

 Navigation

 	
 index

 	Puppet_in_my_github latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/puppet-in-my-github/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/puppet-in-my-github/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Puppet_in_my_github latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 COMMITTERS.html

 Navigation

 		
 index

 		Puppet_in_my_github latest documentation »

Committing changes to Puppet

We would like to make it easier for community members to contribute to Puppet
using pull requests, even if it makes the task of reviewing and committing
these changes a little harder. Pull requests are only ever based on a single
branch, however, we maintain more than one active branch. As a result
contributors should target their changes at the master branch. This makes the
process of contributing a little easier for the contributor since they don’t
need to concern themselves with the question, “What branch do I base my changes
on?” This is already called out in the CONTRIBUTING.md [http://goo.gl/XRH2J].

Therefore, it is the responsibility of the committer to re-base the change set
on the appropriate branch which should receive the contribution.

It is also the responsibility of the committer to review the change set in an
effort to make sure the end users must opt-in to new behavior that is
incompatible with previous behavior. We employ the use of feature
flags [http://stackoverflow.com/questions/7707383/what-is-a-feature-flag] as
the primary way to achieve this user opt-in behavior. Finally, it is the
responsibility of the committer to make sure the master and stable branches
are both clean and working at all times. Clean means that dead code is not
allowed, everything needs to be usable in some manner at all points in time.
Stable is not an indication of the build status, but rather an expression of
our intent that the stable branch does not receive new functionality.

The rest of this document addresses the concerns of the committer. This
document will help guide the committer decide which branch to base, or re-base
a contribution on top of. This document also describes our branch management
strategy, which is closely related to the decision of what branch to commit
changes into.

Terminology

Many of these terms have more than one meaning. For the purposes of this
document, the following terms refer to specific things.

contributor - A person who makes a change to Puppet and submits a change
set in the form of a pull request.

change set - A set of discrete patches which combined together form a
contribution. A change set takes the form of Git commits and is submitted to
Puppet in the form of a pull request.

committer - A person responsible for reviewing a pull request and then
making the decision what base branch to merge the change set into.

base branch - A branch in Git that contains an active history of changes
and will eventually be released using semantic version guidelines. The branch
named master will always exist as a base branch. The other base branches are
stable, and security described below.

master branch - The branch where new functionality that are not bug fixes
is merged.

stable branch - The branch where bug fixes against the latest release or
release candidate are merged.

security - Where critical security fixes are merged. These change sets
will then be merged into release branches independently from one another. (i.e.
no merging up). Please do not submit pull requests against the security branch
and instead report all security related issues to security@puppetlabs.com as
per our security policy published at
https://puppetlabs.com/security/.

Committer Guide

This section provides a guide to follow while committing change sets to Puppet
base branches.

How to decide what release(s) should be patched

This section provides a guide to help a committer decide the specific base
branch that a change set should be merged into.

The latest minor release of a major release is the only base branch that should
be patched. These patches will be merged into master if they contain new
functionality. They will be merged into stable and master if they fix a
critical bug. Older minor releases in a major release do not get patched.

Before the switch to semantic versions [http://semver.org/] committers did not
have to think about the difference between minor and major releases.
Committing to the latest minor release of a major release is a policy intended
to limit the number of active base branches that must be managed.

Security patches are handled as a special case. Security patches may be
applied to earlier minor releases of a major release, but the patches should
first be merged into the security branch. Security patches should be merged
by Puppet Labs staff members. Pull requests should not be submitted with the
security branch as the base branch. Please send all security related
information or patches to security@puppetlabs.com as per our Security
Policy [https://puppetlabs.com/security/].

The CI systems are configured to run against master and stable. Over time,
these branches will refer to different versions, but their name will remain
fixed to avoid having to update CI jobs and tasks as new versions are released.

How to commit a change set to multiple base branches

A change set may apply to multiple branches, for example a bug fix should be
applied to the stable release and the development branch. In this situation
the change set needs to be committed to multiple base branches. This section
provides a guide for how to merge patches into these branches, e.g.
stable is patched, how should the changes be applied to master?

First, rebase the change set onto the stable branch. Next, merge the change
set into the stable branch using a merge commit. Once merged into stable,
merge the same change set into master without doing a rebase as to preserve
the commit identifiers. This merge strategy follows the git
flow [http://nvie.com/posts/a-successful-git-branching-model/] model. Both of
these change set merges should have a merge commit which makes it much easier
to track a set of commits as a logical change set through the history of a
branch. Merge commits should be created using the --no-ff --log git merge
options.

Any merge conflicts should be resolved using the merge commit in order to
preserve the commit identifiers for each individual change. This ensures git branch --contains will accurately report all of the base branches which
contain a specific patch.

Using this strategy, the stable branch need not be reset. Both master and
stable have infinite lifetimes. Patch versions, also known as bug fix
releases, will be tagged and released directly from the stable branch. Major
and minor versions, also known as feature releases, will be tagged and released
directly from the master branch. Upon release of a new major or minor
version all of the changes in the master branch will be merged into the
stable branch.

Code review checklist

This section aims to provide a checklist of things to look for when reviewing a
pull request and determining if the change set should be merged into a base
branch:

		All tests pass

		Are there any platform gotchas? (Does a change make an assumption about
platform specific behavior that is incompatible with other platforms? e.g.
Windows paths vs. POSIX paths.)

		Is the change backwards compatible? (It should be)

		Are there YARD docs for API changes?

		Does the change set also require documentation changes? If so is the
documentation being kept up to date?

		Does the change set include clean code? (software code that is formatted
correctly and in an organized manner so that another coder can easily read
or modify it.) HINT: git diff master --check

		Does the change set conform to the contributing guide?

Commit citizen guidelines:

This section aims to provide guidelines for being a good commit citizen by
paying attention to our automated build tools.

		Don’t push on a broken build. (A broken build is defined as a failing job
in the Puppet FOSS [https://jenkins.puppetlabs.com/view/Puppet%20FOSS/]
page.)

		Watch the build until your changes have gone through green

		Update the ticket status and target version. The target version field in
our issue tracker should be updated to be the next release of Puppet. For
example, if the most recent release of Puppet is 3.1.1 and you merge a
backwards compatible change set into master, then the target version should
be 3.2.0 in the issue tracker.)

		Ensure the pull request is closed (Hint: amend your merge commit to contain
the string closes #123 where 123 is the pull request number and github
will automatically close the pull request when the branch is pushed.)

Example Procedure

This section helps a committer rebase a contribution onto an earlier base
branch, then merge into the base branch and up through all active base
branches.

Suppose a contributor submits a pull request based on master. The change set
fixes a bug reported against Puppet 3.1.1 which is the most recently released
version of Puppet.

In this example the committer should rebase the change set onto the stable
branch since this is a bug rather than new functionality.

First, the committer pulls down the branch using the hub gem. This tool
automates the process of adding the remote repository and creating a local
branch to track the remote branch.

$ hub checkout https://github.com/puppetlabs/puppet/pull/1234
Branch jeffmccune-fix_foo_error set up to track remote branch fix_foo_error from jeffmccune.
Switched to a new branch 'jeffmccune-fix_foo_error'

At this point the topic branch is a descendant of master, but we want it to
descend from stable. The committer rebases the change set onto stable.

$ git branch bug/stable/fix_foo_error
$ git rebase --onto stable master bug/stable/fix_foo_error
First, rewinding head to replay your work on top of it...
Applying: (#23456) Fix FooError that always bites users in 3.1.1

The git rebase command may be interpreted as, “First, check out the branch
named bug/stable/fix_foo_error, then take the changes that were previously
based on master and re-base them onto stable.

Now that we have a topic branch containing the change set based on the stable
release branch, the committer merges in:

$ git checkout stable
Switched to branch 'stable'
$ git merge --no-ff --log bug/stable/fix_foo_error
Merge made by the 'recursive' strategy.
 foo | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 foo

Once merged into the first base branch, the committer merges the stable
branch into master, being careful to preserve the same commit identifiers.

$ git checkout master
Switched to branch 'master'
$ git merge --no-ff --log stable
Merge made by the 'recursive' strategy.
 foo | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 foo

Once the change set has been merged into one base branch, the change set should
not be modified in order to keep the history clean, avoid “double” commits, and
preserve the usefulness of git branch --contains. If there are any merge
conflicts, they are to be resolved in the merge commit itself and not by
re-writing (rebasing) the patches for one base branch, but not another.

Once the change set has been merged into stable and into master, the
committer pushes. Please note, the checklist should be complete at this point.
It’s helpful to make sure your local branches are up to date to avoid one of
the branches failing to fast forward while the other succeeds. Both the
stable and master branches are being pushed at the same time.

$ git push puppetlabs master:master stable:stable

That’s it! The committer then updates the pull request, updates the issue in
our issue tracker, and keeps an eye on the build
status [http://jenkins.puppetlabs.com].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

CONTRIBUTING.html

 Navigation

 		
 index

 		Puppet_in_my_github latest documentation »

How to contribute

Third-party patches are essential for keeping puppet great. We simply can’t
access the huge number of platforms and myriad configurations for running
puppet. We want to keep it as easy as possible to contribute changes that
get things working in your environment. There are a few guidelines that we
need contributors to follow so that we can have a chance of keeping on
top of things.

Getting Started

		Make sure you have a Redmine account [http://projects.puppetlabs.com]

		Make sure you have a GitHub account [https://github.com/signup/free]

		Submit a ticket for your issue, assuming one does not already exist.
		Clearly describe the issue including steps to reproduce when it is a bug.

		Make sure you fill in the earliest version that you know has the issue.

		Fork the repository on GitHub

Making Changes

		Create a topic branch from where you want to base your work.
		This is usually the master branch.

		Only target release branches if you are certain your fix must be on that
branch.

		To quickly create a topic branch based on master; git branch fix/master/my_contribution master then checkout the new branch with git checkout fix/master/my_contribution. Please avoid working directly on the
master branch.

		Make commits of logical units.

		Check for unnecessary whitespace with git diff --check before committing.

		Make sure your commit messages are in the proper format.

 (#99999) Make the example in CONTRIBUTING imperative and concrete

 Without this patch applied the example commit message in the CONTRIBUTING
 document is not a concrete example. This is a problem because the
 contributor is left to imagine what the commit message should look like
 based on a description rather than an example. This patch fixes the
 problem by making the example concrete and imperative.

 The first line is a real life imperative statement with a ticket number
 from our issue tracker. The body describes the behavior without the patch,
 why this is a problem, and how the patch fixes the problem when applied.

		Make sure you have added the necessary tests for your changes.

		Run all the tests to assure nothing else was accidentally broken.

Submitting Changes

		Sign the Contributor License Agreement [http://links.puppetlabs.com/cla].

		Push your changes to a topic branch in your fork of the repository.

		Submit a pull request to the repository in the puppetlabs organization.

		Update your Redmine ticket to mark that you have submitted code and are ready for it to be reviewed.
		Include a link to the pull request in the ticket

Additional Resources

		More information on contributing [http://links.puppetlabs.com/contribute-to-puppet]

		Bug tracker (Redmine) [http://projects.puppetlabs.com]

		Contributor License Agreement [http://links.puppetlabs.com/cla]

		General GitHub documentation [http://help.github.com/]

		GitHub pull request documentation [http://help.github.com/send-pull-requests/]

		#puppet-dev IRC channel on freenode.org

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

README.html

 Navigation

 		
 index

 		Puppet_in_my_github latest documentation »

 <<<<<<< HEAD
Puppet
======

[image: Build Status] [https://travis-ci.org/puppetlabs/puppet]

Puppet, an automated administrative engine for your Linux, Unix, and Windows systems, performs
administrative tasks (such as adding users, installing packages, and updating server
configurations) based on a centralized specification.

Documentation (and detailed installation instructions) can be found online at the
Puppet Docs site [http://docs.puppetlabs.com].

Installation

Generally, you need the following things installed:

		A supported Ruby version. Ruby 1.8.7, and 1.9.3 are fully supported.

		The Ruby OpenSSL library. For some reason, this often isn’t included
in the main ruby distributions. You can test for it by running
ruby -ropenssl -e "puts :yep". If that errors out, you’re missing the
library.

If your distribution doesn’t come with the necessary library (e.g., on Debian
and Ubuntu you need to install libopenssl-ruby), then you’ll probably have to
compile Ruby yourself, since it’s part of the standard library and not
available separately. You could probably just compile and install that one
library, though.

		Facter => 1.6.11 (available via your package manager or from the Facter site [http://puppetlabs.com/projects/facter]).

Contributions

Please see our Contibution
Documents [https://github.com/puppetlabs/puppet/blob/master/CONTRIBUTING.md]
and our Developer
Documentation [https://github.com/puppetlabs/puppet/blob/master/README_DEVELOPER.md].

License

See LICENSE file.

Support

Please log tickets and issues at our Projects
site [http://projects.puppetlabs.com]. A mailing
list [https://groups.google.com/forum/?fromgroups#!forum/puppet-users] is
available for asking questions and getting help from others. In addition there
is an active #puppet channel on Freenode.
=======
puppet
======

Server automation framework and application

4e9de8ebc81cdf4a7a973432891ca9076c5b4104

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/file.png

examples/hiera/README.html

 Navigation

 		
 index

 		Puppet_in_my_github latest documentation »

A working demo of Hiera with YAML and Puppet backends.

This demo consists of:

		A NTP module that has defaults for pool.ntp.org servers

		A common data module where module users can create override data in pp files

		A YAML data source in etc/hieradb where users can override data in yaml files

		A couple of users modules that just notify the fact that they are being included

		In Hiera data files a key called classes that decides what to include on a node

Below various usage scenarios can be tested using this module.

The examples below assume you have Hiera already installed and that you have
hiera-puppet cloned from github and running these commands in hiera-puppet/example as cwd.

Module from forge with module defaults

		Move the modules/data directory to modules/data.bak to avoid overrides
used further in the example

		Run puppet, creates /etc/ntp.conf with ntp.org addresses

		The hiera_include() function includes just users::common

$ mv modules/data modules/data.bak
$ puppet --config etc/puppet.conf --libdir ../lib site.pp
notice: /Stage[main]/Ntp::Config/File[/tmp/ntp.conf]/ensure: defined content as '{md5}7045121976147a932a66c7671939a9ad'
notice: /Stage[main]/Users::Common/Notify[Adding users::common]/message: defined 'message' as 'Adding users::common'
$ cat /tmp/ntp.conf
server 1.pool.ntp.org
server 2.pool.ntp.org

Site wide override data in data::common

		Restore the modules/data directory that has a class data::common that declares site wide overrides

		The hiera_include() function includes just users::common

$ mv modules/data.bak modules/data
$ puppet --config etc/puppet.conf --libdir ../lib site.pp
notice: /Stage[main]/Ntp::Config/File[/tmp/ntp.conf]/content: content changed '{md5}7045121976147a932a66c7671939a9addc2' to '{md5}8f9039fe1989a278a0a8e1836acb8d23'
notice: /Stage[main]/Users::Common/Notify[Adding users::common]/message: defined 'message' as 'Adding users::common'
$ cat /tmp/ntp.conf
server ntp1.example.com
server ntp2.example.com

Fact driven overrides for location=dc1

		Set a fact location=dc1 that uses the YAML data in etc/hieradb/dc1.yaml to override

		Show that machines in dc2 would use site-wide defaults

		The hiera_include() function includes users::common and users::dc1 as the data file for dc1 adds that

$ FACTER_location=dc1 puppet --config etc/puppet.conf --libdir ../lib site.pp
notice: /Stage[main]/Ntp::Config/File[/tmp/ntp.conf]/content: content changed '{md5}8f9039fe1989a278a0a8e1836acb8d23' to '{md5}074d0e2ac727f6cb9afe3345d574b578'
notice: /Stage[main]/Users::Common/Notify[Adding users::common]/message: defined 'message' as 'Adding users::common'
notice: /Stage[main]/Users::Dc1/Notify[Adding users::dc1]/message: defined 'message' as 'Adding users::dc1'
$ cat /tmp/ntp.conf
server ntp1.dc1.example.com
server ntp2.dc1.example.com

Now simulate a machine in dc2, because there is no data for dc2 it uses the site wide defaults and
does not include the users::dc1 class anymore

$ FACTER_location=dc2 puppet --config etc/puppet.conf --libdir ../lib site.pp
warning: Could not find class data::dc2 for nephilim.ml.org
notice: /Stage[main]/Ntp::Config/File[/tmp/ntp.conf]/content: content changed '{md5}074d0e2ac727f6cb9afe3345d574b578' to '{md5}8f9039fe1989a278a0a8e1836acb8d23'
notice: /Stage[main]/Users::Common/Notify[Adding users::common]/message: defined 'message' as 'Adding users::common'
$ cat /tmp/ntp.conf
server ntp1.example.com
server ntp2.example.com

You could create override data in the following places for a machine in location=dc2, they will be searched in this order and the first one with data will match.

		file etc/hieradb/dc2.yaml

		file etc/hieradb/common.yaml

		class data::dc2

		class data::production

		class data::common

		class ntp::config::data

		class ntp::data

In this example due to the presence of common.yaml that declares ntpservers the classes will never be searched, it will have precedence.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Puppet_in_my_github latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

ext/autotest/readme.html

 Navigation

 		
 index

 		Puppet_in_my_github latest documentation »

 Autotest is a simple tool that automatically links tests with the files being
tested, and runs tests automatically when either the test or code has changed.

If you are running on a Mac and have growlnotify [http://growl.info/extras.php] installed, install the
ZenTest [http://www.zenspider.com/ZSS/Products/ZenTest/] gem, then copy the config file to ~/.autotest (or just
run rake in this directory).

Once you have autotest installed, change to the root of your Puppet
git repository and run autotest with no arguments. To refresh the list
of files to scan, hit ^c (that is, control-c).

It’s recommended you leave this running in another terminal during all
development, preferably on another monitor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

README_DEVELOPER.html

 Navigation

 		
 index

 		Puppet_in_my_github latest documentation »

Developer README

This file is intended to provide a place for developers and contributors to
document what other developers need to know about changes made to Puppet.

Internal Structures

Two Types of Catalog

When working on subsystems of Puppet that deal with the catalog it is important
to be aware of the two different types of Catalog. Developers will often find
this difference while working on the static compiler and types and providers.

The two different types of catalog becomes relevant when writing spec tests
because we frequently need to wire up a fake catalog so that we can exercise
types, providers, or terminii that filter the catalog.

The two different types of catalogs are so-called “resource” catalogs and “RAL”
(resource abstraction layer) catalogs. At a high level, the resource catalog
is the in-memory object we serialize and transfer around the network. The
compiler terminus is expected to produce a resource catalog. The agent takes a
resource catalog and converts it into a RAL catalog. The RAL catalog is what
is used to apply the configuration model to the system.

Resource dependency information is most easily obtained from a RAL catalog by
walking the graph instance produced by the relationship_graph method.

Resource Catalog

If you’re writing spec tests for something that deals with a catalog “server
side,” a new catalog terminus for example, then you’ll be dealing with a
resource catalog. You can produce a resource catalog suitable for spec tests
using something like this:

let(:catalog) do
 catalog = Puppet::Resource::Catalog.new("node-name-val") # NOT certname!
 rsrc = Puppet::Resource.new("file", "sshd_config",
 :parameters => {
 :ensure => 'file',
 :source => 'puppet:///modules/filetest/sshd_config',
 }
)
 rsrc.file = 'site.pp'
 rsrc.line = 21
 catalog.add_resource(rsrc)
end

The resources in this catalog may be accessed using catalog.resources.
Resource dependencies are not easily walked using a resource catalog however.
To walk the dependency tree convert the catalog to a RAL catalog as described
in

RAL Catalog

The resource catalog may be converted to a RAL catalog using catalog.to_ral.
The RAL catalog contains Puppet::Type instances instead of Puppet::Resource
instances as is the case with the resource catalog.

One very useful feature of the RAL catalog are the methods to work with
resource relationships. For example:

irb> catalog = catalog.to_ral
irb> graph = catalog.relationship_graph
irb> pp graph.edges
[{ Notify[alpha] => File[/tmp/file_20.txt] },
 { Notify[alpha] => File[/tmp/file_21.txt] },
 { Notify[alpha] => File[/tmp/file_22.txt] },
 { Notify[alpha] => File[/tmp/file_23.txt] },
 { Notify[alpha] => File[/tmp/file_24.txt] },
 { Notify[alpha] => File[/tmp/file_25.txt] },
 { Notify[alpha] => File[/tmp/file_26.txt] },
 { Notify[alpha] => File[/tmp/file_27.txt] },
 { Notify[alpha] => File[/tmp/file_28.txt] },
 { Notify[alpha] => File[/tmp/file_29.txt] },
 { File[/tmp/file_20.txt] => Notify[omega] },
 { File[/tmp/file_21.txt] => Notify[omega] },
 { File[/tmp/file_22.txt] => Notify[omega] },
 { File[/tmp/file_23.txt] => Notify[omega] },
 { File[/tmp/file_24.txt] => Notify[omega] },
 { File[/tmp/file_25.txt] => Notify[omega] },
 { File[/tmp/file_26.txt] => Notify[omega] },
 { File[/tmp/file_27.txt] => Notify[omega] },
 { File[/tmp/file_28.txt] => Notify[omega] },
 { File[/tmp/file_29.txt] => Notify[omega] }]

If the relationship_graph method is throwing exceptions at you, there’s a
good chance the catalog is not a RAL catalog.

Settings Catalog

Be aware that Puppet creates a mini catalog and applies this catalog locally to
manage file resource from the settings. This behavior made it difficult and
time consuming to track down a race condition in
2888 [http://projects.puppetlabs.com/issues/2888].

Even more surprising, the File[puppetdlockfile] resource is only added to the
settings catalog if the file exists on disk. This caused the race condition as
it will exist when a separate process holds the lock while applying the
catalog.

It may be sufficient to simply be aware of the settings catalog and the
potential for race conditions it presents. An effective way to be reasonably
sure and track down the problem is to wrap the File.open method like so:

We're wrapping ourselves around the File.open method.
As described at: http://goo.gl/lDsv6
class File
 WHITELIST = [/pidlock.rb:39/]

 class << self
 alias xxx_orig_open open
 end

 def self.open(name, *rest, &block)
 # Check the whitelist for any "good" File.open calls against the #
 puppetdlock file
 white_listed = caller(0).find do |line|
 JJM_WHITELIST.find { |re| re.match(line) }
 end

 # If you drop into IRB here, take a look at your caller, it might be
 # the ghost in the machine you're looking for.
 binding.pry if name =~ /puppetdlock/ and not white_listed
 xxx_orig_open(name, *rest, &block)
 end
end

The settings catalog is populated by the Puppet::Util::Settings#to_catalog
method.

Ruby Dependencies

Puppet is considered an Application as it relates to the recommendation of
adding a Gemfile.lock file to the repository and the information published at
Clarifying the Roles of the .gemspec and
Gemfile [http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/]

To install the dependencies run: bundle install to install the dependencies.

A checkout of the source repository should be used in a way that provides
puppet as a gem rather than a simple Ruby library. The parent directory should
be set along the GEM_PATH, preferably before other tools such as RVM that
manage gemsets using GEM_PATH.

For example, Puppet checked out into /workspace/src/puppet using git checkout https://github.com/puppetlabs/puppet in /workspace/src can be used
with the following actions. The trick is to symlink gems to src.

$ cd /workspace
$ ln -s src gems
$ mkdir specifications
$ pushd specifications; ln -s ../gems/puppet/puppet.gemspec; ln -s ../gems/puppet/lib; popd
$ export GEM_PATH="/workspace:${GEM_PATH}"
$ gem list puppet

This should list out

puppet (2.7.19)

The final directory structure should look like this:

/workspace/src --- git working directory
 /gems -> src
 /specifications/puppet.gemspec -> ../gems/puppet/puppet.gemspec
 /lib -> ../gems/puppet/lib

Bundler

With a source checkout of Puppet properly setup as a gem, dependencies can be
installed using Bundler [http://gembundler.com/]

$ bundle install
Fetching gem metadata from http://rubygems.org/........
Using diff-lcs (1.1.3)
Installing facter (1.6.11)
Using metaclass (0.0.1)
Using mocha (0.10.5)
Using puppet (2.7.19) from source at /workspace/puppet-2.7.x/src/puppet
Using rack (1.4.1)
Using rspec-core (2.10.1)
Using rspec-expectations (2.10.0)
Using rspec-mocks (2.10.1)
Using rspec (2.10.0)
Using bundler (1.1.5)
Your bundle is complete! Use `bundle show [gemname]` to see where a bundled gem is installed.

Running Tests

Puppet Labs projects use a common convention of using Rake to run unit tests.
The tests can be run with the following rake task:

rake spec
Or if using Bundler
bundle exec rake spec

This allows the Rakefile to set up the environment beforehand if needed. This
method is how the unit tests are run in Jenkins [https://jenkins.puppetlabs.com].

Under the hood Puppet’s tests use rspec. To run all of them, you can directly
use ‘rspec’:

rspec
Or if using Bundler
bundle exec rspec

To run a single file’s worth of tests (much faster!), give the filename, and use
the nested format to see the descriptions:

rspec spec/unit/ssl/host_spec.rb --format nested

A brief introduction to testing in Puppet

Puppet relies heavily on automated testing to ensure that Puppet behaves as
expected and that new features don’t interfere with existing behavior. There are
three primary sets of tests that Puppet uses: unit tests, integration tests,
and acceptance tests.

Unit tests are used to test the individual components of Puppet to ensure that
they function as expected in isolation. Unit tests are designed to hide the
actual system implementations and provide canned information so that only the
intended behavior is tested, rather than the targeted code and everything else
connected to it. Unit tests should never affect the state of the system that’s
running the test.

Integration tests serve to test different units of code together to ensure that
they interact correctly. While individual methods might perform correctly, when
used with the rest of the system they might fail, so integration tests are a
higher level version of unit tests that serve to check the behavior of
individual subsystems.

All of the unit and integration tests for Puppet are kept in the spec/ directory.

Acceptance tests are used to test high level behaviors of Puppet that deal with
a number of concerns and aren’t easily tested with normal unit tests. Acceptance
tests function by changing system state and checking the system after
the fact to make sure that the intended behavior occurred. Because of this
acceptance tests can be destructive, so the systems being tested should be
throwaway systems.

All of the acceptance tests for Puppet are kept in the acceptance/tests/
directory.

Puppet Continuous integration

		Travis-ci (unit tests only): https://travis-ci.org/puppetlabs/puppet/

		Jenkins (unit and acceptance tests): https://jenkins.puppetlabs.com/view/Puppet%20FOSS/

RSpec

Puppet uses RSpec to perform unit and integration tests. RSpec handles a number
of concerns to make testing easier:

		Executing examples and ensuring the actual behavior matches the expected behavior (examples)

		Grouping tests (describe and contexts)

		Setting up test environments and cleaning up afterwards (before and after blocks)

		Isolating tests (mocks and stubs)

Examples and expectations

At the most basic level, RSpec provides a framework for executing tests (which
are called examples) and ensuring that the actual behavior matches the expected
behavior (which are done with expectations)

This is an example; it sets the test name and defines the test to run
specify "one equals one" do
 # 'should' is an expectation; it adds a check to make sure that the left argument
 # matches the right argument
 1.should == 1
end

Examples can be declared with either 'it' or 'specify'
it "one doesn't equal two" do
 1.should_not == 2
end

Good examples generally do as little setup as possible and only test one or two
things; it makes tests easier to understand and easier to debug.

More complete documentation on expectations is available at https://www.relishapp.com/rspec/rspec-expectations/docs

Example groups

Example groups are fairly self explanatory; they group similar examples into a
set.

describe "the number one" do

 it "is larger than zero" do
 1.should be > 0
 end

 it "is an odd number" do
 1.odd?.should be true
 end

 it "is not nil" do
 1.should_not be_nil
 end
end

Example groups have a number of uses that we’ll get into later, but one of the
simplest demonstrations of what they do is how they help to format
documentation:

rspec ex.rb --format documentation

the number one
 is larger than zero
 is an odd number
 is not nil

Finished in 0.00516 seconds
3 examples, 0 failures

Setting up and tearing down tests

Examples may require some setup before they can run, and might need to clean up
afterwards. before and after blocks can be used before this, and can be
used inside of example groups to limit how many examples they affect.

describe "something that could warn" do
 before :each do
 # Disable warnings for this test
 $VERBOSE = nil
 end

 after do
 # Enable warnings afterwards
 $VERBOSE = true
 end

 it "doesn't generate a warning" do
 MY_CONSTANT = 1
 # reassigning a normally prints out 'warning: already initialized constant FOO'
 MY_CONSTANT = 2
 end
end

Setting up helper data

Some examples may require setting up data before hand and making it available to
tests. RSpec provides helper methods with the let method call that can be used
inside of tests.

describe "a helper object" do
 # This creates an array with three elements that we can retrieve in tests. A
 # new copy will be made for each test.
 let(:my_helper) do
 ['foo', 'bar', 'baz']
 end

 it "should be an array" do
 my_helper.should be_a_kind_of Array
 end

 it "should have three elements" do
 my_helper.should have(3).items
 end
end

Like before blocks, helper objects like this are used to avoid doing a lot of
setup in individual examples and share setup between similar tests.

Isolating tests with stubs

RSpec allows you to provide fake data during testing to make sure that
individual tests are only running the code being tested. You can stub out entire
objects, or just stub out individual methods on an object. When a method is
stubbed the method itself will never be called.

While RSpec comes with its own stubbing framework, Puppet uses the Mocha
framework.

A brief usage guide for Mocha is available at http://gofreerange.com/mocha/docs/#Usage,
and an overview of Mocha expectations is available at http://gofreerange.com/mocha/docs/Mocha/Expectation.html

describe "stubbing a method on an object" do
 let(:my_helper) do
 ['foo', 'bar', 'baz']
 end

 it 'should have three items before being stubbed' do
 my_helper.size.should == 3
 end

 describe 'when stubbing the size' do
 before do
 my_helper.stubs(:size).returns 10
 end

 it 'should have the stubbed value for size' do
 my_helper.size.should == 10
 end
 end
end

Entire objects can be stubbed as well.

describe "stubbing an object" do
 let(:my_helper) do
 stub(:not_an_array, :size => 10)
 end

 it 'should have the stubbed size'
 my_helper.size.should == 10
 end
end

Adding expectations with mocks

It’s possible to combine the concepts of stubbing and expectations so that a
method has to be called for the test to pass (like an expectation), and can
return a fixed value (like a stub).

describe "mocking a method on an object" do
 let(:my_helper) do
 ['foo', 'bar', 'baz']
 end

 describe "when mocking the size" do
 before do
 my_helper.expects(:size).returns 10
 end

 it "adds an expectation that a method was called" do
 my_helper.size
 end
 end
end

Like stubs, entire objects can be mocked.

describe "mocking an object" do
 let(:my_helper) do
 mock(:not_an_array)
 end

 before do
 not_an_array.expects(:size).returns 10
 end

 it "adds an expectation that the method was called" do
 not_an_array.size
 end
end

Writing tests without side effects

When properly written each test should be able to run in isolation, and tests
should be able to be run in any order. This makes tests more reliable and allows
a single test to be run if only that test is failing, instead of running all
17000+ tests each time something is changed. However, there are a number of ways
that can make tests fail when run in isolation or out of order.

Using instance variables

Puppet has a number of older tests that use before blocks and instance
variables to set up fixture data, instead of let blocks. These can retain
state between tests, which can lead to test failures when tests are run out of
order.

test.rb
RSpec.configure do |c|
 c.mock_framework = :mocha
end

describe "fixture data" do
 describe "using instance variables" do

 # BAD
 before :all do
 # This fixture will be created only once and will retain the `foo` stub
 # between tests.
 @fixture = stub 'test data'
 end

 it "can be stubbed" do
 @fixture.stubs(:foo).returns :bar
 @fixture.foo.should == :bar
 end

 it "should not keep state between tests" do
 # The foo stub was added in the previous test and shouldn't be present
 # in this test.
 expect { @fixture.foo }.to raise_error
 end
 end

 describe "using `let` blocks" do

 # GOOD
 # This will be recreated between tests so that state isn't retained.
 let(:fixture) { stub 'test data' }

 it "can be stubbed" do
 fixture.stubs(:foo).returns :bar
 fixture.foo.should == :bar
 end

 it "should not keep state between tests" do
 # since let blocks are regenerated between tests, the foo stub added in
 # the previous test will not be present here.
 expect { fixture.foo }.to raise_error
 end
 end
end

bundle exec rspec test.rb -fd

fixture data
 using instance variables
 can be stubbed
 should not keep state between tests (FAILED - 1)
 using `let` blocks
 can be stubbed
 should not keep state between tests

Failures:

 1) fixture data using instance variables should not keep state between tests
 Failure/Error: expect { @fixture.foo }.to raise_error
 expected Exception but nothing was raised
 # ./test.rb:17:in `block (3 levels) in <top (required)>'

Finished in 0.00248 seconds
4 examples, 1 failure

Failed examples:

rspec ./test.rb:16 # fixture data using instance variables should not keep state between tests

RSpec references

		RSpec core docs: https://www.relishapp.com/rspec/rspec-core/docs

		RSpec guidelines with Ruby: http://betterspecs.org/

Puppet-acceptance

Puppet has a custom acceptance testing framework called
puppet-acceptance [https://github.com/puppetlabs/puppet-acceptance] for running acceptance tests.
Puppet-acceptance runs the tests by configuring one or more VMs, copying the
test cases onto the VMs, performing the tests and collecting the results, and
ensuring that the results match the intended behavior. It uses
test::unit [http://test-unit.rubyforge.org/] to perform the actual assertions.

UTF-8 Handling

As Ruby 1.9 becomes more commonly used with Puppet, developers should be aware
of major changes to the way Strings and Regexp objects are handled.
Specifically, every instance of these two classes will have an encoding
attribute determined in a number of ways.

		If the source file has an encoding specified in the magic comment at the
top, the instance will take on that encoding.

		Otherwise, the encoding will be determined by the LC_LANG or LANG
environment variables.

		Otherwise, the encoding will default to ASCII-8BIT

References

Excellent information about the differences between encodings in Ruby 1.8 and
Ruby 1.9 is published in this blog series:
Understanding M17n [http://links.puppetlabs.com/understanding_m17n]

Encodings of Regexp and String instances

In general, please be aware that Ruby 1.9 regular expressions need to be
compatible with the encoding of a string being used to match them. If they are
not compatible you can expect to receive and error such as:

Encoding::CompatibilityError: incompatible encoding regexp match (ASCII-8BIT
regexp with UTF-8 string)

In addition, some escape sequences were valid in Ruby 1.8 are no longer valid
in 1.9 if the regular expression is not marked as an ASCII-8BIT object. You
may expect errors like this in this situation:

SyntaxError: (irb):7: invalid multibyte escape: /\xFF/

This error is particularly common when serializing a string to other
representations like JSON or YAML. To resolve the problem you can explicitly
mark the regular expression as ASCII-8BIT using the /n flag:

"a" =~ /\342\230\203/n

Finally, any time you’re thinking of a string as an array of bytes rather than
an array of characters, common when escaping a string, you should work with
everything in ASCII-8BIT. Changing the encoding will not change the data
itself and allow the Regexp and the String to deal with bytes rather than
characters.

Puppet provides a monkey patch to String which returns an encoding suitable for
byte manipulations:

Example of how to escape non ASCII printable characters for YAML.
>> snowman = "☃"
>> snowman.to_ascii8bit.gsub(/([\x80-\xFF])/n) { |x| "\\x#{x.unpack("C")[0].to_s(16)} }
=> "\\xe2\\x98\\x83"

If the Regexp is not marked as ASCII-8BIT using /n, then you can expect the
SyntaxError, invalid multibyte escape as mentioned above.

Windows

If you’d like to run Puppet from source on Windows platforms, the
include ext/envpuppet.bat will help.

To quickly run Puppet from source, assuming you already have Ruby installed
from rubyinstaller.org [http://rubyinstaller.org].

C:\> cd C:\work\puppet
C:\work\puppet> set PATH=%PATH%;C:\work\puppet\ext
C:\work\puppet> envpuppet bundle install
C:\work\puppet> envpuppet puppet --version
2.7.9

When writing a test that cannot possibly run on Windows, e.g. there is
no mount type on windows, do the following:

describe Puppet::MyClass, :unless => Puppet.features.microsoft_windows? do
 ..
end

If the test doesn’t currently pass on Windows, e.g. due to on going porting, then use an rspec conditional pending block:

pending("porting to Windows", :if => Puppet.features.microsoft_windows?) do
 <example1>
end

pending("porting to Windows", :if => Puppet.features.microsoft_windows?) do
 <example2>
end

Then run the test as:

C:\work\puppet> envpuppet bundle exec rspec spec

Common Issues

		Don’t assume file paths start with ‘/’, as that is not a valid path on
Windows. Use Puppet::Util.absolute_path? to validate that a path is fully
qualified.

		Use File.expand_path(‘/tmp’) in tests to generate a fully qualified path
that is valid on POSIX and Windows. In the latter case, the current working
directory will be used to expand the path.

		Always use binary mode when performing file I/O, unless you explicitly want
Ruby to translate between unix and dos line endings. For example, opening an
executable file in text mode will almost certainly corrupt the resulting
stream, as will occur when using:

IO.open(path, ‘r’) { |f| ... }
IO.read(path)

If in doubt, specify binary mode explicitly:

IO.open(path, ‘rb’)

		Don’t assume file paths are separated by ‘:’. Use File::PATH_SEPARATOR
instead, which is ‘:’ on POSIX and ‘;’ on Windows.

		On Windows, File::SEPARATOR is ‘/’, and File::ALT_SEPARATOR is ‘‘. On
POSIX systems, File::ALT_SEPARATOR is nil. In general, use ‘/’ as the
separator as most Windows APIs, e.g. CreateFile, accept both types of
separators.

		Don’t use waitpid/waitpid2 if you need the child process’ exit code,
as the child process may exit before it has a chance to open the
child’s HANDLE and retrieve its exit code. Use Puppet::Util.execute.

		Don’t assume ‘C’ drive. Use environment variables to look these up:

“#{ENV[‘windir’]}/system32/netsh.exe”

Configuration Directory

In Puppet 3.x we’ve simplified the behavior of selecting a configuration file
to load. The intended behavior of reading puppet.conf is:

		Use the explicit configuration provided by –confdir or –config if present

		If running as root (Puppet.features.root?) then use the system
puppet.conf

		Otherwise, use ~/.puppet/puppet.conf.

When Puppet master is started from Rack, Puppet 3.x will read from
~/.puppet/puppet.conf by default. This is intended behavior. Rack
configurations should start Puppet master with an explicit configuration
directory using ARGV << "--confdir" << "/etc/puppet". Please see the
ext/rack/files/config.ru file for an up-to-date example.

Determining the Puppet Version

If you need to programmatically work with the Puppet version, please use the
following:

require 'puppet/version'
Get the version baked into the sourcecode:
version = Puppet.version
Set the version (e.g. in a Rakefile based on `git describe`)
Puppet.version = '2.3.4'

Please do not monkey patch the constant Puppet::PUPPETVERSION or obtain the
version using the constant. The only supported way to set and get the Puppet
version is through the accessor methods.

Static Compiler

The static compiler was added to Puppet in the 2.7.0 release.
1 [http://links.puppetlabs.com/static-compiler-announce]

The static compiler is intended to provide a configuration catalog that
requires a minimal amount of network communication in order to apply the
catalog to the system. As implemented in Puppet 2.7.x and Puppet 3.0.x this
intention takes the form of replacing all of the source parameters of File
resources with a content parameter containing an address in the form of a
checksum. The expected behavior is that the process applying the catalog to
the node will retrieve the file content from the FileBucket instead of the
FileServer.

The high level approach can be described as follows. The StaticCompiler is a
terminus that inserts itself between the “normal” compiler terminus and the
request. The static compiler takes the resource catalog produced by the
compiler and filters all File resources. Any file resource that contains a
source parameter with a value starting with ‘puppet://’ is filtered in the
following way in a “standard” single master / networked agents deployment
scenario:

		The content, owner, group, and mode values are retrieved from th
FileServer by the master.

		The file content is stored in the file bucket on the master.

		The source parameter value is stripped from the File resource.

		The content parameter value is set in the File resource using the form
‘{XXX}1234567890’ which can be thought of as a content address indexed by
checksum.

		The owner, group and mode values are set in the File resource if they are
not already set.

		The filtered catalog is returned in the response.

In addition to the catalog terminus, the process requesting the catalog needs
to obtain the file content. The default behavior of puppet agent is to
obtain file contents from the local client bucket. The method we expect users
to employ to reconfigure the agent to use the server bucket is to declare the
Filebucket[puppet] resource with the address of the master. For example:

node default {
 filebucket { puppet:
 server => $server,
 path => false,
 }
 class { filetest: }
}

This special filebucket resource named “puppet” will cause the agent to fetch
file contents specified by checksum from the remote filebucket instead of the
default clientbucket.

Trying out the Static Compiler

Create a module that recursively downloads something. The jeffmccune-filetest
module will recursively copy the rubygems source tree.

$ puppet module install jeffmccune-filetest

Start the master with the StaticCompiler turned on:

$ puppet master \
 --catalog_terminus=static_compiler \
 --verbose \
 --no-daemonize

Add the special Filebucket[puppet] resource:

site.pp
node default {
 filebucket { puppet: server => $server, path => false }
 class { filetest: }
}

Get the static catalog:

$ puppet agent --test

You should expect all file metadata to be contained in the catalog, including a
checksum representing the content. When managing an out of sync file resource,
the real contents should be fetched from the server instead of the
clientbucket.

Package Maintainers

Software Version API

Please see the public API regarding the software version as described in
lib/puppet/version.rb. Puppet provides the means to easily specify the exact
version of the software packaged using the VERSION file, for example:

$ git describe --match "3.0.*" > lib/puppet/VERSION
$ ruby -r puppet/version -e 'puts Puppet.version'
3.0.1-260-g9ca4e54

EOF

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

