
Pumbaa Documentation
Release 3.0.2

Erik Moqvist

Jul 19, 2017

Contents

1 Videos 3

2 Features 63

3 Indices and tables 65

Python Module Index 67

i

ii

Pumbaa Documentation, Release 3.0.2

Pumbaa is Python on top of Simba.

The implementation is a port of MicroPython, designed for embedded devices with limited amount of RAM and code
memory.

Project homepage: https://github.com/eerimoq/pumbaa

Contents 1

https://www.python.org/
http://simba-os.readthedocs.io/en/latest/
http://www.micropython.org/
https://github.com/eerimoq/pumbaa

Pumbaa Documentation, Release 3.0.2

2 Contents

CHAPTER 1

Videos

Measure the DAC output voltage on a Nano32 (ESP32). More videos are available on the Videos page.

Getting Started

Installation

There are three build systems available; PlatformIO, Arduino IDE and Simba build system. The Simba build system
has more features than to the other two. It supports executing test suites, generating code coverage, profiling and more.
Still, if you are familiar with Arduino IDE or PlatformIO, use that instead since it will be less troublesome.

PlatformIO

Install Pumbaa in PlatformIO.

1. Install the PlatformIO IDE.

2. Start the PlatformIO IDE and open PlatformIO -> Project Examples and select pumbaa/blink.

3. Click on Upload (the arrow image) in the top left corner.

4. The built-in LED blinks!

5. Done!

Arduino IDE

Install Pumbaa in the Arduino IDE 1.6.10 as a third party board using the Boards Manager.

1. Open File -> Preferences.

3

http://platformio.org
http://platformio.org/platformio-ide
https://www.arduino.cc/en/Main/Software

Pumbaa Documentation, Release 3.0.2

2. Add these URL:s to Additional Boards Manager URLs (click on the icon to the right of the text field) and press
OK.

https://raw.githubusercontent.com/eerimoq/pumbaa-releases/master/arduino/sam/
→˓package_pumbaa_sam_index.json
https://raw.githubusercontent.com/eerimoq/pumbaa-releases/master/arduino/esp32/
→˓package_pumbaa_esp32_index.json

3. Open Tools -> Board: ... -> Boards Manager... and type pumbaa in the search box.

4. Click on Pumbaa by Erik Moqivst version x.y.z and click Install and press Close.

5. Open Tools -> Board: ... -> Boards Manager... and select one of the Pumbaa boards in the list.

6. Open File -> Examples -> Pumbaa -> blink.

7. Verify and upload the sketch to your device.

8. The built-in LED blinks!

9. Done!

Simba build system

The Pumbaa development environment can be installed on Linux (Ubuntu 14).

1. Execute the one-liner below to install Pumbaa.

$ mkdir pumbaa && \
cd pumbaa && \
sudo apt install ckermit valgrind cppcheck cloc python python-pip doxygen git

→˓lcov && \
sudo apt install avrdude gcc-avr binutils-avr gdb-avr avr-libc && \
sudo apt install bossa-cli gcc-arm-none-eabi && \
sudo apt install make unrar autoconf automake libtool gcc g++ gperf \

flex bison texinfo gawk ncurses-dev libexpat-dev \
python-serial sed libtool-bin pmccabe help2man \
python-pyelftools unzip && \

sudo pip install pyserial xpect readchar sphinx breathe sphinx_rtd_theme && \
(git clone --recursive https://github.com/pfalcon/esp-open-sdk && \
cd esp-open-sdk && \
make) && \

wget https://github.com/eerimoq/simba-releases/raw/master/arduino/esp32/tools/
→˓xtensa-esp32-elf-linux$(getconf LONG_BIT)-1.22.0-59.tar.gz && \
tar xf xtensa-esp32-elf-linux$(getconf LONG_BIT)-1.22.0-59.tar.gz && \
rm xtensa-esp32-elf-linux$(getconf LONG_BIT)-1.22.0-59.tar.gz && \
git clone --recursive https://github.com/eerimoq/pumbaa

2. Setup the environment.

$ cd pumbaa
$ source setup.sh

2. Build and upload the blink example to your device. Replace <my-serial-port> with your serial port name.

$ cd examples/blink
$ make -s BOARD=nano32 SERIAL_PORT=<my-serial-port> upload

4 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

3. The built-in LED blinks!

4. Done!

User Guide

This guide is intended for users of the Pumbaa Embedded Programming Platform.

The Pumbaa installation guide can be found on the Getting Started page.

Software architecture

Below is a picture of the Pumbaa software architecture. At the bottom is the hardware. On top of
the hardware is the Simba operating system, that implementes all low level functionality; kernel, drivers,
filesystems, networking, etc. MicroPython implements the Python 3 language and a many Python stan-
dard library modules. The user application on the right can be implemented in a mix of Python
and C code depending of the requirements. Normally the whole application is implemnted in Python.

Contents:

Build system

PlatformIO

All Python source files in your project’s src/ folder will be uploaded to the board automatically as frozen modules.

1.2. User Guide 5

Pumbaa Documentation, Release 3.0.2

See the PlatformIO website for more information.

Arduino IDE

The build system only allows a single Python script file, the Arduino sketch .ino.

See the Arduino website for more information.

Simba build system

The make variable PYSRC is list of all Python script files.

See the Simba documentation for more information.

Configuration

Standard Library

The Library Reference is configured at compile time using defines that starts with CONFIG_PUMBAA_. The default
configuration includes most functionality, as most application wants that. If an application has special requirements,
for example memory constraints, it has to be configured to remove unnecessaray functionality.

The underlying MicroPython source code can also be configured in compile time. Often these configuration valiables
starts with MICROPY_.

Simba can be configured as described in the Simba documentation, with the only difference that your config.h
must include simba_config.h, as in src/config.h. Put your defines before this include.

Search order

Highest priority first.

Simba build system

1. Command line as CDEFS_EXTRA="<configuration variable>=<value>".

2. A file named config.h in the application root folder.

3. The default configuration file, src/pumbaa_config_default.h.

PlatformIO

1. The variable build_flags in platformio.ini as build_flags = -D<configuration
variable>=<value>.

2. A file named config.h in the application source folder src.

3. The default configuration file, src/pumbaa_config_default.h.

6 Chapter 1. Videos

http://docs.platformio.org/en/latest/core.html
https://www.arduino.cc
http://simba-os.readthedocs.io/en/latest/user-guide/build-system.html
http://simba-os.readthedocs.io/en/latest/user-guide/configuration.html
https://github.com/eerimoq/pumbaa/blob/3.0.2/src/config.h
https://github.com/eerimoq/pumbaa/blob/3.0.2/src/pumbaa_config_default.h
https://github.com/eerimoq/pumbaa/blob/3.0.2/src/pumbaa_config_default.h

Pumbaa Documentation, Release 3.0.2

Arduino IDE

1. A file (also called a tab) named config.h in the sketch.

2. The default configuration file, src/pumbaa_config_default.h.

Variables

All configuration variables are listed in src/pumbaa_config_default.h.

Environment setup

The first step is always to setup the Pumbaa environment. It’s a simple matter of sourcing a setup-script in the pumbaa
root folder.

This step only applies to the Simba build system, and not to the Arduino IDE or PlatformIO.

$ source setup.sh

Hello World application

Let’s start with the Pumbaa “Hello World” application. It examplifies what an application is and how to build and run
it.

It consists of two files; main.py and Makefile.

main.py

main.py is the main script of the application.

print("Hello world!")

Makefile

Makefile contains build configuration of the application.

NAME = hello_world
BOARD ?= linux

PUMBAA_ROOT ?= ../..
include $(PUMBAA_ROOT)/make/app.mk

Build and run

Compile, link and run it by typing the commands below in a shell:

1.2. User Guide 7

https://github.com/eerimoq/pumbaa/blob/3.0.2/src/pumbaa_config_default.h
https://github.com/eerimoq/pumbaa/blob/3.0.2/src/pumbaa_config_default.h
https://github.com/eerimoq/pumbaa/blob/3.0.2/examples/hello_world/main.py
https://github.com/eerimoq/pumbaa/blob/3.0.2/examples/hello_world/Makefile

Pumbaa Documentation, Release 3.0.2

$ cd examples/hello_world
$ make -s run
<build system output>
Hello world!
$

Cross-compile, link and then run on an Arduino Due:

$ cd examples/hello_world
$ make -s BOARD=arduino_due run
<build system output>
Hello world!
$

Developer Guide

This guide is intended for developers of the Pumbaa Embedded Programming Platform. Users are advised to read the
User Guide instead.

Contents:

Releasing

Follow these steps to create a new release:

1. Write the new version in VERSION.txt. The version should hace the format <major>.<minor>.
<revision>.

Increment <major> for non-backwards compatible changes.

Increment <minor> for new features.

Increment <revision> for bug fixes.

2. Write the new version in package.json. This file is used by PlatformIO 3 to find the current Pumbaa release.

3. Run the test suites and generate the documentation and other files.

make -s -j8 test-all-boards
make -s -j8 release-test

4. Commit the generated files.

5. Generate files for Arduino and PlatformIO releases. The generated archives and Arduino manifests are copied
to the release repository.

make -s release

6. Add, commit and push the Pumbaa Arduino releases in the release repository.

(cd ../pumbaa-releases && \
git add arduino/*/*.zip platformio/*.zip && \
git commit && \
git push origin master)

7. Start a http server used to download package manifests in the Arduino IDE.

8 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

(cd make/arduino && python -m SimpleHTTPServer)

8. Start the Arduino IDE and add these URL:s in Preferences.

http://localhost:8000/esp32/package_pumbaa_esp32_index.json
http://localhost:8000/sam/package_pumbaa_sam_index.json

9. Install all four packages and run the blink example for each one of them.

10. Commit the manifests, tag the commit with <major>.<minor>.<revision> and push.

git commit
git tag <major>.<minor>.<revision>
git push origin master

11. Add, commit and push the Pumbaa Arduino package manifests in the release repository.

(cd ../pumbaa-releases && \
git add arduino/*/*.json && \
git commit && \
git push origin master)

12. Done.

Boards

The boards supported by Pumbaa.

Arduino Due

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/arduino_due.html

Drivers

Supported drivers for this board.

• Adc

• Can

• Dac

• Ds18b20

• EepromI2C

• Exti

• Flash

• I2C

• I2CSoft

• Owi

1.4. Boards 9

http://simba-os.readthedocs.io/en/latest/boards/arduino_due.html

Pumbaa Documentation, Release 3.0.2

• Pin

• Sd

• Spi

• Uart

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

Application Flash RAM
minimal-configuration 223992 37320
default-configuration 352248 76334

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 1
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 1
CONFIG_PUMBAA_CLASS_DAC 1
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 0
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 1
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 0
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 0
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 1
CONFIG_PUMBAA_CLASS_SPI 1
CONFIG_PUMBAA_CLASS_TIMER 1
CONFIG_PUMBAA_CLASS_UART 1
CONFIG_PUMBAA_CLASS_WS2812 0
CONFIG_PUMBAA_EMACS 0
CONFIG_PUMBAA_HEAP_SIZE 32768
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 0

Continued on next page

10 Chapter 1. Videos

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Table 1.1 – continued from previous page
Name Value
CONFIG_PUMBAA_MODULE_SSL 0
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

Cygwin

ESP-01

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/esp01.html

Drivers

Supported drivers for this board.

• Ds18b20

• EepromI2C

• esp_wifi

• Exti

• Flash

• I2C

• I2CSoft

• Owi

• Pin

• Spi

• Uart

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

Application Flash RAM
minimal-configuration 454573 63084
default-configuration 522992 78392

1.4. Boards 11

http://simba-os.readthedocs.io/en/latest/boards/esp01.html
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 0
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 0
CONFIG_PUMBAA_CLASS_DAC 0
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 1
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 1
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 0
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 0
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 0
CONFIG_PUMBAA_CLASS_SPI 1
CONFIG_PUMBAA_CLASS_TIMER 1
CONFIG_PUMBAA_CLASS_UART 1
CONFIG_PUMBAA_CLASS_WS2812 0
CONFIG_PUMBAA_EMACS 0
CONFIG_PUMBAA_HEAP_SIZE 24576
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 1
CONFIG_PUMBAA_MODULE_SSL 0
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

ESP-12E Development Board

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/esp12e.html

Drivers

Supported drivers for this board.

12 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/boards/esp12e.html

Pumbaa Documentation, Release 3.0.2

• Ds18b20

• EepromI2C

• esp_wifi

• Exti

• Flash

• I2C

• I2CSoft

• Owi

• Pin

• Spi

• Uart

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

Application Flash RAM
minimal-configuration 454705 63152
default-configuration 530136 79256

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 0
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 0
CONFIG_PUMBAA_CLASS_DAC 0
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 1
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 1
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 1
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 0

Continued on next page

1.4. Boards 13

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Table 1.3 – continued from previous page
Name Value
CONFIG_PUMBAA_CLASS_SPI 1
CONFIG_PUMBAA_CLASS_TIMER 1
CONFIG_PUMBAA_CLASS_UART 1
CONFIG_PUMBAA_CLASS_WS2812 0
CONFIG_PUMBAA_EMACS 0
CONFIG_PUMBAA_HEAP_SIZE 24576
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 1
CONFIG_PUMBAA_MODULE_SSL 0
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

ESP32-DevKitC

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/esp32_devkitc.html

Drivers

Supported drivers for this board.

• Adc

• Can

• Dac

• Ds18b20

• EepromI2C

• esp_wifi

• Flash

• I2C

• I2CSoft

• Owi

• Pin

• Spi

• Uart

• Ws2812

14 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/boards/esp32_devkitc.html

Pumbaa Documentation, Release 3.0.2

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

Application Flash RAM
minimal-configuration 335860 87708
default-configuration 709116 189832

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 1
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 1
CONFIG_PUMBAA_CLASS_DAC 1
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 1
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 0
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 1
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 0
CONFIG_PUMBAA_CLASS_SPI 1
CONFIG_PUMBAA_CLASS_TIMER 1
CONFIG_PUMBAA_CLASS_UART 1
CONFIG_PUMBAA_CLASS_WS2812 1
CONFIG_PUMBAA_EMACS 1
CONFIG_PUMBAA_HEAP_SIZE 65536
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 1
CONFIG_PUMBAA_MODULE_SSL 1
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

1.4. Boards 15

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Linux

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/linux.html

Drivers

Supported drivers for this board.

• Adc

• Can

• Dac

• Ds18b20

• EepromI2C

• Exti

• Flash

• I2C

• I2CSoft

• Owi

• Pin

• Sd

• Spi

• Uart

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

Application Flash RAM
minimal-configuration 784937 1603784
default-configuration 1623563 1824896

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 1
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 1
CONFIG_PUMBAA_CLASS_DAC 1

Continued on next page

16 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/boards/linux.html
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Table 1.5 – continued from previous page
Name Value
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 0
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 1
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 1
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 1
CONFIG_PUMBAA_CLASS_SPI 1
CONFIG_PUMBAA_CLASS_TIMER 1

CONFIG_PUMBAA_CLASS_UART 1
CONFIG_PUMBAA_CLASS_WS2812 0
CONFIG_PUMBAA_EMACS 1
CONFIG_PUMBAA_HEAP_SIZE (1024 * 1024)
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 1
CONFIG_PUMBAA_MODULE_SSL 1
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

Nano32

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/nano32.html

Drivers

Supported drivers for this board.

• Adc

• Can

• Dac

• Ds18b20

• EepromI2C

1.4. Boards 17

http://simba-os.readthedocs.io/en/latest/boards/nano32.html

Pumbaa Documentation, Release 3.0.2

• esp_wifi

• Flash

• I2C

• I2CSoft

• Owi

• Pin

• Spi

• Uart

• Ws2812

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

Application Flash RAM
minimal-configuration 335752 87708
default-configuration 709004 189832

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 1
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 1
CONFIG_PUMBAA_CLASS_DAC 1
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 1
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 0
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 1
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 0
CONFIG_PUMBAA_CLASS_SPI 1
CONFIG_PUMBAA_CLASS_TIMER 1
CONFIG_PUMBAA_CLASS_UART 1

Continued on next page

18 Chapter 1. Videos

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Table 1.6 – continued from previous page
Name Value
CONFIG_PUMBAA_CLASS_WS2812 1
CONFIG_PUMBAA_EMACS 1
CONFIG_PUMBAA_HEAP_SIZE 65536
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 1
CONFIG_PUMBAA_MODULE_SSL 1
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

NodeMCU

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/nodemcu.html

Drivers

Supported drivers for this board.

• Ds18b20

• EepromI2C

• esp_wifi

• Exti

• Flash

• I2C

• I2CSoft

• Owi

• Pin

• Spi

• Uart

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

1.4. Boards 19

http://simba-os.readthedocs.io/en/latest/boards/nodemcu.html
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Application Flash RAM
minimal-configuration 454717 63148
default-configuration 530208 79256

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 0
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 0
CONFIG_PUMBAA_CLASS_DAC 0
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 1
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 1
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 1
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 0
CONFIG_PUMBAA_CLASS_SPI 1
CONFIG_PUMBAA_CLASS_TIMER 1
CONFIG_PUMBAA_CLASS_UART 1
CONFIG_PUMBAA_CLASS_WS2812 0
CONFIG_PUMBAA_EMACS 0
CONFIG_PUMBAA_HEAP_SIZE 24576
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 1
CONFIG_PUMBAA_MODULE_SSL 0
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

Particle IO Photon

Pinout and general information

Simba documentation: http://simba-os.readthedocs.io/en/latest/boards/photon.html

20 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/boards/photon.html

Pumbaa Documentation, Release 3.0.2

Drivers

Supported drivers for this board.

• Ds18b20

• EepromI2C

• Flash

• I2C

• I2CSoft

• Owi

• Pin

• Uart

Memory usage

Below is the memory usage of two applications:

• The minimal-configuration application is configured to only include the bare minimum of functionality.

• The default-configuration application is built with the default configuration.

Application Flash RAM
minimal-configuration 219488 37652
default-configuration 276320 72786

Default configuration

Default Standard Library configuration.

Name Value
CONFIG_PUMBAA_CLASS_ADC 0
CONFIG_PUMBAA_CLASS_BOARD 1
CONFIG_PUMBAA_CLASS_CAN 0
CONFIG_PUMBAA_CLASS_DAC 0
CONFIG_PUMBAA_CLASS_DS18B20 1
CONFIG_PUMBAA_CLASS_EEPROM_I2C 1
CONFIG_PUMBAA_CLASS_ESP_WIFI 0
CONFIG_PUMBAA_CLASS_EVENT 1
CONFIG_PUMBAA_CLASS_EXTI 0
CONFIG_PUMBAA_CLASS_FLASH 1
CONFIG_PUMBAA_CLASS_HTTP_SERVER 0
CONFIG_PUMBAA_CLASS_HTTP_SERVER_WEBSOCKET 0
CONFIG_PUMBAA_CLASS_I2C 1
CONFIG_PUMBAA_CLASS_I2C_SOFT 1
CONFIG_PUMBAA_CLASS_OWI 1
CONFIG_PUMBAA_CLASS_PIN 1
CONFIG_PUMBAA_CLASS_QUEUE 1
CONFIG_PUMBAA_CLASS_SD 0
CONFIG_PUMBAA_CLASS_SPI 0

Continued on next page

1.4. Boards 21

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/minimal-configuration
https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/default-configuration

Pumbaa Documentation, Release 3.0.2

Table 1.8 – continued from previous page
Name Value
CONFIG_PUMBAA_CLASS_TIMER 1
CONFIG_PUMBAA_CLASS_UART 1
CONFIG_PUMBAA_CLASS_WS2812 0
CONFIG_PUMBAA_EMACS 0
CONFIG_PUMBAA_HEAP_SIZE 32768
CONFIG_PUMBAA_MAIN_FRIENDLY_REPL 1
CONFIG_PUMBAA_MAIN_REBOOT_AT_EXIT 1
CONFIG_PUMBAA_MODULE_SELECT 1
CONFIG_PUMBAA_MODULE_SOCKET 0
CONFIG_PUMBAA_MODULE_SSL 0
CONFIG_PUMBAA_OS_FORMAT 1
CONFIG_PUMBAA_OS_SYSTEM 1
CONFIG_PUMBAA_PING 1
CONFIG_PUMBAA_SYS_LOCK 1
CONFIG_PUMBAA_SYS_REBOOT 1
CONFIG_PUMBAA_THRD 1

Examples

Below is a list of simple examples that are useful to understand the basics of Pumbaa.

There are a lot more examples and unit tests on Github that shows how to use most of the Pumbaa modules.

Blink

About

Turn a LED on and off periodically once a second. This example illustrates how to use digital pins and sleep a thread.

Source code

#
@section License
#
The MIT License (MIT)
#
Copyright (c) 2016-2017, Erik Moqvist
#
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
#

22 Chapter 1. Videos

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples
https://github.com/eerimoq/pumbaa/tree/3.0.2/tst

Pumbaa Documentation, Release 3.0.2

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#
This file is part of the Pumbaa project.
#

import time
import board
from drivers import Pin

LED = Pin(board.PIN_LED, Pin.OUTPUT)

while True:
LED.toggle()
time.sleep(0.5)

The source code can also be found on Github in the examples/blink folder.

Build and run

Build and upload the application.

$ cd examples/blink
$ make -s BOARD=<board> upload

Ds18b20

About

Read and print the room temperature measured with a DS18B20 sensor.

Source code

#
@section License
#
The MIT License (MIT)
#
Copyright (c) 2016-2017, Erik Moqvist
#
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is

1.5. Examples 23

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/blink

Pumbaa Documentation, Release 3.0.2

furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#
This file is part of the Pumbaa project.
#

import binascii
import board
from drivers import Ds18b20, Owi

OWI = Owi(board.PIN_GPIO17)
DS18B20 = Ds18b20(OWI)

Search for devices on the OWI bus.
print('Number of sensors:', OWI.search())

while True:
Taking a new temperature sample.
DS18B20.convert()

for device_id in DS18B20.get_devices():
print('Device id: {}, Temperature: {}'.format(

binascii.hexlify(device_id),
DS18B20.get_temperature(device_id)))

The source code can also be found on Github in the examples/ds18b20 folder.

Build and run

Build and upload the application.

$ cd examples/ds18b20
$ make -s BOARD=<board> upload

Hello World

About

This application prints “Hello world!” to standard output.

24 Chapter 1. Videos

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/ds18b20

Pumbaa Documentation, Release 3.0.2

Source code

#
@section License
#
The MIT License (MIT)
#
Copyright (c) 2016-2017, Erik Moqvist
#
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#
This file is part of the Pumbaa project.
#

print('Hello world!')

The source code can also be found on Github in the examples/hello_world folder.

Build and run

Build and run the application.

$ cd examples/hello_world
$ make -s BOARD=<board> run
...
Hello world!
$

Interactive

About

This application is a Python interpreter!

When the application starts it tries to run the script main.py from the file system. After the script ends the Python
interactive interpreter is started.

1.5. Examples 25

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/hello_world

Pumbaa Documentation, Release 3.0.2

The serial port baudrate is 38400.

Example script

Here is an example of how to write a script main.py using the interpreter.

1. Start the serial monitor.

2. Create main.py and write print('Hello World!\n') to it. This file will be executed everytime the
board starts.

MicroPython v1.8.3-88-gf98bb2d on 2016-09-17; Arduino Due with SAM3X8E
Type "help()" for more information.
>>> with open("main.py", "w") as f:
... f.write("print('Hello World!\n')")
>>>

3. Restart the board and you’ll see Hello World! on the screen!

Hello World!

MicroPython v1.8.3-88-gf98bb2d on 2016-09-17; Arduino Due with SAM3X8E
Type "help()" for more information.
>>>

4. Done!

The example can be found on Github in the examples/interactive folder.

Build and run

Build and run the application.

$ cd examples/interactive
$ make -s BOARD=arduino_due run
...
MicroPython v1.8.3-88-gf98bb2d on 2016-09-17; Arduino Due with SAM3X8E
Type "help()" for more information.
>>>

Select

About

Setup three channels, add them to a poll object and wait for events to occur.

Three channels are polled:

1. An event channel that waits for a button to be pressed.

2. A queue channel that the string “foo” is written to in the script.

3. A socket channel waiting for UDP packets.

NOTE: Change the UDP configuration to match your setup.

26 Chapter 1. Videos

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/interactive

Pumbaa Documentation, Release 3.0.2

Source code

#
@section License
#
The MIT License (MIT)
#
Copyright (c) 2016-2017, Erik Moqvist
#
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#
This file is part of the Pumbaa project.
#

import select
import socket
from sync import Event, Queue
from drivers import Exti
import board

BUTTON_PIN = board.PIN_GPIO0
UDP_ADDRESS = '192.168.1.103'
UDP_PORT = 30303

button = Event()
exti = Exti(BUTTON_PIN, Exti.FALLING, button, 0x1)

queue = Queue()

udp = socket.socket(type=socket.SOCK_DGRAM)
udp.bind((UDP_ADDRESS, UDP_PORT))

poll = select.poll()
poll.register(button)
poll.register(queue)
poll.register(udp)

queue.write('foo')

1.5. Examples 27

Pumbaa Documentation, Release 3.0.2

while True:
[(channel, eventmask)] = poll.poll()

if channel is button:
button.read(0x1)
print("button")

elif channel is queue:
print("queue:", queue.read(3))

elif channel is udp:
print("udp:", udp.recv(1024))

The source code can also be found on Github in the examples/select folder.

Build and run

Build and upload the application.

$ cd examples/blink
$ make -s BOARD=esp12e CDEFS_EXTRA="CONFIG_START_NETWORK_INTERFACE_WIFI_SSID=ssid
→˓CONFIG_START_NETWORK_INTERFACE_WIFI_PASSWORD=password" run
...
queue: b'foo'

At this point the application is waiting for an event to occur. Send a UDP packet to it from your PC using Python.

>>> import socket
>>> udp = socket.socket(type=socket.SOCK_DGRAM)
>>> udp.sendto('bar', ('192.168.1.103', 30303))

The written packet is received by the application and printed.

udp: b'bar'

TCP Server

About

Create a listening TCP socket waiting for a client to connect. The server reads one byte at a time from the socket and
writes it back to the client.

Source code

#
@section License
#
The MIT License (MIT)
#
Copyright (c) 2016-2017, Erik Moqvist
#
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,

28 Chapter 1. Videos

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/select

Pumbaa Documentation, Release 3.0.2

modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#
This file is part of the Pumbaa project.
#

import time
import socket
from drivers import esp_wifi

SSID = 'Qvist2'
PASSWORD = 'maxierik'
IP = '192.168.0.7'
PORT = 9000

esp_wifi.set_op_mode(esp_wifi.OP_MODE_STATION)
esp_wifi.station_init(SSID, PASSWORD)
esp_wifi.station_connect()

while esp_wifi.station_get_status() != 'got-ip':
print('Waiting for WiFi connection...')
time.sleep(2)

listener = socket.socket()
listener.bind((IP, PORT))
listener.listen(1)

while True:
print('Listening for a client to connect.')
client, address = listener.accept()
print('Accepted client with address', address)

while True:
data = client.recv(1)
print(data)
if not data:

print('Socket closed.')
break

client.send(data)

The source code can also be found on Github in the examples/tcp_server folder.

1.5. Examples 29

https://github.com/eerimoq/pumbaa/tree/3.0.2/examples/tcp_server

Pumbaa Documentation, Release 3.0.2

Build and run

Build and upload the application.

$ cd examples/tcp_server
$ make -s BOARD=<board> upload

Library Reference

Here is a list of builtin modules in Pumbaa.

Standard Library modules

Python Standard Library modules. Only a subset of the cPython module functionality is implemented in MicroPython.

array — Array

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes
'b' signed char int 1
'B' unsigned char int 1
'h' signed short int 2
'H' unsigned short int 2
'i' signed int int 2
'I' unsigned int int 2
'l' signed long int 4
'L' unsigned long int 4
'q' signed long long int 8
'Q' unsigned long long int 8
'f' float float 4
'd' double float 8

class array.array(typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, a bytes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist(), frombytes(), or fromunicode()
method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed to the extend()
method.

array.append(x)
Append a new item with value x to the end of the array.

array.extend(iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the
same type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its
elements must be the right type to be appended to the array.

30 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

binascii — Convert between binary and ASCII

The binascii module contains a number of methods to convert between binary and various ASCII-encoded binary
representations.

binascii.a2b_base64(string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed at
a time.

binascii.b2a_base64(data)
Convert binary data to a line of ASCII characters in base64 coding. The return value is the converted line,
including a newline char. The newline is added because the original use case for this function was to feed it a
series of 57 byte input lines to get output lines that conform to the MIME-base64 standard. Otherwise the output
conforms to RFC 3548.

binascii.crc32(data[, value])
Compute CRC-32, the 32-bit checksum of data, starting with an initial CRC of value. The default initial CRC
is zero. The algorithm is consistent with the ZIP file checksum. Since the algorithm is designed for use as a
checksum algorithm, it is not suitable for use as a general hash algorithm. Use as follows:

>>> binascii.crc32(b"hello world")
222957957
>>> crc = binascii.crc32(b"hello")
>>> binascii.crc32(b" world", crc)
222957957

binascii.hexlify(data)
Return the hexadecimal representation of the binary data. Every byte of data is converted into the corresponding
2-digit hex representation. The returned bytes object is therefore twice as long as the length of data.

binascii.unhexlify(hexstr)
Return the binary data represented by the hexadecimal string hexstr. This function is the inverse of hexlify().
hexstr must contain an even number of hexadecimal digits (which can be upper or lower case), otherwise an
Error exception is raised.

cmath — Mathematical functions for complex numbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept
integers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
either a __complex__() or a __float__() method: these methods are used to convert the object to a complex
or floating-point number, respectively, and the function is then applied to the result of the conversion.

cmath.phase(x)
Return the phase of x (also known as the argument of x), as a float. phase(x) is equivalent to math.
atan2(x.imag, x.real). The result lies in the range [-𝜋, 𝜋], and the branch cut for this operation lies
along the negative real axis, continuous from above. On systems with support for signed zeros (which includes
most systems in current use), this means that the sign of the result is the same as the sign of x.imag, even when
x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.141592
>>> phase(complex(-1.0, -0.0))
-3.14159

1.6. Library Reference 31

Pumbaa Documentation, Release 3.0.2

cmath.polar(x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x and
phi is the phase of x. polar(x) is equivalent to (abs(x), phase(x)).

cmath.rect(r, phi)
Return the complex number x with polar coordinates r and phi. Equivalent to r * (math.cos(phi) +
math.sin(phi)*1j).

cmath.exp(x)
Return the exponential value e**x.

cmath.log(x)
Returns the natural logarithm of x. There is one branch cut, from 0 along the negative real axis to -∞, continuous
from above.

cmath.sqrt(x)
Return the square root of x. This has the same branch cut as log().

cmath.cos(x)
Return the cosine of x.

cmath.sin(x)
Return the sine of x.

cmath.e()
The mathematical constant e, as a float.

cmath.pi()
The mathematical constant 𝜋, as a float.

collections — High-performance container datatypes

collections.namedtuple(typename, field_names)
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__() method which lists the tuple
contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for example
'x y' or 'x, y'. Alternatively, field_names can be a sequence of strings such as ['x', 'y'].

>>> # Basic example
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + p[1] # indexable like the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr__ with a name=value style
Point(x=11, y=22)

class collections.OrderedDict([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict that remembers
the order that keys were first inserted. If a new entry overwrites an existing entry, the original insertion position
is left unchanged. Deleting an entry and reinserting it will move it to the end.

32 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

popitem(last=True)
The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs
are returned in LIFO order if last is true or FIFO order if false.

hashlib — Secure hashes and message digests

This module implements a common interface to many different secure hash and message digest algorithms. Included
are the FIPS secure hash algorithms SHA256.

There is one constructor method named for each type of hash. All return a hash object with the same simple interface.
For example: use sha256() to create a SHA-256 hash object. You can now feed this object with bytes-like objects
(normally bytes) using the update() method. At any point you can ask it for the digest of the concatenation of the
data fed to it so far using the digest() or hexdigest() methods.

>>> import hashlib
>>> m = hashlib.sha256()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\x03\x1e\xdd}
→˓Ae\x15\x93\xc5\xfe\\\x00o\xa5u+7\xfd\xdf\xf7\xbcN\x84:\xa6\xaf\x0c\x95\x0fK\x94\x06
→˓'

io — Core tools for working with streams

The io module provides Python’s main facilities for dealing with various types of I/O. There are two main types of
I/O: text I/O and binary I/O. These are generic categories, and various backing stores can be used for each of them.

io.open(name, mode=’r’)
Open a file named name. mode is a combination of the characters 'rwbta'.

class io.FileIO(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate this
class directly.

class io.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this class
directly.

class uio.StringIO([string])
class uio.BytesIO([string])

In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file
opened with "t" modifier). BytesIO is used for binary-mode I/O (similar to a normal file opened with "b"
modifier). Initial contents of file-like objects can be specified with string parameter (should be normal string for
StringIO or bytes object for BytesIO).

read(size=-1)
Read up to size bytes fro mthe file. If size is negative or None, read until end of file.

readall()
Read until end of file.

1.6. Library Reference 33

Pumbaa Documentation, Release 3.0.2

readline()
Read a line.

write(b)
Write b to the file.

seek(offset[, whence])
Move the file cursor offset bytes relative to beginning of the file (0), current position (1) or end of the file
(2). The default value of whence is 0.

flush()
Flush all buffers.

close()
Close the file.

getvalue()
Get the current contents of the underlying buffer which holds data.

json — JSON encoder and decoder

JSON (JavaScript Object Notation) is a lightweight data interchange format inspired by JavaScript object literal syntax.

json.dumps(obj)
Serialize obj to a JSON formatted str using this conversion table.

json.loads(s)
Deserialize s (a str instance containing a JSON document) to a Python object using this conversion table.

math — Mathematical functions

This module provides access to the mathematical functions defined by the C standard.

math.ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.
__ceil__(), which should return an Integral value.

math.copysign(x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros,
copysign(1.0, -0.0) returns -1.0.

math.fabs(x)
Return the absolute value of x.

math.floor(x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x.__floor__(),
which should return an Integral value.

math.fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod(x, y) be exactly (mathematically; to infinite
precision) equal to x - n*y for some integer n such that the result has the same sign as x and magnitude less
than abs(y). Python’s x % y returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but the result of Python’s -1e-100
% 1e100 is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising

34 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

1e100. For this reason, function fmod() is generally preferred when working with floats, while Python’s x
% y is preferred when working with integers.

math.frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x == m

* 2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

math.isinf(x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan(x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().

math.modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.trunc(x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__().

math.log(x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).

math.pow(x, y)
Return x raised to the power y. If both x and y are finite, x is negative, and y is not an integer then pow(x, y)
is undefined, and raises ValueError.

Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use ** or the built-in
pow() function for computing exact integer powers.

math.sqrt(x)
Return the square root of x.

math.acos(x)
Return the arc cosine of x, in radians.

math.asin(x)
Return the arc sine of x, in radians.

math.atan(x)
Return the arc tangent of x, in radians.

math.atan2(y, x)
Return atan(y/x), in radians. The result is between -𝜋 and 𝜋. The vector in the plane from the origin to point
(x, y) makes this angle with the positive X axis. The point of atan2() is that the signs of both inputs are
known to it, so it can compute the correct quadrant for the angle. For example, atan(1) and atan2(1, 1)
are both pi/4, but atan2(-1, -1) is -3*pi/4.

math.cos(x)
Return the cosine of x radians.

math.sin(x)
Return the sine of x radians.

math.tan(x)
Return the tangent of x radians.

1.6. Library Reference 35

Pumbaa Documentation, Release 3.0.2

math.degrees(x)
Convert angle x from radians to degrees.

math.radians(x)
Convert angle x from degrees to radians.

math.pi()
The mathematical constant 𝜋 = 3.141592..., to available precision.

math.e()
The mathematical constant e = 2.718281..., to available precision.

os — Miscellaneous operating system interfaces

This module provides a portable way of using operating system dependent functionality.

os.uname()
Returns information identifying the current operating system. The return value is an object with five attributes:

•sysname - operating system name

•nodename - name of machine on network (implementation-defined)

•release - operating system release

•version - operating system version

•machine - hardware identifier

os.getcwd()
Return a string representing the current working directory.

os.listdir(path=’.’)
Return a list containing the names of the entries in the directory given by path. The list is in arbitrary order, and
does not include the special entries '.' and '..' even if they are present in the directory.

os.stat()
Return a stat_result object for this entry.

os.system(command)
Returns the output of given file system command. Raises OSError if the command is missing or fails to
execute.

os.format(path)
Format file system at given path. All data in the file system will be lost.

random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

random.seed(a=None)
Initialize the random number generator.

If a is omitted or None, the current system time is used. If randomness sources are provided by the operating
system, they are used instead of the system time (see the os.urandom() function for details on availability).

If a is an int, it is used directly.

36 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

random.getrandbits(k)
Returns a Python integer with k random bits. This method is supplied with the MersenneTwister generator and
some other generators may also provide it as an optional part of the API. When available, getrandbits()
enables randrange() to handle arbitrarily large ranges.

random.randrange(stop)

random.randrange(start, stop[, step])
Return a randomly selected element from range(start, stop, step). This is equivalent to
choice(range(start, stop, step)), but doesn’t actually build a range object.

The positional argument pattern matches that of range(). Keyword arguments should not be used because the
function may use them in unexpected ways.

>>> random.randrange(10) # Integer from 0 to 9
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26

random.randint(a, b)
Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).

random.choice(seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

>>> random.choice('abcdefghij') # Single random element
'c'

random.random()
Return the next random floating point number in the range [0.0, 1.0].

>>> random.random() # Random float x, 0.0 <= x < 1.0
0.374448

random.uniform(a, b)
Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equation a + (b-a) * random().

>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.180014

select — Waiting for I/O completion

This module provides access to the poll() function available in most operating systems. It only works for the Simba
channels; events, queues and sockets.

select.poll()
Returns a polling object, which supports registering and unregistering channels, and then polling them for I/O
events.

class select.poll
The poll class.

1.6. Library Reference 37

Pumbaa Documentation, Release 3.0.2

>>> from sync import Queue
>>> poll = select.poll()
>>> queue = Queue()
>>> poll.register(queue)
>>> poll.poll(1.0) # Timeout since no data is available in the queue.
[]
>>> queue.write(b'hello')
>>> poll.poll() # Data is available in the queue.
[(<0x20034050>, 1)]
>>> poll.poll()[0][0].read(5) # Read the available data.
b'hello'

register(channel[, eventmask])
Register given channel with the polling object. Future calls to the poll() method will then check whether
the channel has any pending I/O events.

eventmask is an optional bitmask describing the type of events you want to check for, and can be currently
only be POLLIN.

Registering a file descriptor that’s already registered is not an error, and has the same effect as registering
the descriptor exactly once.

unregister(channel)
Remove given channel being tracked by a polling object.

Attempting to remove a file descriptor that was never registered causes a KeyError exception to be raised.

modify(channel, eventmask)
Modifies an already registered channel. This has the same effect as register(channel, eventmask). Attempt-
ing to modify a channel that was never registered causes an IOError exception with errno ENOENT to be
raised.

poll([timeout])
Polls the set of registered channels, and returns a possibly-empty list containing (channel, event)
2-tuples for the descriptors that have events or errors to report. An empty list indicates that the call timed
out and no channel had any events to report. If timeout is given, it specifies the length of time in seconds
which the system will wait for events before returning. If timeout is omitted, negative, or None, the call
will block until there is an event for this poll object.

select.POLLIN
There is data to read.

select.POLLHUP
Hung up.

socket — Low-level networking interface

This module provides access to the BSD socket interface.

socket.AF_INET
This constant represent the address (and protocol) family, used for the first argument to socket.socket().

socket.SOCK_STREAM

socket.SOCK_DGRAM
These constants represent the socket types, used for the second argument to socket.socket().

38 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

socket.getaddrinfo(host, port[, family[, socktype[, proto[, flags]]]])
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating
a socket connected to that service. host is a domain name, a string representation of an IPv4/v6 address or None.
port is a string service name such as ‘http’, a numeric port number or None. By passing None as the value of
host and port, you can pass NULL to the underlying C API.

The function returns a list of 5-tuples with the following structure:

(family, socktype, proto, canonname, sockaddr)

In these tuples, family, socktype, proto are all integers and are meant to be passed to socket.socket().
canonname will be a string representing the canonical name of the host if AI_CANONNAME is part of the flags
argument; else canonname will be empty. sockaddr is a tuple describing a socket address, whose format depends
on the returned family (a (address, port) 2-tuple for AF_INET, a (address, port, flow info, scope id) 4-tuple for
AF_INET6), and is meant to be passed to the socket.connect() method.

The following example fetches address information for a hypothetical TCP connection to example.org on port
80 (results may differ on your system if IPv6 isn’t enabled):

>>> socket.getaddrinfo("example.org", 80, 0, 0, socket.IPPROTO_TCP)
[(2, 1, 6, '', ('93.184.216.34', 80))]

socket.socket([family[, type[, proto]]])
Create a new socket using the given address family, socket type and protocol number. The address family
should be socket.AF_INET. The socket type should be socket.SOCK_STREAM (the default), socket.
SOCK_DGRAM . The protocol number is usually zero and may be omitted in that case.

socket.inet_aton(ip_string)
Convert an IPv4 address from dotted-quad string format (for example, ‘123.45.67.89’) to 32-bit packed binary
format, as a string four characters in length. This is useful when conversing with a program that uses the standard
C library and needs objects of type struct in_addr, which is the C type for the 32-bit packed binary this function
returns.

If the IPv4 address string passed to this function is invalid, socket.error will be raised. Note that exactly
what is valid depends on the underlying C implementation of inet_aton().

inet_aton() does not support IPv6.

socket.inet_ntoa(packed_ip)
Convert a 32-bit packed IPv4 address (a string four characters in length) to its standard dotted-quad string
representation (for example, ‘123.45.67.89’). This is useful when conversing with a program that uses the
standard C library and needs objects of type struct in_addr, which is the C type for the 32-bit packed binary data
this function takes as an argument.

If the string passed to this function is not exactly 4 bytes in length, socket.error will be raised.
inet_ntoa() does not support IPv6.

class socket.SocketType
This is a Python type object that represents the socket object type. It is the same as type(socket(...)).

Note that there are no methods read() or write(); use recv() and send() without flags argument
instead.

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return
value is a pair (conn, address) where conn is a new socket object usable to send and receive data on
the connection, and address is the address bound to the socket on the other end of the connection.

bind(address)
Bind the socket to address. The socket must not already be bound. The format is of address is
(ip_address, port).

1.6. Library Reference 39

Pumbaa Documentation, Release 3.0.2

close()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more
data (after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

Note close() releases the resource associated with a connection but does not necessarily close the
connection immediately. If you want to close the connection in a timely fashion, call shutdown()
before close().

connect(address)
Connect to a remote socket at address. The format is of address is (ip_address, port).

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number of
queued connections and should be at least 0; the maximum value is system-dependent (usually 5), the
minimum value is forced to 0.

recv(bufsize)
Receive data from the socket. The return value is a string representing the data received. The maximum
amount of data to be received at once is specified by bufsize.

recvfrom(bufsize)
Receive data from the socket. The return value is a pair (string, address) where string is a string
representing the data received and address is the address of the socket sending the data.

recv_into(buffer[, nbytes])
Receive up to nbytes bytes from the socket, storing the data into a buffer rather than creating a new string.
If nbytes is not specified (or 0), receive up to the size available in the given buffer. Returns the number of
bytes received.

recvfrom_into(buffer[, nbytes])
Receive data from the socket, writing it into buffer instead of creating a new string. The return value is a
pair (nbytes, address) where nbytes is the number of bytes received and address is the address of
the socket sending the data.

send(string)
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Returns the number of bytes sent. Applications are responsible
for checking that all data has been sent; if only some of the data was transmitted, the application needs to
attempt delivery of the remaining data.

sendall(string)
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Unlike send(), this method continues to send data from string
until either all data has been sent or an error occurs. None is returned on success. On error, an exception
is raised, and there is no way to determine how much data, if any, was successfully sent.

sendto(string, address)

sendto(string, flags, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination
socket is specified by address. The optional flags argument has the same meaning as for recv() above.
Return the number of bytes sent. (The format of address depends on the address family — see above.)

shutdown(how)
Shut down one or both halves of the connection.

ssl — TLS/SSL wrapper for socket objects

Wrap sockets in TLS/SSL to encrypt the transport channel.

40 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

Warning: This module may lead to a false sense of security, as it is implemented by a TLS/SSL novice, me. Use
with care!

Server side example:

>>> context = ssl.SSLContext(ssl.PROTOCOL_TLS)
>>> context.load_cert_chain("server.crt", keyfile="server.key")

>>> listener_sock = socket.socket()
>>> listener_sock.bind(('127.0.0.1', 10023))
>>> listener_sock.listen(5)

>>> client_sock, _ = listener_sock.accept()
>>> ssl_client_sock = context.wrap_socket(client_sock, server_side=True)

>>> ssl_client_sock.recv(5)
b'hello'
>>> ssl_client_sock.send(b'goodbye')
>>> ssl_client_sock.close()
>>> client_sock.close()

Client side example:

>>> context = ssl.SSLContext(ssl.PROTOCOL_TLS)
>>> context.load_verify_locations(cafile="server.crt")

>>> server_sock = socket.socket()
>>> server_sock.connect(('127.0.0.1', 10023))
>>> ssl_server_sock = context.wrap_socket(server_sock)

>>> ssl_server_sock.send(b'hello')
>>> ssl_server_sock.recv(7)
'goodbye'
>>> ssl_server_sock.close()
>>> server_sock.close()

class ssl.SSLContext(protocol=ssl.PROTOCOL_TLS)
Initialize given SSL context. A SSL context contains settings that lives longer than a socket.

load_cert_chain(certfile, keyfile=None)
Load given certificate chain into the context.

load_verify_locations(cafile)
Load a set of “certification authority” (CA) certificates used to validate other peers’ certificates when
verify_mode is other than CERT_NONE.

set_verify_mode(mode)
Whether to try to verify other peers’ certificates. Set mode to CERT_NONE to skip the verification, and
CERT_REQUIRED to enable verification.

By default, server side sockets does not verify the client’s certificate, while client side sockets do verify
the server’s certificate.

Load CA certificates with load_verify_location().

wrap_socket(sock, server_side=False)
Wrap a normal TCP socket sock in this SSL context.

1.6. Library Reference 41

Pumbaa Documentation, Release 3.0.2

Performs the SSL handshake.

CERT_NONE
Do not verify the peer certificate.

CERT_REQUIRED
Verify the peer certificate.

class ssl.SSLSocket
This is a Python type object that represents the SSL socket.

close()
Close the SSL socket.

recv(bufsize)
Receive data from the socket. The return value is a string representing the data received. The maximum
amount of data to be received at once is specified by bufsize.

send(string)
Send data string to the socket. The socket must be connected to a remote socket. Returns the number of
bytes sent. Applications are responsible for checking that all data has been sent; if only some of the data
was transmitted, the application needs to attempt delivery of the remaining data.

get_server_hostname()
Returns the hostname of the server as a string.

cipher()
Returns the three-tuple with connection cipher information. For example
('TLS-RSA-WITH-AES-256-GCM-SHA384', 'TLSv1.1', -1)

struct — Interpret strings as packed binary data

sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

sys.exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions specified by
finally clauses of try statements are honored, and it is possible to intercept the exit attempt at an outer level.

sys.print_exception()

sys.path
A list of strings that specifies the search path for modules.

sys.argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not).

sys.version
A string containing the version number of the Python interpreter. Do not extract version information out of it,
rather, use version_info and the functions provided by the platform module.

sys.version_info
A tuple containing the three components of the version number: major, minor and micro. The version_info
value corresponding to the Python version 3.4 is (3, 4, 0).

42 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

sys.implementation
An object containing information about the implementation of the currently running Python interpreter. The
following attributes are required to exist in all Python implementations.

name is the implementation’s identifier, e.g. ‘micropython’. The actual string is defined by the Python imple-
mentation, but it is guaranteed to be lower case.

version is a named tuple, in the same format as sys.version_info. It represents the version of the Python im-
plementation. This has a distinct meaning from the specific version of the Python language to which the
currently running interpreter conforms, which sys.version_info represents. For example, for Micropython 1.8
sys.implementation might be (1, 8, 0), whereas sys.version_info would be (3, 4, 0).

sys.platform
This string contains a platform identifier that can be used to append platform-specific components to sys.path,
for instance.

sys.byteorder
An indicator of the native byte order. This will have the value 'big' on big-endian (most-significant byte first)
platforms, and 'little' on little-endian (least-significant byte first) platforms.

sys.modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manipu-
lated to force reloading of modules and other tricks. However, replacing the dictionary will not necessarily work
as expected and deleting essential items from the dictionary may cause Python to fail.

_thread — Low-level threading API

This module provides low-level primitives for working with multiple threads - multiple threads of control sharing their
global data space. For synchronization, simple locks (also called mutexes or binary semaphores) are provided.

A thread created by this module is a Simba thread. The classes sync.Event and sync.Queue can be used for
synchronization in addition to the simple locks.

_thread.start_new_thread(function, args[, kwargs])
Start a new thread and return its identifier. The thread executes the function function with the argument list args
(which must be a tuple). The optional kwargs argument specifies a dictionary of keyword arguments. When the
function returns, the thread silently exits.

_thread.exit()
Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

_thread.allocate_lock()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

_thread.get_ident()
Return the thread identifier of the current thread. This is a nonzero integer. Its value has no direct meaning; it is
intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers may
be recycled when a thread exits and another thread is created.

_thread.stack_size([size])
Return the thread stack size used when creating new threads.

class _thread.LockType

acquire([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until
it is released by another thread (only one thread at a time can acquire a lock — that’s their reason for

1.6. Library Reference 43

Pumbaa Documentation, Release 3.0.2

existence). If the integer waitflag argument is present, the action depends on its value: if it is zero, the
lock is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is
acquired unconditionally as before. The return value is True if the lock is acquired successfully, False
if not.

release()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

locked()
Return the status of the lock: True if it has been acquired by some thread, False if not.

time — Time access and conversions

This module provides various time-related functions.

time.sleep(secs)
Suspend execution of the calling thread for the given number of seconds. The argument may be a floating
point number to indicate a more precise sleep time. The actual suspension time may be less than that requested
because any caught signal will terminate the sleep() following execution of that signal’s catching routine. Also,
the suspension time may be longer than requested by an arbitrary amount because of the scheduling of other
activity in the system.

time.sleep_ms(msecs)
Same as sleep() but sleep for msecs number of milliseconds.

time.sleep_us(usecs)
Same as sleep() but sleep for usecs number of microseconds.

time.time()
Return the time in seconds since the epoch as a floating point number. Note that even though the time is always
returned as a floating point number, not all systems provide time with a better precision than 1 second. While this
function normally returns non-decreasing values, it can return a lower value than a previous call if the system
clock has been set back between the two calls.

zlib — Compression compatible with gzip

Decompress compressed data.

zlib.decompress(data)
Decompresses the bytes in data, returning a bytes object containing the uncompressed data.

MicroPython modules

MicroPython specific modules.

gc — Garbage Collector management

gc.enable()
Enable automatic garbage collection.

44 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Returns the number of bytes allocated on the heap.

gc.mem_free()
Returns the number of bytes available on the heap.

micropython — Access and control MicroPython internals

micropython.mem_info([verbose])
Print information about currently used memory. If the verbose argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the amount of stack and
heap used. In verbose mode it prints out the entire heap indicating which blocks are used and which are free.

micropython.qstr_info([verbose])
Print information about currently interned strings. If the verbose argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the number of interned
strings and the amount of RAM they use. In verbose mode it prints out the names of all RAM-interned strings.

micropython.alloc_emergency_exception_buf(size)
Allocate size bytes of RAM for the emergency exception buffer (a good size is around 100 bytes). The buffer is
used to create exceptions in cases when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script (eg main.py) and then the emergency
exception buffer will be active for all the code following it.

Pumbaa modules

This part of the Library Reference contains Pumbaa specific modules.

kernel — Kernel

The kernel package is the heart in Simba. It implements the thread scheduler.

Simba documentation: kernel

kernel.sys_lock()
Take the system lock. Turns off interrupts.

kernel.sys_unlock()
Release the system lock. Turns on interrupts.

1.6. Library Reference 45

http://simba-os.readthedocs.io/en/latest/library-reference/kernel.html

Pumbaa Documentation, Release 3.0.2

kernel.sys_reboot()
Reboot the system. Sets all registers to their known, default values and restarts the application. Also known as
a soft reset.

kernel.thrd_yield()
Put the currently executing thread on the ready list and reschedule.

This function is often called periodically from low priority work heavy threads to give higher priority threads
the chance to execute.

kernel.thrd_join(thrd)
Wait for given thread to terminate.

kernel.thrd_self()
Get current thread’s id.

kernel.thrd_set_name(name)
Set the name of the current thread to name.

kernel.thrd_get_name()
Returns the name of the current thread.

kernel.thrd_get_by_name(name)
Returns the identifier of given thread.

kernel.thrd_set_log_mask(thrd, mask)
Set the log mask of given thread.

kernel.thrd_get_log_mask()
Get the log mask of the current thread.

kernel.thrd_set_prio(thrd, prio)
Set the priority of given thread.

kernel.thrd_get_prio()
Get the priority of the current thread.

kernel.thrd_set_global_env(name, value)
Set the value of given environment variable. The pointers to given name and value are stored in the current
global environment array.

kernel.thrd_get_global_env(name)
Get the value of given environment variable in the global environment array.

kernel.thrd_set_env(name, value)
Set the value of given environment variable. The pointers to given name and value are stored in the current
threads’ environment array.

kernel.thrd_get_env(name)
Returns the value of given environment variable. If given variable is not found in the current threads’ environ-
ment array, the global environment array is searched. Returns None if the variable is missing.

class kernel.Timer(timeout, event=None, mask=0x1, callback=None, flags=0)
Instantiate a timer object from given arguemts. The timer expires timeout seconds after the timer has been
started. When the timer expires given callback is called from interrupt context and mask is written to given
event channel. Set flags to PERIODIC to create a periodic timer.

Simba documentation: kernel/timer

start()
Start the timer.

46 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/library-reference/kernel/timer.html

Pumbaa Documentation, Release 3.0.2

stop()
Stop the timer. If the timer is stopped before it has expired it will never exipre. This function has no effect
if the timer has already expired.

PERIODIC
Pass this flag to Timer for periodic timers.

sync — Thread synchroniztion

Thread synchronization refers to the idea that multiple threads are to join up or handshake at a certain point, in order
to reach an agreement or commit to a certain sequence of action.

Simba documentation: sync

class sync.Event
Initialize given event object.

Simba documentation: sync/event

read(mask)
Wait for an event to occur and return a mask of all active events.

write(mask)
Write given event(s) to the channel.

size()
Get the number of event(s) set in the channel.

class sync.Queue
Initialize given queue object.

Simba documentation: sync/queue

read(size)
Reads up to size number of bytes from the queue and returns them as a string. Raises an exception on error.

write(string)
Write given string to the queue. Returns the number of bytes written. Raises an exception on error.

size()
Get the number of bytes available to read.

drivers — Device drivers

This module contains device drivers.

The following classes are defined:

• class Pin – Digital pins

• class Exti – External interrupts

• class Adc – Analog to digital convertion

• class Dac – Digital to analog convertion

• class Spi – Serial peripheral interface

• class Can – Controller Area Network

• class I2C – I2C

1.6. Library Reference 47

http://simba-os.readthedocs.io/en/latest/library-reference/sync.html
http://simba-os.readthedocs.io/en/latest/library-reference/sync/event.html
http://simba-os.readthedocs.io/en/latest/library-reference/sync/queue.html

Pumbaa Documentation, Release 3.0.2

• class I2CSoft – Software I2C

• class Owi – Onewire

• class Ds18b20 – DS18B20 temperature

• class Sd – Secure Digital memory

• class esp_wifi – Espressif WiFi

• class Uart – Universal Asynchronous Receiver/Transmitter

• class Flash – Flash memory

• class Ws2812 – WS2812 Neo Pixels

• class EepromI2C – I2C EEPROM

Simba documentation: drivers

class drivers.Pin(device, mode)
Create a pin object with given device and mode. The device is selected among the pins available in the board
module. mode must be either INPUT or OUTPUT.

>>> led = Pin(board.PIN_LED, Pin.OUTPUT)
>>> led.write(1)
>>> led.toggle()

Simba documentation: drivers/pin

read()
Read the current pin value and return it as an integer. Returns 0 if the pin is low and 1 if the pin is high.

write(value)
Write the logic level value to the pin. value must be an object that can be converted to an integer. The
value is either 0 or 1, where 0 is low and 1 is high.

toggle()
Toggle the pin output value (high/low).

set_mode(mode)
Set the pin mode to given mode mode. The mode must be either INPUT or OUTPUT.

INPUT
Input pin mode.

OUTPUT
Output pin mode.

class drivers.Exti(device, trigger, channel=None, data=None, callback=None)
Create an object handling interrupts on given device. trigger may be a combination of RISING, FALLING or
BOTH . When an interrupt occurs given callback is called from interrupt context and data is written to given
event or queue channel channel.

Event channel example.

>>> event = Event()
>>> exti = Exti(board.EXTI_D3, Exti.FALLING, event, 0x1)
>>> exti.start()
>>> event.read(0x1) # Wait for an interrupt to occur.
>>> exti.stop()

48 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/library-reference/drivers.html
http://simba-os.readthedocs.io/en/latest/library-reference/drivers/pin.html

Pumbaa Documentation, Release 3.0.2

Queue channel example.

>>> queue = Queue()
>>> exti = Exti(board.EXTI_D4, Exti.RISING, queue, b'1')
>>> exti.start()
>>> queue.read(1) # Wait for an interrupt to occur.
b'1'
>>> exti.stop()

Simba documentation: drivers/exti

start()
Start the interrupt handler.

stop()
Stop the interrupt handler.

RISING
Trigger an interrupt on rising edges.

FALLING
Trigger an interrupt on falling edges.

BOTH
Trigger an interrupt on both rising and falling edges.

class drivers.Adc(device, pin_device, reference, sampling_rate)
Instansiate an Adc object with given device and pin_device devices. reference is the voltage reference and
sampling_rate is the sampling frequency.

Here is an example of how to create a ADC driver object and convert an analog signal level to three digital
samples with a sampling rate of 1 kHz.

>>> a0 = Adc(board.PIN_ADC0, board.PIN_A0, Adc.REFERENCE_VCC, 1000)
>>> a0.convert(3)
b'\x00\x01\x00\x02\x00\x03'
>>> array.array('h', a0.convert(3))
array('h', [1, 2, 3])

The equivalent asynchronous example.

>>> a0 = Adc(board.PIN_ADC0, board.PIN_A0, Adc.REFERENCE_VCC, 1000)
>>> a0.async_convert(3)
>>> array.array('h', a0.async_wait())
array('h', [1, 2, 3])

Simba documentation: drivers/adc

convert(number_of_samples)
Start a synchronous convertion of an analog signal to digital samples. This is equivalent to
async_convert() + async_wait(), but in a single function call. Returns a bytes object where
each sample is 2 bytes.

async_convert(number_of_samples)
Start an asynchronous convertion of analog signal to digital samples. Call async_wait() to wait for
the convertion to complete.

async_wait()
Wait for an asynchronous convertion started with async_convert() to complete. Returns a bytes
object where each sample is 2 bytes.

1.6. Library Reference 49

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/exti.html
http://simba-os.readthedocs.io/en/latest/library-reference/drivers/adc.html

Pumbaa Documentation, Release 3.0.2

REFERENCE_VCC
Use VCC as reference.

class drivers.Dac(devices, sampling_rate)
Instansiate a Dac object. devices is either a list of DAC pin devices or a single DAC pin device. The DAC pin
devices can be found in the board module, often named PIN_DAC0 and PIN_DAC1.

Here is an example of how to create a DAC driver and convert digital samples to an analog signal.

>>> dac = Dac(board.PIN_DAC0)
>>> dac.convert(b'\x01\x02\x03\x04')

Simba documentation: drivers/dac

convert(samples)
Start a synchronous convertion of digital samples to an analog signal. This function returns when all
samples have been converted.

async_convert(samples)
Start an asynchronous convertion of digital samples to an analog signal. This function only blocks if
the hardware is not ready to convert more samples. Call async_wait() to wait for an asynchronous
convertion to finish.

async_wait()
Wait for an ongoing asynchronous convertion to finish.

class drivers.Spi(device, slave_select, mode=MODE_MASTER, speed=SPEED_250KBPS, polarity=0,
phase=0)

Create a Spi object. Select the SPI device with device and slave select pin with slave_select. mode in one of
MODE_MASTER and MODE_SLAVE. speed is only used by the master. polarity is the bus idle logic level. phase
controls if sampling are done on falling or rising clock edges.

Here is an example of how to create a SPI driver and write 4 bytes to the slave.

>>> spi = Spi(board.SPI_0, board.PIN_D3)
>>> spi.start()
>>> spi.select()
>>> spi.write(b'\x01\x02\x03\x04')
>>> spi.deselect()
>>> spi.stop()

Simba documentation: drivers/spi

start()
Configures the SPI hardware with the settings of this object.

stop()
Deconfigures the SPI hardware if given driver currently ownes the bus.

take_bus()
In multi master application the driver must take ownership of the SPI bus before performing data transfers.
Will re-configure the SPI hardware if configured by another driver.

give_bus()
In multi master application the driver must give ownership of the SPI bus to let other masters take it.

select()
Select the slave by asserting the slave select pin.

deselect()
Deselect the slave by de-asserting the slave select pin.

50 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/dac.html
http://simba-os.readthedocs.io/en/latest/library-reference/drivers/spi.html

Pumbaa Documentation, Release 3.0.2

transfer(write_buffer[, size])
Simultaniuos read/write operation over the SPI bus. Writes data from write_buffer to the bus. The size
argument can be used to transfer fewer bytes than the size of write_buffer. Returns the read data as a bytes
object.

The number of read and written bytes are always equal for a transfer.

transfer_into(read_buffer, write_buffer[, size])
Same as transfer(), but the read data is written to read_buffer.

read(size)
Read size bytes from the SPI bus. Returns the read data as a bytes object.

read_into(buffer[, size])
Same as read(), but the read data is written to buffer.

write(buffer[, size])
Write size bytes from buffer to the SPI bus. Writes all data in buffer if size is not given.

MODE_MASTER
SPI master mode.

MODE_SLAVE
SPI slave mode.

SPEED_8MBPS

SPEED_4MBPS

SPEED_2MBPS

SPEED_1MBPS

SPEED_500KBPS

SPEED_250KBPS

SPEED_125KBPS
SPI bus speed. Only used if the driver is configured as master.

class drivers.Can(device, speed=SPEED_500KBPS)
Create a Can object. Select CAN device and speed with device and speed.

Here is an example of how to create a CAN driver, write a frame and then read a frame.

>>> can = Can(board.CAN_0)
>>> can.start()
>>> can.write(0x123, b'\x01\x02')
>>> can.read()
(id=0x32, data=b'\x34\x35\x36', flags=0)
>>> can.stop()

Simba documentation: drivers/can

start()
Starts the CAN device.

stop()
Stops the CAN device.

read()
Read a frame from the CAN bus and return it as a named tuple with three items; id, data and flags. id
is the frame id as an integer. flags contains information about the frame format, and possibly additional
information in the future. data is a bytes object of up to 8 bytes of read frame data.

1.6. Library Reference 51

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/can.html

Pumbaa Documentation, Release 3.0.2

write(id, data[, flags])
Write a frame with given id and data to the CAN bus. id is an integer and data is a bytes object of up to 8
bytes. Set FLAGS_EXTENDED_FRAME in flags to write an extended frame (29 bits frame id), otherwise
a standard frame is written.

SPEED_500KBPS
CAN bus speed.

FLAGS_EXTENDED_FRAME
Extended frame flag. A 29 bits frame id will be sent/received.

class drivers.I2C(device, baudrate=BAUDRATE_100KBPS, address=-1)
Create an I2C object. Select the I2C device with device. The bus baudrate baudrate is one of
BAUDRATE_1MBPS, BAUDRATE_400KBPS and BAUDRATE_100KBPS. address is the slave address when
this driver is a slave (only master is suported in the current version of the driver).

Here is an example of how to create a I2C obeject and scan the bus to find conected devices.

>>> i2c = I2C(0)
>>> i2c.start()
>>> i2c.scan()
[87, 104]
>>> i2c.stop()

Simba documentation: drivers/i2c

start()
Start the I2C driver. Configures the hardware.

stop()
Stop the I2C driver. Resets the hardware.

read(address, size)
Read size bytes from slave with address address.

read_into(address, buffer[, size])
Read len(buffer) bytes from slave with address address into buffer. Give the argument size to read
fewer bytes than len(buffer).

write(address, buffer[, size])
Write the buffer buffer to slave with address address.

scan()
Scan the bus and return a list of all found slave addresses.

BAUDRATE_1MBPS

BAUDRATE_400KBPS

BAUDRATE_100KBPS
I2C bus baudrate. Only used if the driver is configured as master.

class drivers.I2CSoft(scl, sda, baudrate=50000, max_clock_stretching_sleep_us=1000000,
clock_stretching_sleep_us=10000)

Create an I2CSoft object. Select the I2C SCL and SDA pins with scl and sda. The bus baudrate is selected using
the baudrate argument. max_clock_stretching_sleep_us and clock_stretching_sleep_us are timing configuration
parameters.

Here is an example of how to create a I2CSoft obeject and scan the bus to find conected devices.

>>> i2c = I2CSoft(board.PIN_D3, board.PIN_D4)
>>> i2c.start()

52 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/i2c.html

Pumbaa Documentation, Release 3.0.2

>>> i2c.scan()
[87, 104]
>>> i2c.stop()

Simba documentation: drivers/i2c_soft

start()
Start the I2C soft driver. Configures the hardware.

stop()
Stop the I2C soft driver. Resets the hardware.

read(address, size)
Read size bytes from slave with address address.

read_into(address, buffer[, size])
Read len(buffer) bytes from slave with address address into buffer. Give the argument size to read
fewer bytes than len(buffer).

write(address, buffer[, size])
Write the buffer buffer to slave with address address.

scan()
Scan the bus and return a list of all found slave addresses.

class drivers.Owi(pin_device)
Create an Owi object with pin_device as the One Wire bus pin.

Here is an example of how to use the Owi class.

>>> owi = Owi(board.PIN_D3)
>>> owi.reset()
>>> owi.search()
2
>>> owi.get_devices()
[b'12345678', b'abcdefgh']
>>> owi.read(b'12345678', 3)
b'\x00\x01\x02'
>>> owi.write(b'12345678', b'\x00')
1

Simba documentation: drivers/owi

reset()
Send reset on One Wire bus.

search()
Search for devices on the One Wire bus. The device id of all found devices are stored and returned by
get_devices().

get_devices()
Returns a list of all devices found in the latest call to search().

read(device_id, size)
Read size bytes from device with id device_id.

write(device_id, buffer[, size])
Write buffer buffer to device with id device_id. Give size to write fewer bytes than the buffer size.

class drivers.Ds18b20(owi)
Create a Ds18b20 object.

1.6. Library Reference 53

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/i2c_soft.html
http://simba-os.readthedocs.io/en/latest/library-reference/drivers/owi.html

Pumbaa Documentation, Release 3.0.2

Here is an example of how to use the Ds18b20 class.

>>> owi = Owi(board.PIN_D3)
>>> owi.search()
>>> ds18b20 = Ds18b20(owi)
>>> ds18b20.get_devices()
[b'(2345678']
>>> ds18b20.convert()
>>> ds18b20.get_temperature(b'(2345678')
20.5

Simba documentation: drivers/ds18b20

convert()
Start temperature convertion on all sensors. A convertion takes about one second to finish.

get_devices()
Returns a list of all DS18B20 devices found by the latest call to Owi.search().

get_temperature(device_id)
Get the temperature for given device identity. Reads the latest converted sample for the device with id
device_id. Call convert() before calling this function to get the current temperature.

class drivers.Sd(spi)
Create a Sd object with given SPI driver.

Here is an example of how to create a SD and read the CID.

>>> sd = Sd(spi)
>>> sd.start()
>>> print(sd.read_cid())
(mid=2, oid=b'TM', pnm=b'SA04G', prv=22, psn=-681299654, mdt=60416, crc=107)
>>> sd.stop()

Simba documentation: drivers/sd

start()
Configures the SD card driver. This resets the SD card and performs the initialization sequence.

stop()
Deconfigures the SD card driver.

read_cid()
Read card CID register and return it. The CID contains card identification information such as Manufac-
turer ID, Product name, Product serial number and Manufacturing date.

The return value is an object with 7 attributes:

•mid - manufacturer ID

•oid - OEM/Application ID

•pnm - Product name

•prv - Product revision

•psn - Product serial number

•mdt - Manufacturing date

•crc - CRC7 checksum

54 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/ds18b20.html
http://simba-os.readthedocs.io/en/latest/library-reference/drivers/sd.html

Pumbaa Documentation, Release 3.0.2

read_csd()
Read card CSD register and return it. The CSD contains that provides information regarding access to the
card’s contents.

The return value is an object with 29 attributes for version 1 cards and 24 attributes for version 2 cards:

•...

read_block(block)
Read given block from SD card and returns it as a bytes object.

read_block_into(block, buffer)
Same as read_block(), but the read data is written to buffer.

write_block(block, buffer)
Write buffer to given block.

class drivers.esp_wifi
This class is a singleton and can not be instanciated. It configures the Espressif WiFi stack.

An example of how to connect to a WiFi network:

>>> esp_wifi.set_op_mode(esp_wifi.OP_MODE_STATION)
>>> esp_wifi.station_init('ssid', 'password')
>>> esp_wifi.station_connect()
>>> esp_wifi.station_get_status()
'got-ip'
>>> esp_wifi.station_get_ip_info()
(address='192.168.0.5', netmask='255.255.255.0', gateway='192.168.0.1')

An example of how to setup a SoftAP:

>>> esp_wifi.set_op_mode(esp_wifi.OP_MODE_SOFTAP)
>>> esp_wifi.softap_init('ssid', 'password')
>>> esp_wifi.softap_get_ip_info()
(address='192.168.4.1', netmask='255.255.255.0', gateway='192.168.4.1')

Simba documentation: drivers/esp_wifi

set_op_mode(mode)
Set the WiFi operating mode to mode. mode is one of OP_MODE_STATION , OP_MODE_SOFTAP,
OP_MODE_STATION_SOFTAP.

get_op_mode()
Returns the current WiFi operating mode.

set_phy_mode(mode)
Set the WiFi physical mode (802.11b/g/n) to one of PHY_MODE_11B, PHY_MODE_11G and
PHY_MODE_11N .

get_phy_mode()
Returns the physical mode (802.11b/g/n).

softap_init(ssid, password)
Initialize the WiFi SoftAP interface with given ssid and password.

softap_set_ip_info(info)
Set the ip address, netmask and gateway of the WiFi SoftAP. The info object info is a three items tuple of
address, netmask and gateway strings in IPv4 format.

softap_get_ip_info()
Returns a three items tuple of the SoftAP ip address, netmask and gateway.

1.6. Library Reference 55

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/esp_wifi.html

Pumbaa Documentation, Release 3.0.2

softap_get_number_of_connected_stations()
Returns the number of stations connected to the SoftAP.

softap_get_station_info()
Returns the information of stations connected to the SoftAP, including MAC and IP addresses.

softap_dhcp_server_start()
Enable the SoftAP DHCP server.

softap_dhcp_server_stop()
Disable the SoftAP DHCP server. The DHCP server is enabled by default.

softap_dhcp_server_status()
Returns the SoftAP DHCP server status.

station_init(ssid, password[, info])
Initialize the WiFi station.

station_connect()
Connect the WiFi station to the Access Point (AP). This function returns before a connection has been
established. Call station_get_status() periodically until it retuns got-ip to ensure the WiFi station has
been assigned an IP the the WiFi Access Point DHCP server.

station_disconnect()
Disconnect the WiFi station from the AP.

station_set_ip_info(info)
Set the ip address, netmask and gateway of the WiFi station. The info object info is a three items tuple of
address, netmask and gateway strings in IPv4 format.

station_get_ip_info()
Returns the station ip address, netmask and gateway.

station_set_reconnect_policy(policy)
Set whether the station will reconnect to the AP after disconnection. Set policy to True to automatically
reconnect and False otherwise.

station_get_reconnect_policy()
Check whether the station will reconnect to the AP after disconnection.

station_get_status()
Get the connection status of the WiFi station.

station_dhcp_client_start()
Enable the station DHCP client.

station_dhcp_client_stop()
Disable the station DHCP client.

station_dhcp_client_status()
Get the station DHCP client status.

OP_MODE_NULL

OP_MODE_STATION

OP_MODE_SOFTAP

OP_MODE_STATION_SOFTAP
WiFi operating modes.

PHY_MODE_11B

PHY_MODE_11G

56 Chapter 1. Videos

Pumbaa Documentation, Release 3.0.2

PHY_MODE_11N
WiFi physical modes.

class drivers.Uart(device, baudrate=115200)
Create a Uart object. Select UART device and baudrate with device and baudrate.

Here is an example of how to create a UART driver, write data and then read data.

Instances of this class can be polled by the select module.

>>> uart = Uart(1)
>>> uart.start()
>>> uart.write(b'1234')
>>> uart.read(4)
b'5678'
>>> buf = bytearray(4)
>>> uart.read_into(buf, 3)
3
>>> buf
bytearray(b'901\x00')
>>> uart.stop()

Simba documentation: drivers/uart

start()
Starts the UART device. Configures the hardware.

stop()
Stops the UART device.

read(size)
Read size bytes from the UART. Returns the read data.

read_into(buffer[, size])
Read size bytes from the UART into given buffer buffer. Returns number of bytes read.

write(buffer[, size])
Write data in buffer to the UART. size may be used to send fewer bytes than the size of buffer. Returns
number of bytes written.

size()
Returns the number of bytes in the input buffer.

class drivers.Flash(device)
Create a Flash object. Select flash device index with device. It is normally given as 0.

The flash address given to the instance methods is either relative to the flash start address or an absolute physical
address in the CPU memory map. This is board dependent and it is not documented anywhere.

Here is an example of how to create a flash driver and use the erase, read and write methods.

>>> flash = Flash(0)
>>> flash.read(0x300000, 4)
b'5678'
>>> flash.erase(0x300000, 4)
>>> flash.write(0x300000, b'1234')
4
>>> buf = bytearray(8)
>>> flash.read_into(0x300000, buf, 4)
4
>>> buf
bytearray(b'1234\x00\x00\x00\x00')

1.6. Library Reference 57

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/uart.html

Pumbaa Documentation, Release 3.0.2

Simba documentation: drivers/flash

read(address, size)
Read size bytes from given address address in the flash. Returns the read data.

read_into(address, buffer[, size])
Read size bytes from given address address in flash into given buffer buffer. Returns number of bytes read.

write(address, buffer[, size])
Write data in buffer to given address address in flash. size may be used to write fewer bytes than the size
of buffer. Returns number of bytes written.

erase(address, size)
Erase size bytes in flash starting at given addess address.

class drivers.Ws2812(pin_devices)
Create a Ws2812 object.

Here is an example of how to create a Ws2812 driver and control a LED strip of 30 pixles.

>>> ws2812 = Ws2812(board.PIN_GPIO18)
>>> ws2812.write(30 * b'\xff\x00\x00')

Simba documentation: drivers/ws2812

write(buffer[, number_of_pixels])
Write GRB data from buffer buffer to the LED strip. Writes all data in buffer if size is not given.

class drivers.EepromI2C(i2c, address, size)
Create a I2C EEPROM object. address is the EEPROM I2C address, and size is the EEPROM size in bytes.

Here is an example of how to create an I2C EEPROM obeject and transfer data to and from the EEPROM using
it.

>>> i2c = I2C(0)
>>> i2c.start()
>>> eeprom = EepromI2C(i2c, 0x57, 32768)
>>> eeprom.write(0, b'Hello World!')
>>> eeprom.read(0, 12)
b'Hello World!'

Simba documentation: drivers/eeprom_i2c

read(address, size)
Read size bytes from EEPROM address address.

read_into(address, buffer[, size])
Read len(buffer) bytes from EEPROM address address into buffer. Give the argument size to read
fewer bytes than len(buffer).

write(address, buffer[, size])
Write the buffer buffer to EEPROM address address.

inet — Internet networking

Internet network configuration and protocol implementation.

Simba documentation: inet

58 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/library-reference/drivers/flash.html
http://simba-os.readthedocs.io/en/latest/library-reference/drivers/ws2812.html
http://simba-os.readthedocs.io/en/latest/library-reference/drivers/eeprom_i2c.html
http://simba-os.readthedocs.io/en/latest/library-reference/inet.html

Pumbaa Documentation, Release 3.0.2

class inet.HttpServer(ip_address, port, routes, on_no_route)
Create a HTTP server object. The HTTP server opens a socket and binds to given ip_address and port. routes
is a list of route tuples, where each route tuple contains a path and a callback function. on_no_route is called
when a request is received for a path that is not found in routes.

Here is an example of a HTTP server with one route, '/index.html'. Enter http://192.168.0.
7:8000/index.html in your webbrowser to get the index page.

>>> from inet import HttpServer
>>> def on_no_route(_, request):
>>> return (request.path + ' not found.',
>>> HttpServer.RESPONSE_CODE_404_NOT_FOUND,
>>> HttpServer.CONTENT_TYPE_TEXT_PLAIN)

>>> def on_request_index(_, request):
>>> return ('<html><body>Hello from Pumbaa!</body></html>',)

>>> routes = [('/index.html', on_request_index)]
>>> http_server = HttpServer('192.168.0.7', 80, routes, on_no_route)
>>> http_server.start()

Simba documentation: inet/http_server

start()
Start the HTTP server.

stop()
Stop the HTTP server.

wrap_ssl(context)
Wrap given HTTP server in SSL, to make it “secure”. context is created with the SSL module.

This function must be called before start().

class inet.HttpServerWebSocket(connection, request)
Create a HTTP server WebSocket object with given connection and request.

An example of how to use the HTTP server WebSocket class in a HTTP server route callback.

>>> from inet import HttpServerWebSocket
>>> def on_websocket_echo(connection, request):
>>> ws = HttpServerWebSocket(connection, request)
>>> while True:
>>> message = ws.read()
>>> print('Message:', message)
>>> if not message:
>>> break
>>> ws.write(message)

read()
Read a message from the remote endpoint.

write(buffer)
Write buffer to the remote endpoint.

inet.ping_host_by_ip_address(address, timeout)
Ping host by IPv4 address address. Send an echo request packet to the host and wait for the echo reply packet.
Only the ICMP header is transmitted, no extra payload data is added to the packet. Returns the round trip time
in milliseconds.

Raises an OSError exception if no response is received within timeout seconds after the request is sent.

1.6. Library Reference 59

http://simba-os.readthedocs.io/en/latest/library-reference/inet/http_server.html

Pumbaa Documentation, Release 3.0.2

>>> inet.ping_host_by_ip_address("192.168.0.5", 2)
10
>>> inet.ping_host_by_ip_address("192.168.0.7", 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

OSError:

Simba documentation: inet/ping

text — Text parsing, editing and colorization

Simba documentation: text

text.emacs([path])
Start the Emacs text editor. Automatically opens file at path if given.

board — Board devices

The board module is board unique. This page shows the general structure of those modules.

PIN_<ID>
Pin devices.

EXTI_<ID>
External interrupt devices.

PWM_<ID>
PWM devices.

ADC_<ID>
ADC devices.

DAC_<ID>
DAC devices.

FLASH_<ID>
Flash devices.

SPI_<ID>
SPI devices.

License

The MIT License (MIT)

Copyright (c) 2014-2017, Erik Moqvist

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

60 Chapter 1. Videos

http://simba-os.readthedocs.io/en/latest/library-reference/inet/ping.html
http://simba-os.readthedocs.io/en/latest/library-reference/text.html

Pumbaa Documentation, Release 3.0.2

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Videos

#7 Pumbaa: Emacs text editor on Nano32 (ESP32)!

Write a Python script in Emacs on a Nano32 (ESP32) and import it.

#6 Pumbaa: DAC ramp on Nano32 (ESP32)!

Measure the DAC output voltage on a Nano32 (ESP32).

#5 Pumbaa: Dual board CAN blink on Nano32 (ESP32) and Arduino Due.

Blink a LED on Nano32 by sending a CAN frame from an Arduino Due.

#4 Pumbaa: Room temperature (DS18B20).

Read and print the room temperature measured with a DS18B20 sensor.

#3 Pumbaa: Gource of the Pumbaa repository.

Gource visualizes the Pumbaa Git repository file tree over time. In this project the source, test and documentation was
written simultaneously, a perfect school book example of software development.

#2 Pumbaa: Queue class unit testing on Nano32!

Unit testing is an important part of most embedded applications. This video shows how easy it is to run a test suite on
the target hardware, in this case a Nano32 board.

In the video; the test suite can be seen in the left window and the compilation, upload and execution in the right
window.

To execute the same test suite on native linux the BOARD variable shall be set to linux. Simple as that.

#1 Pumbaa: Blink on Nano32!

The very first Pumbaa video demonstrates the classic blink application. It’s run on a Nano32 board that has a ESP32
MCU.

1.8. Videos 61

Pumbaa Documentation, Release 3.0.2

62 Chapter 1. Videos

CHAPTER 2

Features

• MicroPython 3 language.

• Python Standard Library modules.

• MicroPython modules modules.

• A thin Python wrapper for Simba modules.

See the Library Reference for a full list of features.

63

http://docs.micropython.org/en/latest/pyboard/reference/index.html
http://simba-os.readthedocs.io/en/latest/library-reference.html

Pumbaa Documentation, Release 3.0.2

64 Chapter 2. Features

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

65

Pumbaa Documentation, Release 3.0.2

66 Chapter 3. Indices and tables

Python Module Index

_
_thread, 43

a
array, 30

b
binascii, 31
board, 60

c
cmath, 31
collections, 32

d
drivers, 47

g
gc, 44

h
hashlib, 33

i
inet, 58
io, 33

j
json, 34

k
kernel, 45

m
math, 34
micropython, 45

o
os, 36

r
random, 36

s
select, 37
socket, 38
ssl, 40
struct, 42
sync, 47
sys, 42

t
text, 60
time, 44

z
zlib, 44

67

Pumbaa Documentation, Release 3.0.2

68 Python Module Index

Index

Symbols
_thread (module), 43
_thread.allocate_lock() (in module _thread), 43
_thread.exit() (in module _thread), 43
_thread.get_ident() (in module _thread), 43
_thread.stack_size() (in module _thread), 43
_thread.start_new_thread() (in module _thread), 43

A
accept() (socket.socket.SocketType method), 39
acquire() (_thread.LockType method), 43
append() (array.array.array.array method), 30
array (module), 30
array.array (class in array), 30
async_convert() (drivers.drivers.Adc method), 49
async_convert() (drivers.drivers.Dac method), 50
async_wait() (drivers.drivers.Adc method), 49
async_wait() (drivers.drivers.Dac method), 50

B
binascii (module), 31
binascii.a2b_base64() (in module binascii), 31
binascii.b2a_base64() (in module binascii), 31
binascii.crc32() (in module binascii), 31
binascii.hexlify() (in module binascii), 31
binascii.unhexlify() (in module binascii), 31
bind() (socket.socket.SocketType method), 39
board (module), 60

C
cipher() (ssl.ssl.SSLSocket method), 42
close() (io.uio.BytesIO method), 34
close() (socket.socket.SocketType method), 39
close() (ssl.ssl.SSLSocket method), 42
cmath (module), 31
collections (module), 32
collections.namedtuple() (in module collections), 32
collections.OrderedDict (class in collections), 32
connect() (socket.socket.SocketType method), 40

convert() (drivers.drivers.Adc method), 49
convert() (drivers.drivers.Dac method), 50
convert() (drivers.drivers.Ds18b20 method), 54
cos() (in module cmath), 32

D
deselect() (drivers.drivers.Spi method), 50
drivers (module), 47
drivers.Adc (class in drivers), 49
drivers.Adc.REFERENCE_VCC (in module drivers), 49
drivers.Can (class in drivers), 51
drivers.Can.FLAGS_EXTENDED_FRAME (in module

drivers), 52
drivers.Can.SPEED_500KBPS (in module drivers), 52
drivers.Dac (class in drivers), 50
drivers.Ds18b20 (class in drivers), 53
drivers.EepromI2C (class in drivers), 58
drivers.esp_wifi (class in drivers), 55
drivers.esp_wifi.OP_MODE_NULL (in module drivers),

56
drivers.esp_wifi.OP_MODE_SOFTAP (in module

drivers), 56
drivers.esp_wifi.OP_MODE_STATION (in module

drivers), 56
drivers.esp_wifi.OP_MODE_STATION_SOFTAP (in

module drivers), 56
drivers.esp_wifi.PHY_MODE_11B (in module drivers),

56
drivers.esp_wifi.PHY_MODE_11G (in module drivers),

56
drivers.esp_wifi.PHY_MODE_11N (in module drivers),

56
drivers.Exti (class in drivers), 48
drivers.Exti.BOTH (in module drivers), 49
drivers.Exti.FALLING (in module drivers), 49
drivers.Exti.RISING (in module drivers), 49
drivers.Flash (class in drivers), 57
drivers.I2C (class in drivers), 52
drivers.I2C.BAUDRATE_100KBPS (in module drivers),

52

69

Pumbaa Documentation, Release 3.0.2

drivers.I2C.BAUDRATE_1MBPS (in module drivers), 52
drivers.I2C.BAUDRATE_400KBPS (in module drivers),

52
drivers.I2CSoft (class in drivers), 52
drivers.Owi (class in drivers), 53
drivers.Pin (class in drivers), 48
drivers.Pin.INPUT (in module drivers), 48
drivers.Pin.OUTPUT (in module drivers), 48
drivers.Sd (class in drivers), 54
drivers.Spi (class in drivers), 50
drivers.Spi.MODE_MASTER (in module drivers), 51
drivers.Spi.MODE_SLAVE (in module drivers), 51
drivers.Spi.SPEED_125KBPS (in module drivers), 51
drivers.Spi.SPEED_1MBPS (in module drivers), 51
drivers.Spi.SPEED_250KBPS (in module drivers), 51
drivers.Spi.SPEED_2MBPS (in module drivers), 51
drivers.Spi.SPEED_4MBPS (in module drivers), 51
drivers.Spi.SPEED_500KBPS (in module drivers), 51
drivers.Spi.SPEED_8MBPS (in module drivers), 51
drivers.Uart (class in drivers), 57
drivers.Ws2812 (class in drivers), 58

E
e() (in module cmath), 32
erase() (drivers.drivers.Flash method), 58
exp() (in module cmath), 32
extend() (array.array.array.array method), 30

F
flush() (io.uio.BytesIO method), 34

G
gc (module), 44
gc.collect() (in module gc), 45
gc.disable() (in module gc), 44
gc.enable() (in module gc), 44
gc.mem_alloc() (in module gc), 45
gc.mem_free() (in module gc), 45
get_devices() (drivers.drivers.Ds18b20 method), 54
get_devices() (drivers.drivers.Owi method), 53
get_op_mode() (drivers.drivers.esp_wifi method), 55
get_phy_mode() (drivers.drivers.esp_wifi method), 55
get_server_hostname() (ssl.ssl.SSLSocket method), 42
get_temperature() (drivers.drivers.Ds18b20 method), 54
getvalue() (io.uio.BytesIO method), 34
give_bus() (drivers.drivers.Spi method), 50

H
hashlib (module), 33

I
inet (module), 58
inet.HttpServer (class in inet), 58

inet.HttpServerWebSocket (class in inet), 59
inet.ping_host_by_ip_address() (in module inet), 59
io (module), 33
io.FileIO (class in io), 33
io.open() (in module io), 33
io.TextIOWrapper (class in io), 33

J
json (module), 34
json.dumps() (in module json), 34
json.loads() (in module json), 34

K
kernel (module), 45
kernel.sys_lock() (in module kernel), 45
kernel.sys_reboot() (in module kernel), 45
kernel.sys_unlock() (in module kernel), 45
kernel.thrd_get_by_name() (in module kernel), 46
kernel.thrd_get_env() (in module kernel), 46
kernel.thrd_get_global_env() (in module kernel), 46
kernel.thrd_get_log_mask() (in module kernel), 46
kernel.thrd_get_name() (in module kernel), 46
kernel.thrd_get_prio() (in module kernel), 46
kernel.thrd_join() (in module kernel), 46
kernel.thrd_self() (in module kernel), 46
kernel.thrd_set_env() (in module kernel), 46
kernel.thrd_set_global_env() (in module kernel), 46
kernel.thrd_set_log_mask() (in module kernel), 46
kernel.thrd_set_name() (in module kernel), 46
kernel.thrd_set_prio() (in module kernel), 46
kernel.thrd_yield() (in module kernel), 46
kernel.Timer (class in kernel), 46
kernel.Timer.PERIODIC (in module kernel), 47

L
listen() (socket.socket.SocketType method), 40
load_cert_chain() (ssl.ssl.SSLContext method), 41
load_verify_locations() (ssl.ssl.SSLContext method), 41
locked() (_thread.LockType method), 44
LockType (class in _thread), 43
log() (in module cmath), 32

M
math (module), 34
math.acos() (in module math), 35
math.asin() (in module math), 35
math.atan() (in module math), 35
math.atan2() (in module math), 35
math.ceil() (in module math), 34
math.copysign() (in module math), 34
math.cos() (in module math), 35
math.degrees() (in module math), 35
math.e() (in module math), 36

70 Index

Pumbaa Documentation, Release 3.0.2

math.fabs() (in module math), 34
math.floor() (in module math), 34
math.fmod() (in module math), 34
math.frexp() (in module math), 35
math.isinf() (in module math), 35
math.isnan() (in module math), 35
math.ldexp() (in module math), 35
math.log() (in module math), 35
math.modf() (in module math), 35
math.pi() (in module math), 36
math.pow() (in module math), 35
math.radians() (in module math), 36
math.sin() (in module math), 35
math.sqrt() (in module math), 35
math.tan() (in module math), 35
math.trunc() (in module math), 35
micropython (module), 45
micropython.alloc_emergency_exception_buf() (in mod-

ule micropython), 45
micropython.mem_info() (in module micropython), 45
micropython.qstr_info() (in module micropython), 45
modify() (select.select.poll method), 38

O
os (module), 36
os.format() (in module os), 36
os.getcwd() (in module os), 36
os.listdir() (in module os), 36
os.stat() (in module os), 36
os.system() (in module os), 36
os.uname() (in module os), 36

P
phase() (in module cmath), 31
pi() (in module cmath), 32
polar() (in module cmath), 31
poll() (select.select.poll method), 38
popitem() (collections.collections.OrderedDict method),

32

R
random (module), 36
random.choice() (in module random), 37
random.getrandbits() (in module random), 36
random.randint() (in module random), 37
random.random() (in module random), 37
random.randrange() (in module random), 37
random.seed() (in module random), 36
random.uniform() (in module random), 37
read() (drivers.drivers.Can method), 51
read() (drivers.drivers.EepromI2C method), 58
read() (drivers.drivers.Flash method), 58
read() (drivers.drivers.I2C method), 52
read() (drivers.drivers.I2CSoft method), 53

read() (drivers.drivers.Owi method), 53
read() (drivers.drivers.Pin method), 48
read() (drivers.drivers.Spi method), 51
read() (drivers.drivers.Uart method), 57
read() (inet.inet.HttpServerWebSocket method), 59
read() (io.uio.BytesIO method), 33
read() (sync.sync.Event method), 47
read() (sync.sync.Queue method), 47
read_block() (drivers.drivers.Sd method), 55
read_block_into() (drivers.drivers.Sd method), 55
read_cid() (drivers.drivers.Sd method), 54
read_csd() (drivers.drivers.Sd method), 54
read_into() (drivers.drivers.EepromI2C method), 58
read_into() (drivers.drivers.Flash method), 58
read_into() (drivers.drivers.I2C method), 52
read_into() (drivers.drivers.I2CSoft method), 53
read_into() (drivers.drivers.Spi method), 51
read_into() (drivers.drivers.Uart method), 57
readall() (io.uio.BytesIO method), 33
readline() (io.uio.BytesIO method), 33
rect() (in module cmath), 32
recv() (socket.socket.SocketType method), 40
recv() (ssl.ssl.SSLSocket method), 42
recv_into() (socket.socket.SocketType method), 40
recvfrom() (socket.socket.SocketType method), 40
recvfrom_into() (socket.socket.SocketType method), 40
register() (select.select.poll method), 38
release() (_thread.LockType method), 44
reset() (drivers.drivers.Owi method), 53

S
scan() (drivers.drivers.I2C method), 52
scan() (drivers.drivers.I2CSoft method), 53
search() (drivers.drivers.Owi method), 53
seek() (io.uio.BytesIO method), 34
select (module), 37
select() (drivers.drivers.Spi method), 50
select.poll (class in select), 37
select.poll() (in module select), 37
select.POLLHUP (in module select), 38
select.POLLIN (in module select), 38
send() (socket.socket.SocketType method), 40
send() (ssl.ssl.SSLSocket method), 42
sendall() (socket.socket.SocketType method), 40
sendto() (socket.socket.SocketType method), 40
set_mode() (drivers.drivers.Pin method), 48
set_op_mode() (drivers.drivers.esp_wifi method), 55
set_phy_mode() (drivers.drivers.esp_wifi method), 55
set_verify_mode() (ssl.ssl.SSLContext method), 41
shutdown() (socket.socket.SocketType method), 40
sin() (in module cmath), 32
size() (drivers.drivers.Uart method), 57
size() (sync.sync.Event method), 47
size() (sync.sync.Queue method), 47

Index 71

Pumbaa Documentation, Release 3.0.2

socket (module), 38
socket.AF_INET (in module socket), 38
socket.getaddrinfo() (in module socket), 38
socket.inet_aton() (in module socket), 39
socket.inet_ntoa() (in module socket), 39
socket.SOCK_DGRAM (in module socket), 38
socket.SOCK_STREAM (in module socket), 38
socket.socket() (in module socket), 39
socket.SocketType (class in socket), 39
softap_dhcp_server_start() (drivers.drivers.esp_wifi

method), 56
softap_dhcp_server_status() (drivers.drivers.esp_wifi

method), 56
softap_dhcp_server_stop() (drivers.drivers.esp_wifi

method), 56
softap_get_ip_info() (drivers.drivers.esp_wifi method),

55
softap_get_number_of_connected_stations()

(drivers.drivers.esp_wifi method), 55
softap_get_station_info() (drivers.drivers.esp_wifi

method), 56
softap_init() (drivers.drivers.esp_wifi method), 55
softap_set_ip_info() (drivers.drivers.esp_wifi method), 55
sqrt() (in module cmath), 32
ssl (module), 40
ssl.SSLContext (class in ssl), 41
ssl.SSLContext.CERT_NONE (in module ssl), 42
ssl.SSLContext.CERT_REQUIRED (in module ssl), 42
ssl.SSLSocket (class in ssl), 42
start() (drivers.drivers.Can method), 51
start() (drivers.drivers.Exti method), 49
start() (drivers.drivers.I2C method), 52
start() (drivers.drivers.I2CSoft method), 53
start() (drivers.drivers.Sd method), 54
start() (drivers.drivers.Spi method), 50
start() (drivers.drivers.Uart method), 57
start() (inet.inet.HttpServer method), 59
start() (kernel.kernel.Timer method), 46
station_connect() (drivers.drivers.esp_wifi method), 56
station_dhcp_client_start() (drivers.drivers.esp_wifi

method), 56
station_dhcp_client_status() (drivers.drivers.esp_wifi

method), 56
station_dhcp_client_stop() (drivers.drivers.esp_wifi

method), 56
station_disconnect() (drivers.drivers.esp_wifi method), 56
station_get_ip_info() (drivers.drivers.esp_wifi method),

56
station_get_reconnect_policy() (drivers.drivers.esp_wifi

method), 56
station_get_status() (drivers.drivers.esp_wifi method), 56
station_init() (drivers.drivers.esp_wifi method), 56
station_set_ip_info() (drivers.drivers.esp_wifi method),

56

station_set_reconnect_policy() (drivers.drivers.esp_wifi
method), 56

stop() (drivers.drivers.Can method), 51
stop() (drivers.drivers.Exti method), 49
stop() (drivers.drivers.I2C method), 52
stop() (drivers.drivers.I2CSoft method), 53
stop() (drivers.drivers.Sd method), 54
stop() (drivers.drivers.Spi method), 50
stop() (drivers.drivers.Uart method), 57
stop() (inet.inet.HttpServer method), 59
stop() (kernel.kernel.Timer method), 46
struct (module), 42
sync (module), 47
sync.Event (class in sync), 47
sync.Queue (class in sync), 47
sys (module), 42
sys.argv (in module sys), 42
sys.byteorder (in module sys), 43
sys.exit() (in module sys), 42
sys.implementation (in module sys), 43
sys.modules (in module sys), 43
sys.path (in module sys), 42
sys.platform (in module sys), 43
sys.print_exception() (in module sys), 42
sys.version (in module sys), 42
sys.version_info (in module sys), 42

T
take_bus() (drivers.drivers.Spi method), 50
text (module), 60
text.emacs() (in module text), 60
time (module), 44
time.sleep() (in module time), 44
time.sleep_ms() (in module time), 44
time.sleep_us() (in module time), 44
time.time() (in module time), 44
toggle() (drivers.drivers.Pin method), 48
transfer() (drivers.drivers.Spi method), 50
transfer_into() (drivers.drivers.Spi method), 51

U
uio.BytesIO (class in io), 33
uio.StringIO (class in io), 33
unregister() (select.select.poll method), 38

W
wrap_socket() (ssl.ssl.SSLContext method), 41
wrap_ssl() (inet.inet.HttpServer method), 59
write() (drivers.drivers.Can method), 51
write() (drivers.drivers.EepromI2C method), 58
write() (drivers.drivers.Flash method), 58
write() (drivers.drivers.I2C method), 52
write() (drivers.drivers.I2CSoft method), 53
write() (drivers.drivers.Owi method), 53

72 Index

Pumbaa Documentation, Release 3.0.2

write() (drivers.drivers.Pin method), 48
write() (drivers.drivers.Spi method), 51
write() (drivers.drivers.Uart method), 57
write() (drivers.drivers.Ws2812 method), 58
write() (inet.inet.HttpServerWebSocket method), 59
write() (io.uio.BytesIO method), 34
write() (sync.sync.Event method), 47
write() (sync.sync.Queue method), 47
write_block() (drivers.drivers.Sd method), 55

Z
zlib (module), 44
zlib.decompress() (in module zlib), 44

Index 73

	Videos
	Features
	Indices and tables
	Python Module Index

