived from the element datatype (but must match mode if that also
specifies a bit depth).

Generally anything specified in the info dictionary will override any implicit choices that this function would
otherwise make, but must match any explicit ones. For example, if the info dictionary has a greyscale
key then this must be true when mode is 'L' or 'LA' and false when mode is 'RGB' or 'RGBA'.

png.parse_mode(mode, default_bitdepth=None)
Parse PIL-style mode and return tuple (grayscale, alpha, bitdeph)

3.3. And now, my famous members 19

PurePNG Documentation, Release 0.2.0

png.read_pam_header(infile)
Read (the rest of a) PAM header.

infile should be positioned immediately after the initial ‘P7’ line (at the beginning of the second line).
Returns are as for read_pnm_header.

png.read_pnm_header(infile, supported=(‘P5’, ‘P6’))
Read a PNM header, returning (format,width,height,depth,maxval).

width and height are in pixels. depth is the number of channels in the image; for PBM and PGM it is
synthesized as 1, for PPM as 3; for PAM images it is read from the header. maxval is synthesized (as 1) for
PBM images.

png.write_pnm(file, width, height, pixels, meta)
Write a Netpbm PNM/PAM file.

20 Chapter 3. The png Module

CHAPTER 4

Acceleration with Cython

Part of png.py can be compiled with Cython to achieve better performance. Compiled part is png.
BaseFilter() class now. Compilation use pngfilters.pxd file do declare types and override functions.

4.1 Compilation

Compilation will be done automatically during setup process while Cython and c-compiler installed. If you do not
want to install binary-compiled part you may skip compilation using --no-cython option for setup.py.

When you use pypng without installation you may build cythonized code using setup.py build_ext
--inplace

4.2 Developing with Cython

If you want to see how Cython compile it’s part you can extract compiled part into pngfilters.py using
unimport.py and later compile with Cython like cython pngfilters.py Be careful! You should remove
pngfilters.py after compilation to avoid errors!

Main idea of PurePNG is polyglot so don’t use any Cython-specific construction in png.py - you will broke
pure-python mode which is core of all. If you have want to improve performance using such things - separate this
in function and write twice: in png.py using pure-python syntax and in pngfilters.pxd using cython and
cdef inline.

If you modify part of png.py that should be compiled and know nothing about cython feel free to commit and
pull request - someone should fix things you can break before release. So if you want to make release - pass
unittest both with and without compiled part.

21

PurePNG Documentation, Release 0.2.0

22 Chapter 4. Acceleration with Cython

CHAPTER 5

Roadmap and versions

PurePNG use odd/even minor version numbering with odd for development and even for stable versions.

5.1 PyPNG

PyPNG with it’s 0.0.* version could be treated as previous stable version of PurePNG. David Jones works carefully
on this.

5.2 0.2

• Reworked Cython concept.

• Add optional filtering on save.

• Module/package duality

• Python 2/3 polyglot (and partitial Cython)

• Using bytearray when possible.

• PIL plugin

• More chunks: text, resolution, colour intent

5.3 0.3 ==> 0.4

• Provide optimisation functions like ‘try to pallete’ or ‘try to greyscale’

• Separate pnm support to module within package

• Rework iccp module to become part of package

• Better text support

• Enhance PIL plugin, support ‘raw’ reading with palette handled by PIL

23

PurePNG Documentation, Release 0.2.0

5.4 Future

• Cython-accelerated scaling

• Support more chunks at least for direct reading|embeding.

• Integrate most tools (incl. picture formats) into package

• Other Cython acceleration when possible

Reports:

24 Chapter 5. Roadmap and versions

CHAPTER 6

PNG: Chunk by Chunk

The PNG specification defines 18 chunk types. This document is intended to help users who are interested in a
particular PNG chunk type. If you have a particular PNG chunk type in mind, you can look here to see what
support PurePNG provides for it.

6.1 Critical Chunks

6.1.1 IHDR

Generated automatically by PurePNG. The IHDR chunk specifies image size, colour model, bit depth, and inter-
lacing. All possible (valid) combinations can be produced with suitable arguments to the png.Writer class.

6.1.2 PLTE

Correctly handled when a PNG image is read. Can be generated for a colour type 3 image by using the palette
argument to the png.Writer class. PNG images with colour types other than 3 can also have a PLTE chunk (a
suggested palette); it is not currently possible to add a PLTE chunk for these images using PyPNG.

6.1.3 IDAT

Generated automatically from the pixel data presented to PurePNG. Multiple IDAT chunks (of bounded size) can
be generated by using chunk_limit argument to the png.Writer class.

6.1.4 IEND

Generated automatically.

25

PurePNG Documentation, Release 0.2.0

6.2 Ancillary Chunks

6.2.1 tRNS

Generated for most colour types when the transparent argument is supplied to the png.Writer to specify
a transparent colour. For colour type 3, colour mapped images, a tRNS chunk will be generated automatically
from the palette argument when a palette with alpha (opacity) values is supplied.

6.2.2 cHRM

When reading a PNG image the cHRM chunk is converted to a tuples white_point (2-tuple of floating
point values) and rgb_points (3-tuple of 2-tuple of floating point) in the info dictionary. When writing,
white_point and rgb_points arguments to the png.Writer class or calling apropriate set_ methods
generate a cHRM chunk (only both, single will be ignored).

6.2.3 gAMA

When reading a PNG image the gAMA chunk is converted to a floating point gamma value; this value is returned
in the info dictionary: info['gamma']. When writing, the gamma argument to the png.Writer class will
generate a gAMA chunk.

6.2.4 iCCP

When reading a PNG image the iCCP chunk is saved as raw bytes and name. These data returned in the info dic-
tionary: info['icc_profile'], info['icc_profile_name']. When writing, the icc_profile
argument to the png.Writer class will generate a iCCP chunk, with name supplied in icc_profile_name
argument or “ICC Profile” as default.

6.2.5 sBIT

When reading a PNG image the sBIT chunk will make PyPNG rescale the pixel values so that they all have the
width implied by the sBIT chunk. It is possible for a PNG image to have an sBIT chunk that specifies 3 different
values for the significant bits in each of the 3 colour channels. In this case PyPNG only uses the largest value.
When writing a PNG image, an sBIT chunk will be generated if need according to the bitdepth argument
specified. Values other than 1, 2, 4, 8, or 16 will generate an sBIT chunk, as will values less than 8 for images
with more than one plane.

6.2.6 sRGB

When reading a PNG image the sRGB chunk is read to an integer value; this value is returned in the info
dictionary: info['rendering_intent'] and can be compared to values like png.PERCEPTUAL. When
writing, the rendering_intent argument to the png.Writer class will generate a sRGB chunk.

6.2.7 tEXt

When reading a PNG image the tEXt chunks are converted to a dictionary of keywords and unicode values in
the info dictionary: info['text']. When writing, the text argument with same dict to the png.Writer
class or arguments with registered keywords names will generate tEXt chunks.

26 Chapter 6. PNG: Chunk by Chunk

PurePNG Documentation, Release 0.2.0

6.2.8 zTXt

When reading a PNG image the zTXt chunks are converted to a dictionary of keywords and unicode values in the
info dictionary: info['text']. It’s not possible to write zTXt chunsk for now, only tEXt will be written
with text keyword.

6.2.9 iTXt

When reading append to text info same as tEXt or zTXt, translated keyword and language tags ignored.

Keywords within text that does not fit latin-1 will be saved as iTXt

6.2.10 bKGD

When a PNG image is read, a bKGD chunk will add the background key to the info dictionary. When writing
a PNG image, a bKGD chunk will be generated when the background argument is used.

6.2.11 hIST

Ignored when reading. Not generated.

6.2.12 pHYs

When reading a PNG image the pHYs chunk is converted to form ((<pixel_per_unit_x>, <pixel_per_unit_y>),
<unit_is_meter>) This tuple is returned in the info dictionary: info['resolution']. When writing, the
resolution argument to the png.Writer class will generate a pHYs chunk. Argument could be tuple same
as reading result, but also possible some usability modificatuion:

• if both resolutions are same it could be written as single number instead of tuple: (<pixel_per_unit_x>,
<unit_is_meter>)

• all three parameters could be written in row: (<pixel_per_unit_x>, <pixel_per_unit_y>, <unit_is_meter>)

• instead of <unit_is_meter> bool it’s possible to use some unit specification:

1. omit this part if no unit specified ((<pixel_per_unit_x>, <pixel_per_unit_y>),)

2. use text name of unit (300, ‘i’) ‘i’, ‘cm’ and ‘m’ supported for now.

6.2.13 sPLT

Ignored when reading. Not generated.

6.2.14 tIME

When reading generate last_mod_time tuple which is time.structtime compatible.

png.Writer have method png.Writer.set_modification_time() which could be used to specify
tIME value or indicate that it should be calculated as file writing time.

6.3 PNG Extensions Chunks

See ftp://ftp.simplesystems.org/pub/png/documents/pngextensions.html

6.3. PNG Extensions Chunks 27

ftp://ftp.simplesystems.org/pub/png/documents/pngextensions.html

PurePNG Documentation, Release 0.2.0

6.3.1 oFFs

Ignored when reading. Not generated.

6.3.2 pCAL

Ignored when reading. Not generated.

6.3.3 sCAL

Ignored when reading. Not generated.

6.3.4 gIFg

Ignored when reading. Not generated.

6.3.5 gIFx

Ignored when reading. Not generated.

6.3.6 sTER

Ignored when reading. Not generated.

6.3.7 dSIG

Ignored when reading. Not generated.

6.3.8 fRAc

Ignored when reading. Not generated.

6.3.9 gIFt

Ignored when reading. Not generated.

6.4 Non-standard Chunks

Generally it is not possible to generate PNG images with any other chunk types. When reading a PNG image,
processing it using the chunk interface, png.Reader.chunks, will allow any chunk to be processed (by user
code).

28 Chapter 6. PNG: Chunk by Chunk

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

29

PurePNG Documentation, Release 0.2.0

30 Chapter 7. Indices and tables

Python Module Index

p
png, 11

31

PurePNG Documentation, Release 0.2.0

32 Python Module Index

Index

A
array_scanlines() (png.Writer method), 17
array_scanlines_interlace() (png.Writer method), 17
asDirect() (png.Reader method), 13
asFloat() (png.Reader method), 13
asRGB() (png.Reader method), 13
asRGB8() (png.Reader method), 13
asRGBA() (png.Reader method), 13
asRGBA8() (png.Reader method), 14

C
chunk() (png.Reader method), 14
ChunkError, 18
chunklentype() (png.Reader method), 14
chunks() (png.Reader method), 14
convert_pnm() (png.Writer method), 17
convert_ppm_and_pgm() (png.Writer method), 17

D
deinterlace() (png.Reader method), 14

E
Error, 18

F
file_scanlines() (png.Writer method), 17
FormatError, 18
from_array() (in module png), 19

I
idat() (png.Reader method), 14
idat() (png.Writer method), 17
idatdecomp() (png.Reader method), 14
Image (class in png), 12
iterboxed() (png.Reader method), 14
iterstraight() (png.Reader method), 14

P
palette() (png.Reader method), 14
parse_mode() (in module png), 19
png (module), 11
preamble() (png.Reader method), 14
process_chunk() (png.Reader method), 15

R
read() (png.Reader method), 15
read_flat() (png.Reader method), 15
read_pam_header() (in module png), 19
read_pnm_header() (in module png), 20
Reader (class in png), 12
register_extra_filter() (in module png), 18

S
save() (png.Image method), 12
serialtoflat() (png.Reader method), 15
set_modification_time() (png.Writer method), 17
set_rendering_intent() (png.Writer method), 17
set_resolution() (png.Writer method), 17
set_rgb_points() (png.Writer method), 17
set_text() (png.Writer method), 17
set_white_point() (png.Writer method), 17

V
validate_signature() (png.Reader method), 15

W
write() (png.Writer method), 18
write_array() (png.Writer method), 18
write_chunks() (in module png), 19
write_idat() (png.Writer method), 18
write_packed() (png.Writer method), 18
write_passes() (png.Writer method), 18
write_pnm() (in module png), 20
Writer (class in png), 15

33

	What is PurePNG?
	Comparison to other PNG tools
	Installation
	PIL Plugin
	PurePNG compare to PyPNG

	PurePNG Code Examples
	Writing
	Reading
	NumPy

	The png Module
	A note on spelling and terminology
	A note on formats
	And now, my famous members

	Acceleration with Cython
	Compilation
	Developing with Cython

	Roadmap and versions
	PyPNG
	0.2
	0.3 ==> 0.4
	Future

	PNG: Chunk by Chunk
	Critical Chunks
	Ancillary Chunks
	PNG Extensions Chunks
	Non-standard Chunks

	Indices and tables
	Python Module Index

