
PurePNG Documentation
Release 0.3.0

Pavel Zlatovratskii

2017-11-10

Contents

1 What is PurePNG? 3
1.1 Comparison to other PNG tools . 3
1.2 Installation . 4
1.3 PIL Plugin . 4
1.4 PurePNG compare to PyPNG . 4

2 PurePNG Code Examples 7
2.1 Writing . 7
2.2 Reading . 9
2.3 NumPy . 9

3 The png Module 11

4 Acceleration with Cython 13
4.1 Compilation . 13
4.2 Developing with Cython . 13

5 Roadmap and versions 15
5.1 PyPNG . 15
5.2 0.2 . 15
5.3 0.3 ==> 0.4 . 15
5.4 Future . 16

6 PNG: Chunk by Chunk 17
6.1 Critical Chunks . 17
6.2 Ancillary Chunks . 18
6.3 PNG Extensions Chunks . 19
6.4 Non-standard Chunks . 20

7 Indices and tables 21

Python Module Index 23

i

ii

PurePNG Documentation, Release 0.3.0

Contents:

Contents 1

PurePNG Documentation, Release 0.3.0

2 Contents

CHAPTER 1

What is PurePNG?

PurePNG is pure-Python package for reading and writing PNG.

PurePNG can read and write all PNG formats. PNG supports a generous variety of image formats: RGB or
greyscale, with or without an alpha channel; and a choice of bit depths from 1, 2 or 4 (as long as you want
greyscale or a pallete), 8, and 16 (but 16 bits is not allowed for palettes). A pixel can vary in size from 1 to 64 bits:
1/2/4/8/16/24/32/48/64. In addition a PNG file can be interlaced or not. An interlaced file allows an incrementally
refined display of images being downloaded over slow links (yet it’s not implemented in PurePNG for now).

PurePNG is written in pure Python(that’s why it’s called Pure). So if you write in Python you can understand code
of PurePNG or inspect raw data while debugging.

1.1 Comparison to other PNG tools

The most obvious “competitor” to PurePNG is PIL. Depending on what job you want to do you might also want
to use Netpbm (PurePNG can convert to and from the Netpbm PNM format), or use ctypes to interface directly
to a compiled version of libpng. If you know of others, let me know.

PIL’s focus is not PNG. PIL’s focus is image processing, and this is where PurePNG sucks. If you want to actually
process an image—resize, rotate, composite, crop–then you should use PIL. You may use PIL Plugin if you want
to use both PurePNG and PIL. In PurePNG you get the image as basically an array of numbers. So some image
processing is possible fairly easily, for example cropping to integer coordinates, or gamma conversion, but this
very basic.

PurePNG can read and write Netpbm PAM files. PAM is useful as an intermediary format for performing pro-
cessing; it allows the pixel data to be transferred in a simple format that is easily processed. Netpbm’s support
for PAM to PNG conversion is more limited than PurePNG’s. Netpbm will only convert a source PAM that has
4 channels (for example it does not create greyscale–alpha PNG files from GRAYSCALE_ALPHA PAM files).
Netpbm’s usual tool for create PNG files, pnmtopng, requires an alpha channel to be specified in a separate file.

PurePNG has good support for PNG’s sBIT chunk. This allows end to end processing of files with any bit depth
from 1 to 16 (for example a 10-bit scanner may use the sBIT chunk to declare that the samples in a 16-bit PNG
file are rescaled 10-bit samples; in this case, PurePNG delivers 10-bit samples). Netpbm handle’s the sBIT chunk
in a similar way, but other toolsets may not (e.g. PIL).

libpng is made by the PNG gods, so if want to get at all that goodness, then you may want to interface directly
to libpng via ctypes. That could be a good idea for some things. Installation would be trickier.

3

https://docs.python.org/2.7/library/ctypes.html#module-ctypes

PurePNG Documentation, Release 0.3.0

1.2 Installation

Because PurePNG is written in Python it’s trivial to install into a Python installation. Just use python setup.
py install.

There is also “light” mode: you can just copy the ../code/png/png.py file. You can even curl it
straight into wherever you need it: curl -LO https://raw.githubusercontent.com/Scondo/
purepng/master/code/png/png.py. This “light” module mode contains all features required for PNG
reading and writing, while “full” package mode contains extra features like Cython speedup, other format support,
PIL plugin etc.

1.3 PIL Plugin

In “full” package PurePNG provide plugin for usage with PIL instead of PIL’s native PNG support. This plugin is
in very early stage yet can be useful. Just try it with from png import PngImagePlugin

1.3.1 Benefit

• PurePNG rely on python’s zlib instead of PIL. So this plugin can be useful when PIL built without zlib
support.

• PurePNG handle sBIT chunk and rescale values if it’s not correctly rescaled on write.

• PurePNG does not use separate palette or transparency when reading, providing full RGB and alpha channel
instead.

• PurePNG should write gamma

1.3.2 Miss

• PurePNG does not save custom chunks

• PurePNG does not use zlib dictionary and method (compression level used)

1.4 PurePNG compare to PyPNG

PurePNG is fork of PyPNG - nice and simple module to work with png.

If you work with PyPNG in most cases you can use PurePNG as drop-in replace, but few things are changed:

1.4.1 Buffer, not array

PyPNG document that rows in boxed flat row could be any sequence, but in practice even unit-test check that it
should be array.array. This changed from array.array to any buffer-compatible sequence.

You can use buffer() or memoryview() functions to fetch row bytes depending on your version of python
if you have used tostring() before. And of course you may just use rows as sequence.

1.4.2 Python 2.2 no longer supported

Most features were already broken in Python 2.2 and it couldn’t be fixed. So support of Python 2.2 is completely
removed.

Python 2.2 is pretty old, you know?

4 Chapter 1. What is PurePNG?

https://docs.python.org/2.7/library/array.html#array.array
https://docs.python.org/2.7/library/array.html#array.array
https://docs.python.org/2.7/library/functions.html#buffer
https://docs.python.org/2.7/library/array.html#array.array.tostring

PurePNG Documentation, Release 0.3.0

1.4.3 PNM|PBM|PAM deprecated in module

For now Netpbm image format kept in png module, but it will be moved to a separate module within package. So
if you want to work with Netpbm images using PurePNG do not rely on “light” module mode, use “full” package.
(see Installation)

1.4. PurePNG compare to PyPNG 5

PurePNG Documentation, Release 0.3.0

6 Chapter 1. What is PurePNG?

CHAPTER 2

PurePNG Code Examples

This section discusses some example Python programs that use the png module for reading and writing PNG files.

2.1 Writing

The basic strategy is to create a Writer object (instance of png.Writer) and then call its png.write()
method with an open (binary) file, and the pixel data. The Writer object encapsulates all the information about
the PNG file: image size, colour, bit depth, and so on.

2.1.1 A Ramp

Create a one row image, that has all grey values from 0 to 255. This is a bit like Netpbm’s pgmramp.

import png
f = open('ramp.png', 'wb') # binary mode is important
w = png.Writer(255, 1, greyscale=True)
w.write(f, [range(256)])
f.close()

Note that our single row, generated by range(256), must itself be enclosed in a list. That’s because the png.
write() method expects a list of rows.

From now on import png will not be mentioned.

2.1.2 A Little Message

A list of strings holds a graphic in ASCII graphic form. We convert it to a list of integer lists (the required form
for the write() method), and write it out as a black-and-white PNG (bilevel greyscale).

s = ['110010010011',
'101011010100',
'110010110101',
'100010010011']

s = map(lambda x: map(int, x), s)

f = open('png.png', 'wb')

7

PurePNG Documentation, Release 0.3.0

w = png.Writer(len(s[0]), len(s), greyscale=True, bitdepth=1)
w.write(f, s)
f.close()

Note how we use len(s[0]) (the length of the first row) for the x argument and len(s) (the number of rows)
for the y argument.

2.1.3 A Palette

The previous example, “a little message”, can be converted to colour simply by creating a PNG file with a palette.
The only difference is that a palette argument is passed to the write() method instead of greyscale=True:

Assume f and s have been set up as per previous example
palette=[(0x55,0x55,0x55), (0xff,0x99,0x99)]
w = png.Writer(len(s[0]), len(s), palette=palette, bitdepth=1)
w.write(f, s)

Note that the palette consists of two entries (the bit depth is 1 so there are only 2 possible colours). Each entry is
an RGB triple. If we wanted transparency then we can use RGBA 4-tuples for each palette entry.

2.1.4 Colour

For colour images the input rows are generally 3 times as long as for greyscale, because there are 3 channels,
RGB, instead of just one, grey. Below, the p literal has 2 rows of 9 values (3 RGB pixels per row). The spaces are
just for your benefit, to mark out the separate pixels; they have no meaning in the code.

p = [(255,0,0, 0,255,0, 0,0,255),
(128,0,0, 0,128,0, 0,0,128)]

f = open('swatch.png', 'wb')
w = png.Writer(3, 2)
w.write(f, p) ; f.close()

2.1.5 More Colour

A further colour example illustrates some of the manoeuvres you have to perform in Python to get the pixel data
in the right format.

Say we want to produce a PNG image with 1 row of 8 pixels, with all the colours from a 3-bit colour system (with
1-bit for each channel; such systems were common on 8-bit micros from the 1980s).

We produce all possible 3-bit numbers:

>>> range(8)
[0, 1, 2, 3, 4, 5, 6, 7]

We can convert each number into an RGB triple by assigning bit 0 to blue, bit 1 to red, bit 2 to green (the
convention used by a certain 8-bit micro):

>>> map(lambda x: (bool(x&2), bool(x&4), bool(x&1)), _)
[(False, False, False), (False, False, True), (True, False, False),
(True, False, True), (False, True, False), (False, True, True), (True,
True, False), (True, True, True)]

(later on we will convert False into 0, and True into 255, so don’t worry about that just yet). Here we have each
pixel as a tuple. We want to flatten the pixels so that we have just one row. In other words instead of [(R,G,B),
(R,G,B), ...] we want [R,G,B,R,G,B,...]. It turns out that itertools.chain(*...) is just what we need:

8 Chapter 2. PurePNG Code Examples

PurePNG Documentation, Release 0.3.0

>>> list(itertools.chain(*_))
[False, False, False, False, False, True, True, False, False, True,
False, True, False, True, False, False, True, True, True, True, False,
True, True, True]

Note that the list is not necessary, we can usually use the iterator directly instead. I just used list here so we
can see the result.

Now to convert False to 0 and True to 255 we can multiply by 255 (Python use’s Iverson’s convention, so
False==0, True==1). We could do that with map(lambda x:255*x, _). Or, we could use a “magic”
bound method:

>>> map((255).__mul__, _)
[0, 0, 0, 0, 0, 255, 255, 0, 0, 255, 0, 255, 0, 255, 0, 0, 255, 255,
255, 255, 0, 255, 255, 255]

Now we write the PNG file out:

>>> p=_
>>> f=open('speccy.png', 'wb')
>>> w.write(f, [p]) ; f.close()

2.2 Reading

The basic strategy is to create a Reader object (a png.Reader instance), then call its png.read() method
to extract the size, and pixel data.

2.2.1 PngSuite

The Reader() constructor can take either a filename, a file-like object, or a sequence of bytes directly. Here we
use urllib to download a PNG file from the internet.

>>> r=png.Reader(file=urllib.urlopen('http://www.schaik.com/pngsuite/basn0g02.png
→˓'))
>>> r.read()
(32, 32, <itertools.imap object at 0x10b7eb0>, {'greyscale': True,
'alpha': False, 'interlace': 0, 'bitdepth': 2, 'gamma': 1.0})

The png.read() method returns a 4-tuple. Note that the pixels are returned as an iterator (not always, and the
interface doesn’t guarantee it; the returned value might be an iterator or a sequence).

>>> l=list(_[2])
>>> l[0]
array('B', [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3])

We have extracted the top row of the image. Note that the row itself is an array (see module array), but in
general any suitable sequence type may be returned by read(). The values in the row are all integers less than
4, because the image has a bit depth of 2.

2.3 NumPy

NumPy is a package for scientific computing with Python. It is not part of a standard Python installation, it is
downloaded and installed separately if needed. Numpy’s array manipulation facilities make it good for doing
certain type of image processing, and scientific users of NumPy may wish to output PNG files for visualisation.

2.2. Reading 9

http://numpy.scipy.org/
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103

PurePNG Documentation, Release 0.3.0

PyPNG does not have any direct integration with NumPy, but the basic data format used by PyPNG, an iterator
over rows, is fairly easy to get into two- or three-dimensional NumPy arrays.

The code in this section is extracted from exnumpy.py, which is a complete runnable example in the code/
subdirectory of the source distribution. Code was originally written by Mel Raab, but has been hacked around
since then.

2.3.1 PNG to NumPy array (reading)

The best thing to do (I think) is to convert each PyPNG row to a 1-dimensional numpy array, then stack all of
those arrays together to make a 2-dimensional array. A number of features make this surprising compact. Say
pngdata is the row iterator returned from png.Reader.asDirect(). The following code will slurp it into a
2-dimensional numpy array:

image_2d = numpy.vstack(itertools.imap(numpy.uint16, pngdata))

Note that the use of numpy.uint16, above, means that an array with data type numpy.uint16 is created
which is suitable for bit depth 16 images. Replace numpy.uint16 with numpy.uint8 to create an array with
a byte data type (suitable for bit depths up to 8).

2.3.2 Reshaping

For some operations it’s easier to have the image data in a 3-dimensional array. This plays to NumPy’s strengths:

image_3d = numpy.reshape(image_2d,
(row_count,column_count,plane_count))

2.3.3 NumPy array to PNG (writing)

Reshape your NumPy data into a 2-dimensional array, then use the fact that a NumPy array is an iterator over its
rows:

pngWriter.write(pngfile,
numpy.reshape(image_3d, (-1, column_count*plane_count)))

Currently (writing on 2009-04-16) this generates a warning; this warning appears to be a bug/limitation in NumPy,
but it is harmless.

10 Chapter 2. PurePNG Code Examples

CHAPTER 3

The png Module

11

PurePNG Documentation, Release 0.3.0

12 Chapter 3. The png Module

CHAPTER 4

Acceleration with Cython

Part of png.py can be compiled with Cython to achieve better performance. Compiled part is png.
BaseFilter() class now. Compilation use pngfilters.pxd file do declare types and override functions.

4.1 Compilation

Compilation will be done automatically during setup process while Cython and c-compiler installed. If you do not
want to install binary-compiled part you may skip compilation using --no-cython option for setup.py.

When you use pypng without installation you may build cythonized code using setup.py build_ext
--inplace

4.2 Developing with Cython

If you want to see how Cython compile it’s part you can extract compiled part into pngfilters.py using
unimport.py and later compile with Cython like cython pngfilters.py Be careful! You should remove
pngfilters.py after compilation to avoid errors!

Main idea of PurePNG is polyglot so don’t use any Cython-specific construction in png.py - you will broke
pure-python mode which is core of all. If you have want to improve performance using such things - separate this
in function and write twice: in png.py using pure-python syntax and in pngfilters.pxd using cython and
cdef inline.

If you modify part of png.py that should be compiled and know nothing about cython feel free to commit and
pull request - someone should fix things you can break before release. So if you want to make release - pass
unittest both with and without compiled part.

13

PurePNG Documentation, Release 0.3.0

14 Chapter 4. Acceleration with Cython

CHAPTER 5

Roadmap and versions

PurePNG use odd/even minor version numbering with odd for development and even for stable versions.

5.1 PyPNG

PyPNG with it’s 0.0.* version could be treated as previous stable version of PurePNG. David Jones works carefully
on this.

5.2 0.2

• Reworked Cython concept.

• Add optional filtering on save.

• Module/package duality

• Python 2/3 polyglot (and partitial Cython)

• Using bytearray when possible.

• PIL plugin

• More chunks: text, resolution, colour intent

5.3 0.3 ==> 0.4

• Provide optimisation functions like ‘try to pallete’ or ‘try to greyscale’

• Separate pnm support to module within package

• Rework iccp module to become part of package

• Better text support

• Enhance PIL plugin, support ‘raw’ reading with palette handled by PIL

15

PurePNG Documentation, Release 0.3.0

5.4 Future

• Cython-accelerated scaling

• Support more chunks at least for direct reading|embeding.

• Integrate most tools (incl. picture formats) into package

• Other Cython acceleration when possible

Reports:

16 Chapter 5. Roadmap and versions

CHAPTER 6

PNG: Chunk by Chunk

The PNG specification defines 18 chunk types. This document is intended to help users who are interested in a
particular PNG chunk type. If you have a particular PNG chunk type in mind, you can look here to see what
support PurePNG provides for it.

6.1 Critical Chunks

6.1.1 IHDR

Generated automatically by PurePNG. The IHDR chunk specifies image size, colour model, bit depth, and inter-
lacing. All possible (valid) combinations can be produced with suitable arguments to the png.Writer class.

6.1.2 PLTE

Correctly handled when a PNG image is read. Can be generated for a colour type 3 image by using the palette
argument to the png.Writer class. PNG images with colour types other than 3 can also have a PLTE chunk (a
suggested palette); it is not currently possible to add a PLTE chunk for these images using PyPNG.

6.1.3 IDAT

Generated automatically from the pixel data presented to PurePNG. Multiple IDAT chunks (of bounded size) can
be generated by using chunk_limit argument to the png.Writer class.

6.1.4 IEND

Generated automatically.

17

PurePNG Documentation, Release 0.3.0

6.2 Ancillary Chunks

6.2.1 tRNS

Generated for most colour types when the transparent argument is supplied to the png.Writer to specify
a transparent colour. For colour type 3, colour mapped images, a tRNS chunk will be generated automatically
from the palette argument when a palette with alpha (opacity) values is supplied.

6.2.2 cHRM

When reading a PNG image the cHRM chunk is converted to a tuples white_point (2-tuple of floating
point values) and rgb_points (3-tuple of 2-tuple of floating point) in the info dictionary. When writing,
white_point and rgb_points arguments to the png.Writer class or calling apropriate set_ methods
generate a cHRM chunk (only both, single will be ignored).

6.2.3 gAMA

When reading a PNG image the gAMA chunk is converted to a floating point gamma value; this value is returned
in the info dictionary: info['gamma']. When writing, the gamma argument to the png.Writer class will
generate a gAMA chunk.

6.2.4 iCCP

When reading a PNG image the iCCP chunk is saved as raw bytes and name. These data returned in the info dic-
tionary: info['icc_profile'], info['icc_profile_name']. When writing, the icc_profile
argument to the png.Writer class will generate a iCCP chunk, with name supplied in icc_profile_name
argument or “ICC Profile” as default.

6.2.5 sBIT

When reading a PNG image the sBIT chunk will make PyPNG rescale the pixel values so that they all have the
width implied by the sBIT chunk. It is possible for a PNG image to have an sBIT chunk that specifies 3 different
values for the significant bits in each of the 3 colour channels. In this case PyPNG only uses the largest value.
When writing a PNG image, an sBIT chunk will be generated if need according to the bitdepth argument
specified. Values other than 1, 2, 4, 8, or 16 will generate an sBIT chunk, as will values less than 8 for images
with more than one plane.

6.2.6 sRGB

When reading a PNG image the sRGB chunk is read to an integer value; this value is returned in the info
dictionary: info['rendering_intent'] and can be compared to values like png.PERCEPTUAL. When
writing, the rendering_intent argument to the png.Writer class will generate a sRGB chunk.

6.2.7 tEXt

When reading a PNG image the tEXt chunks are converted to a dictionary of keywords and unicode values in
the info dictionary: info['text']. When writing, the text argument with same dict to the png.Writer
class or arguments with registered keywords names will generate tEXt chunks.

18 Chapter 6. PNG: Chunk by Chunk

PurePNG Documentation, Release 0.3.0

6.2.8 zTXt

When reading a PNG image the zTXt chunks are converted to a dictionary of keywords and unicode values in the
info dictionary: info['text']. It’s not possible to write zTXt chunsk for now, only tEXt will be written
with text keyword.

6.2.9 iTXt

When reading append to text info same as tEXt or zTXt, translated keyword and language tags ignored.

Keywords within text that does not fit latin-1 will be saved as iTXt

6.2.10 bKGD

When a PNG image is read, a bKGD chunk will add the background key to the info dictionary. When writing
a PNG image, a bKGD chunk will be generated when the background argument is used.

6.2.11 hIST

Ignored when reading. Not generated.

6.2.12 pHYs

When reading a PNG image the pHYs chunk is converted to form ((<pixel_per_unit_x>, <pixel_per_unit_y>),
<unit_is_meter>) This tuple is returned in the info dictionary: info['resolution']. When writing, the
resolution argument to the png.Writer class will generate a pHYs chunk. Argument could be tuple same
as reading result, but also possible some usability modificatuion:

• if both resolutions are same it could be written as single number instead of tuple: (<pixel_per_unit_x>,
<unit_is_meter>)

• all three parameters could be written in row: (<pixel_per_unit_x>, <pixel_per_unit_y>, <unit_is_meter>)

• instead of <unit_is_meter> bool it’s possible to use some unit specification:

1. omit this part if no unit specified ((<pixel_per_unit_x>, <pixel_per_unit_y>),)

2. use text name of unit (300, ‘i’) ‘i’, ‘cm’ and ‘m’ supported for now.

6.2.13 sPLT

Ignored when reading. Not generated.

6.2.14 tIME

When reading generate last_mod_time tuple which is time.structtime compatible.

png.Writer have method png.Writer.set_modification_time() which could be used to specify
tIME value or indicate that it should be calculated as file writing time.

6.3 PNG Extensions Chunks

See ftp://ftp.simplesystems.org/pub/png/documents/pngextensions.html

6.3. PNG Extensions Chunks 19

ftp://ftp.simplesystems.org/pub/png/documents/pngextensions.html

PurePNG Documentation, Release 0.3.0

6.3.1 oFFs

Ignored when reading. Not generated.

6.3.2 pCAL

Ignored when reading. Not generated.

6.3.3 sCAL

Ignored when reading. Not generated.

6.3.4 gIFg

Ignored when reading. Not generated.

6.3.5 gIFx

Ignored when reading. Not generated.

6.3.6 sTER

Ignored when reading. Not generated.

6.3.7 dSIG

Ignored when reading. Not generated.

6.3.8 fRAc

Ignored when reading. Not generated.

6.3.9 gIFt

Ignored when reading. Not generated.

6.4 Non-standard Chunks

Generally it is not possible to generate PNG images with any other chunk types. When reading a PNG image,
processing it using the chunk interface, png.Reader.chunks, will allow any chunk to be processed (by user
code).

20 Chapter 6. PNG: Chunk by Chunk

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

21

PurePNG Documentation, Release 0.3.0

22 Chapter 7. Indices and tables

Python Module Index

p
png, 11

23

PurePNG Documentation, Release 0.3.0

24 Python Module Index

Index

P
png (module), 11

25

	What is PurePNG?
	Comparison to other PNG tools
	Installation
	PIL Plugin
	PurePNG compare to PyPNG

	PurePNG Code Examples
	Writing
	Reading
	NumPy

	The png Module
	Acceleration with Cython
	Compilation
	Developing with Cython

	Roadmap and versions
	PyPNG
	0.2
	0.3 ==> 0.4
	Future

	PNG: Chunk by Chunk
	Critical Chunks
	Ancillary Chunks
	PNG Extensions Chunks
	Non-standard Chunks

	Indices and tables
	Python Module Index

