
Puli Documentation
Release 1.0.0-beta4

Bernhard Schussek

August 10, 2016

Resource Repository

1 Installation 3
1.1 Requirements . 3
1.2 Installing the Puli CLI . 3
1.3 Next Steps . 4

2 Glossary 5

3 The Repository Component 7
3.1 The Problem . 7
3.2 How It Works . 7
3.3 Getting Started . 8

4 Getting Started with the Repository Component 9
4.1 In a Symfony Project . 9
4.2 In a PHP Application . 10
4.3 In a Composer Package . 11
4.4 Further Reading . 12

5 Directory Layout 13

6 Mapping Resources 15
6.1 Listing Mappings . 15
6.2 Listing Mapped Files . 16
6.3 Changing a Mapping . 16
6.4 Deleting a Mapping . 17
6.5 Referencing Other Packages . 17
6.6 Further Reading . 17

7 Working with Resources 19
7.1 Resources . 19
7.2 Child Resources . 20
7.3 Metadata . 20
7.4 Resource Collections . 20

8 Stream Wrappers 23
8.1 Performance Tweaks . 23

9 The URL Generator Component 25
9.1 The Problem . 25

i

9.2 How It Works . 25
9.3 Getting Started . 26

10 Getting Started with the URL Generator Component 27
10.1 In a Symfony Project . 27
10.2 In a PHP Application . 28
10.3 In a Composer Package . 29
10.4 Further Reading . 29

11 Web Server Configuration 31
11.1 Adding a Web Server . 31
11.2 Listing Web Servers . 31
11.3 Changing a Web Server . 31
11.4 Deleting a Web Server . 32
11.5 Publishing Resources . 32
11.6 Listing Public Resources . 32
11.7 Unpublishing a Resource . 32
11.8 Installing Resources . 33
11.9 Custom URL Formats . 33

12 The Discovery Component 35
12.1 The Problem . 35
12.2 How It Works . 35
12.3 Getting Started . 36

13 Getting Started with the Discovery Component 37
13.1 In a Symfony Project . 37
13.2 In a PHP Application . 38
13.3 In a Composer Package . 39
13.4 Further Reading . 40

14 Consuming Resources 41
14.1 Defining a Binding Type . 41
14.2 Listing Binding Types . 41
14.3 Type Descriptions . 42
14.4 Changing a Binding Type . 42
14.5 Deleting a Binding Type . 42
14.6 Loading Bound Resources . 42
14.7 Loading Bindings for a Resource . 43
14.8 Binding Parameters . 43
14.9 Optional Parameters . 43

15 Providing Resources 45
15.1 Adding a Binding . 45
15.2 Listing Bindings . 45
15.3 Changing a Binding . 46
15.4 Deleting a Binding . 46
15.5 Disabling a Binding . 46
15.6 Enabling a Binding . 46
15.7 Binding Parameters . 46

16 The Puli Bridge for Symfony 49
16.1 Installation . 49
16.2 Configuration . 49
16.3 Chained Locators . 49

ii

16.4 Limitations . 50

17 The Puli Bundle for Symfony Projects 53
17.1 Starting a Project from the Symfony Puli Edition . 53
17.2 Installing the Puli Bundle . 53
17.3 Bundle Usage . 54

18 The Puli Extension for Twig 57
18.1 Installation . 57
18.2 Configuration . 57
18.3 Usage in Twig . 58
18.4 Resource URLs . 58

19 The Puli Package 59

20 Features of Puli Packages 61

21 Getting Started 65

22 Infrastructure 67

23 Components 69

24 Extensions 71

25 Authors 73

26 Contribute 75

27 Support 77

28 License 79

29 Logo 81

iii

iv

Puli Documentation, Release 1.0.0-beta4

Resource Repository 1

Puli Documentation, Release 1.0.0-beta4

2 Resource Repository

CHAPTER 1

Installation

1.1 Requirements

Puli requires PHP 5.3.9 or higher.

1.2 Installing the Puli CLI

To use Puli, you first need to install the Puli Command Line Interface (CLI). This is usually done only once on a
system.

You can install the Puli CLI in one of three ways:

1.2.1 As a Phar (Recommended)

Download the puli.phar from the latest release page on GitHub. You can test whether the Phar works by running:

$ php puli.phar

Note: The leading $ in the code examples is a convention that tells you that the example contains shell code. Type
the command that follows the dollar sign into your terminal, but don’t type the $ itself.

You can either place the Phar in your project directory or somewhere in your path (such as /usr/local/bin) and
chmod it to 755. You can rename it to just puli to avoid typing puli.phar for every command.

The Phar can be updated with the self-update command:

$ php puli.phar self-update

Note: For this command to work you need PHP 5.6 or higher.

1.2.2 As a Global Composer Dependency

If you prefer to install tools like PHPUnit as global Composer dependencies, you can do the same for Puli. Install
Composer and enter the following command in a terminal:

3

https://github.com/puli/cli/releases
https://getcomposer.org
https://getcomposer.org/doc/00-intro.md
https://getcomposer.org/doc/00-intro.md

Puli Documentation, Release 1.0.0-beta4

$ composer global require puli/cli:^1.0

1.2.3 As a Composer Dependency

If you want to explicitly document which version of the Puli CLI is required by your project, you can add it to your
Composer dependencies. Install Composer and enter the following command in a terminal:

$ composer require --dev puli/cli:^1.0

1.2.4 OS X Only: Using Homebrew

If you are on OS X, you can also install Puli through Homebrew:

$ brew install puli

Note: This command requires Homebrew PHP to be installed.

1.2.5 Unix Only: Disable Glob Expansion

By default, Unix shells like Bash expand glob arguments before passing them to the called command. Look at this
short example for a demonstration:

What you type
$ command *.js

What the command receives by the shell
$ command script1.js script2.js ...

If you use Puli on a Unix system, you should disable glob expansion for the puli command. If you use Bash, add the
following lines to ~/.bashrc:

Disable glob expansion for Puli
alias puli='set -f;puli';puli(){ command puli "$@";set +f;}

Apply the changes with the source command:

$ source ~/.bashrc

If you use a different shell than Bash, see this answer on StackOverflow for instructions.

1.3 Next Steps

Read The Repository Component to learn how to register your resources with Puli.

4 Chapter 1. Installation

https://getcomposer.org
https://getcomposer.org/doc/00-intro.md
http://brew.sh
https://github.com/Homebrew/homebrew-php#installation
http://stackoverflow.com/questions/11456403/stop-shell-wildcard-character-expansion/22945024#22945024

CHAPTER 2

Glossary

Binding Assigns one or more resources to a binding type.

Binding Parameter Additional, named data stored with a binding. Needs to be defined by the binding type. Can be
optional or required.

Binding Type A name for a semantic type of resources, like “thor/translations”. Should start with the vendor names-
pace of the package that defines the name.

Child Resource A resource nested in another resource.

Package A logical grouping of files in a directory. Typically installed with Composer.

Path Mapping Maps a path prefix to a file or directory in a Composer package.

Path Prefix A prefix of a Puli path, like /batman/blog.

Public Resource A resource that is published in the document root of a web server and accessible in the internet.

Puli-Enabled Package A package that contains a puli.json file in its root directory.

Puli Path The path of a resource in the resource repository, like /batman/blog/views/index.html.twig.

Resource A file or directory, typically XML, YAML, HTML, CSS, an image etc.

Resource Consumer A package that defines a binding type and uses resources bound to this type.

Resource Provider A package that contains resources bound to a binding type of a resource Consumer.

Root Package The package for the current project. Any Puli project has exactly one root package and any number of
package dependencies (non-root packages).

URL Format A printf string used to generate URLs of public resources, like https://example.com/%s.

UUID Short for Universally Unique Identifier. A random 128-bit value used to identify bindings and other distributed
objects managed by Puli.

Web Server Represents a physical web server in Puli. Typically has a URL format and a document root.

5

Puli Documentation, Release 1.0.0-beta4

6 Chapter 2. Glossary

CHAPTER 3

The Repository Component

Puli’s Repository Component provides a framework-agnostic naming convention for accessing resources in your
project and your installed Composer packages. Resources, in Puli, are all files that are not PHP, such as XML, YAML,
CSS, JavaScript, images and so on.

3.1 The Problem

At the moment, you are probably accessing files through the __DIR__ constant:

echo file_get_contents(__DIR__.'/../../res/views/index.html.twig');

Paths constructed like this become very long. Also, these paths break when you move the PHP file and make refactor-
ing harder.

Many frameworks solve this problem by looking for files in a fixed directory:

// res/views/index.html.twig
echo load_file('views/index/html.twig');

This solution works well for simple applications, but breaks if you want to load resources from different resource
directories, like your installed Composer packages. Frameworks solve this problem by supporting aliases for the
resource directories of different packages:

// vendor/acme/blog/res/views/index.html.twig
echo load_file('acme-blog:views/index/html.twig');

Unfortunately, every framework has a different naming convention for these aliases. Puli solves this by introducing a
universal naming convention that works with any framework – and even without.

3.2 How It Works

The Repository Component manages resources in a repository that looks very much like a Unix filesystem. Each
resource is accessible through a Puli path:

// res/views/index.html.twig
echo $repo->get('/app/views/index.html.twig')->getBody();

Puli finds this file by loading path mappings from the puli.json files in your application and all installed Composer
package. Such a mapping can be added with the Puli CLI:

7

https://github.com/puli/repository

Puli Documentation, Release 1.0.0-beta4

$ php puli.phar map /app res

In this example, you mapped the path prefix /app to the directory res in your application. Puli now knows that any
file with the prefix /app should be looked for in the res directory.

Behind the scenes, the Puli CLI builds a database from the mappings in the different puli.json files of your project.
This database can be accessed from your PHP code through a ResourceRepository instance. The format of the
database depends on the concrete ResourceRepository implementation.

3.3 Getting Started

Read Getting Started with the Repository Component to learn how to install and use the Repository Component in
your project.

8 Chapter 3. The Repository Component

http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html

CHAPTER 4

Getting Started with the Repository Component

The way you install and use the Repository Component depends on the type of project you are working on:

• In a Symfony Project, the Repository Component is installed through Puli’s Symfony Bundle.

• In a PHP Application that will never be a dependency of other Composer packages, the Repository Component
is installed through Puli’s Composer Plugin.

• In a Composer Package that is a dependency of an application or other packages, the Repository Component
needs to be installed manually.

4.1 In a Symfony Project

Important: Before you continue, install the Puli CLI on your system.

In a Symfony application, the Repository Component is installed through Puli’s Symfony Bundle. Before you install
the bundle, set “minimum-stability” to “beta” by entering the following command in a terminal:

$ composer config minimum-stability beta

The bundle can be installed with Composer. Install Composer and enter the following command in a terminal:

$ composer require puli/symfony-bundle:^1.0

As with every bundle, add the PuliBundle class to your AppKernel:

class AppKernel extends Kernel
{

public function registerBundles()
{

return array(
// ...
new Puli\SymfonyBundle\PuliBundle(),

);
}

// ...
}

Now that the bundle is installed, let’s add our first resource to the Puli repository. We will map the path prefix /app
to the app/Resources directory of our application:

9

https://github.com/puli/symfony-bundle
https://getcomposer.org
https://getcomposer.org/doc/00-intro.md
http://api.puli.io/latest/class-Puli.SymfonyBundle.PuliBundle.html

Puli Documentation, Release 1.0.0-beta4

$ php puli.phar map /app app/Resources

All resources stored in the app/Resources directory can now be accessed through the path prefix /app. As
example, we will add an index.html.twig file:

$ mkdir app/Resources/views
$ echo "Success" > app/Resources/views/index.html.twig

Puli’s ResourceRepository can be used to access all files found through these path mappings. Let’s print the
contents of the index.html.twig file in a controller:

class PostController
{

public function indexController()
{

$repo = $this->get('puli.repository');

echo $repo->get('/app/views/index.html.twig')->getBody();
}

}

4.2 In a PHP Application

Important: Before you continue, install the Puli CLI on your system.

In a PHP application, the Repository Component is installed through Puli’s Composer Plugin. Before you install the
plugin, set “minimum-stability” to “beta” by entering the following command in a terminal:

$ composer config minimum-stability beta

The plugin can be installed with Composer. Install Composer and enter the following command in a terminal:

$ composer require puli/composer-plugin:^1.0

Now that the plugin is installed, let’s add our first resource to the Puli repository. We will map the path prefix /app
to the res directory of our application:

$ php puli.phar map /app res

All resources stored in the res directory can now be accessed through the path prefix /app. As example, we will add
an index.html.twig file:

$ mkdir res/views
$ echo "Success" > res/views/index.html.twig

Puli’s ResourceRepository can be used to access all files found through these path mappings. Use the Puli
factory to create the ResourceRepository instance:

$factoryClass = PULI_FACTORY_CLASS;
$factory = new $factoryClass();

$repo = $factory->createRepository();

10 Chapter 4. Getting Started with the Repository Component

http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
https://github.com/puli/composer-plugin
https://getcomposer.org
https://getcomposer.org/doc/00-intro.md
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html

Puli Documentation, Release 1.0.0-beta4

Note: For performance reasons, Puli services such as $factory or $repo should be created only once per ap-
plication. Instead of storing them in global variables, it is usually nicer to use a Dependency Injection Container for
creating the services on demand. A simple Dependency Injection Container for small projects is Pimple.

Let’s print the contents of the index.html.twig file in our PHP code:

echo $repo->get('/app/views/index.html.twig')->getBody();

4.3 In a Composer Package

Important: Before you continue, install the Puli CLI on your system.

In a Composer package, the Repository Component is installed manually. Before you install the component, set
“minimum-stability” to “beta” by entering the following command in a terminal:

$ composer config minimum-stability beta

Install Composer and enter the following command in a terminal:

$ composer require puli/repository:^1.0

Now that the component is installed, let’s add our first resource to the Puli repository. We will map the path prefix
/batman/blog to the res directory of our package:

$ php puli.phar map /batman/blog res

Note: By convention, path prefixes match the name of their Composer package. If your Composer package is called
my/package, use /my/package as Path Prefix.

All resources stored in the res directory can now be accessed through the path prefix /batman/blog. As example,
we will add an index.html.twig file:

$ mkdir res/views
$ echo "Success" > res/views/index.html.twig

Puli’s ResourceRepository can be used to access all files found through these path mappings. Let’s print the
contents of the index.html.twig file in our PHP code:

use Puli\Repository\Api\ResourceRepository;

class ResourcePrinter
{

private $repo;

public function __construct(ResourceRepository $repo)
{

$this->repo = $repo;
}

public function printResources()
{

echo $this->repo->get('/batman/blog/views/index.html.twig')->getBody();

4.3. In a Composer Package 11

http://pimple.sensiolabs.org
https://getcomposer.org
https://getcomposer.org/doc/00-intro.md
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html

Puli Documentation, Release 1.0.0-beta4

}
}

You should never create ResourceRepository instances in a Composer package. Instead, let the application that
uses your package create the repository and pass it to your code. This way, every part of the application uses the same
instance and benefits of caching and other optimizations done internally.

4.4 Further Reading

• Read Directory Layout to learn about the recommended directory layout for Puli projects.

• Read Mapping Resources to learn about creating and modifying path mappings with the Puli CLI.

• Read Working with Resources to learn how to use the ResourceRepository API to access and work with
resources in your PHP code.

• Read Stream Wrappers to learn how to register a PHP stream wrapper for a Puli repository.

12 Chapter 4. Getting Started with the Repository Component

http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html

CHAPTER 5

Directory Layout

We recommend to follow a certain directory layout in your project. This is by no means mandatory, but it will improve
your experience when working with Puli.

Most importantly, we recommend to separate PHP code and non-PHP resources into two separate top-level directories:

src/
MyService.php
...

res/
config/

config.yml
...

The names of these directories don’t matter – you can name them source, resources or whatever else you prefer.
The important point is that the two directories do not overlap. If the directories overlap, both the class autoloader and
the resource repository need to process unnecessary files.

Second, we recommend to use the following names for the sub-directories of the resource directory:

config/
... configuration files ...

public/
css/

... CSS files ...
js/

... Javascript files ...
images/

... images ...
trans/

... translation files ...
views/

... templates ...

Using common names ensures a consistent user experience when referencing resources in your project and any other
Puli-enabled package:

// Rendering an application template with Twig
$twig->render('/app/views/index.html');

// Rendering a package template with Twig
$twig->render('/acme/blog/views/post/show.html.twig');

The public resources are bundled in a directory public because this way these resources can be easily copied to
sub-directories of your public directory:

13

Puli Documentation, Release 1.0.0-beta4

/app/public/* -> /public_html/
/acme/blog/public/* -> /public_html/blog/
...

14 Chapter 5. Directory Layout

CHAPTER 6

Mapping Resources

Puli paths can be mapped to files or directories with the map command of the Puli CLI:

$ php puli.phar map /acme/blog res

The first argument is a path prefix, followed by one or more paths in your project. By convention, the path prefix
should equal the name of your Composer package with an additional leading slash (“/”). The resulting path mapping
is added to the puli.json file of your package.

Tip: If you develop an application that is not used as Composer dependency by other packages, use /app as path
prefix.

You cannot just map directories, but also individual files. This is helpful if you need to cherry-pick files from specific
locations:

$ php puli.phar map /acme/blog/css/reset.css shared/reset.css

6.1 Listing Mappings

The current path mappings can be displayed by calling the map command without arguments:

$ php puli.phar map
The following path mappings are currently enabled:

Package: puli/acme-blog

Puli Path Real Path(s)
/acme/blog res

The path displays all path mappings currently found in your project. If you want to display just the path mappings
of your own package (the root package), pass the --root option. If you want to display just the path mappings
of a package with a specific name, use the --package option. With map -h, you can learn more about the map
command:

$ php puli.phar map -h

15

Puli Documentation, Release 1.0.0-beta4

6.2 Listing Mapped Files

Now that we mapped paths to the repository, it would be nice to know which resources the repository actually contains.
You can use ls – just like the ls command on UNIX – to list the resources in the repository:

$ php puli.phar ls
acme
$ php puli.phar ls /acme/blog/config
config.yml config-dev.yml doctrine

You can also print the resources as tree with tree:

$ php puli.phar tree
/
-- acme
| -- blog
| -- config
| -- ...
-- app

-- ...

This command prints the whole repository by default. You can also pass the Puli path of an individual resource if you
want to print just a part of the repository:

$ php puli.phar tree /acme/blog/config
/acme/blog/config
-- config.yml
-- config-dev.yml
-- doctrine
| -- Acme.Blog.Post.dcm.xml
| -- ...
-- ...

At last, use find to list resources according to different criteria:

$ php puli.phar find --name *.yml
FileResource /acme/blog/config/config.yml
FileResource /acme/blog/config/config-dev.yml

Pass -h to find out more about each command’s arguments and options:

$ php puli.phar find -h

6.3 Changing a Mapping

You can add paths to a path mapping with the map -u (or --update) command:

$ php puli.phar map -u /acme/blog --add assets
$ php puli.phar map
The following path mappings are currently enabled:

Package: puli/acme-blog

Puli Path Real Path(s)
/acme/blog res, assets

16 Chapter 6. Mapping Resources

Puli Documentation, Release 1.0.0-beta4

When a path mapping contains multiple files or directories, later mappings override earlier mappings. That
means, the file /acme/blog/css/style.css will be looked for first in assets/css/style.css, then in
res/css/style.css.

Likewise, paths can be removed from a path mapping with the --remove option:

$ php puli.phar map -u /acme/blog --remove assets
$ php puli.phar map
The following path mappings are currently enabled:

Package: puli/acme-blog

Puli Path Real Path(s)
/acme/blog res

6.4 Deleting a Mapping

Path mappings can be removed completely with map -d (or --delete):

$ php puli.phar map -d /acme/blog

6.5 Referencing Other Packages

Sometimes it is necessary to map path prefixes to files or directories in other Composer packages. A typical use case
is when you use packages that don’t contain a puli.json file.

Use the prefix @<vendor/package>: to reference the install path of another package:

$ php puli.phar map /acme/theme @acme/theme:res

The example above maps the Puli path /acme/theme to the res directory of the “acme/theme” package.

6.6 Further Reading

• Read Working with Resources to learn how to use the resources returned by the resource repository.

6.4. Deleting a Mapping 17

Puli Documentation, Release 1.0.0-beta4

18 Chapter 6. Mapping Resources

CHAPTER 7

Working with Resources

You can retrieve resources from Puli’s ResourceRepository with the get() method:

$resource = $repo->get('/css/style.css');

The get() method accepts the Puli path of a resource and returns a Resource.

If you want to retrieve multiple resources at once, use find(). This method accepts a glob pattern and returns a
ResourceCollection:

foreach ($repo->find('/css/*')->getPaths() as $path) {
echo $path;

}

// => /css/reset.css
// => /css/style.css

You can check whether a resource exists by passing its path to contains():

if ($repo->contains('/css/style.css')) {
// ...

}

Like find(), this method also accepts glob patterns. If you pass a glob, the method will return true only if at least
one resource matched the pattern.

7.1 Resources

The get() method returns Resource instances. This interface provides access to the name and the Puli path of the
resource:

$resource = $repo->get('/css/style.css');

echo $resource->getName();
// => style.css

echo $resource->getPath();
// => /css/style.css

Resources don’t necessarily have to be located on the filesystem. But those that do implement
FilesystemResource, which lets you access the filesystem path with getFilesystemPath():

19

http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html#_get
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html#_get
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.Resource.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html#_find
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceCollection.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html#_contains
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html#_find
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html#_get
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.Resource.html
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.FilesystemResource.html
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.FilesystemResource.html#_getFilesystemPath

Puli Documentation, Release 1.0.0-beta4

$resource = $repo->get('/css/style.css');

echo $resource->getFilesystemPath();
// => /path/to/res/assets/css/style.css

Resources that have a body - such as files - implement BodyResource. This interface lets you access the body with
getBody():

$resource = $repo->get('/css/style.css');

$css = $resource->getBody();

7.2 Child Resources

Resources support nested resources. In Puli, these are called child resources. One prime example is a filesystem
directory which may contain other directories and files.

You can access the children of a resource with the methods getChild(), hasChild() and listChildren():

$resource = $directory->getChild('style.css');

if ($directory->hasChild('style.css')) {
// ...

}

foreach ($directory->listChildren() as $name => $resource) {
// ...

}

7.3 Metadata

Resources support the method getMetadata() which returns a ResourceMetadata instance. This interface
gives access to additional data about a resource. For example, you can use getModificationTime() to access
the UNIX timestamp of the resource’s last modification. This is useful for caching:

$resource = $repo->get('/css/style.css');

if ($resource->getMetadata()->getModificationTime() > $cacheTimestamp) {
// refresh cache

}

7.4 Resource Collections

When you fetch multiple resources from the repository, they are returned within a ResourceCollection instance.
Resource collections offer convenience methods for accessing the names and the Puli paths of all contained resources
at once:

$resources = $repo->get('/css/*.css');

print_r($resources->getNames());
// Array

20 Chapter 7. Working with Resources

http://api.puli.io/latest/class-Puli.Repository.Api.Resource.BodyResource.html
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.BodyResource.html#_getBody
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.Resource.html#_getChild
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.Resource.html#_hasChild
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.Resource.html#_listChildren
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.Resource.html#_getMetadata
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.ResourceMetadata.html
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.ResourceMetadata.html#_getModificationTime
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceCollection.html

Puli Documentation, Release 1.0.0-beta4

// (
// [0] => reset.css
// [1] => style.css
//)

print_r($resources->getPaths());
// Array
// (
// [0] => /css/reset.css
// [1] => /css/style.css
//)

Resource collections are traversable, countable and support ArrayAccess. When you still need the collection as
array, call toArray():

$array = $resources->toArray();

7.4. Resource Collections 21

http://php.net/manual/en/class.arrayaccess.php
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceCollection.html#_toArray

Puli Documentation, Release 1.0.0-beta4

22 Chapter 7. Working with Resources

CHAPTER 8

Stream Wrappers

Puli supports a stream wrapper that lets you access the resources in the repository transparently through PHP’s
file functions. To register the wrapper, call the register() method and pass the name of a URI schema and a
ResourceRepository instance:

use Puli\Repository\StreamWrapper\ResourceStreamWrapper;

ResourceStreamWrapper::register('puli', $repo);

After registering the stream wrapper, you can pass Puli paths to regular PHP functions, prefixed by the registered URI
scheme:

$contents = file_get_contents('puli:///acme/blog/css/style.css');

foreach (scandir('puli:///acme/blog') as $entry) {
// ...

}

8.1 Performance Tweaks

The method register() needs to be called in every request even if the stream wrapper is not used. This means
that also the repository needs to be loaded in every request, which can have a negative performance impact on your
application. To mitigate this performance impact, you can pass a callable to register() that loads the repository
on demand:

class ServiceRegistry
{

private $repo;

public function getRepository()
{

if (!$this->repo) {
$factoryClass = PULI_FACTORY_CLASS;
$factory = new $factoryClass();
$this->repo = $factory->createRepository();

}

return $this->repo;
}

}

23

http://php.net/manual/en/intro.stream.php
http://api.puli.io/latest/class-Puli.Repository.StreamWrapper.ResourceStreamWrapper.html#_register
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
http://api.puli.io/latest/class-Puli.Repository.StreamWrapper.ResourceStreamWrapper.html#_register
http://api.puli.io/latest/class-Puli.Repository.StreamWrapper.ResourceStreamWrapper.html#_register

Puli Documentation, Release 1.0.0-beta4

$registry = new ServiceRegistry();

ResourceStreamWrapper::register('puli', array($registry, 'getRepository'));

24 Chapter 8. Stream Wrappers

CHAPTER 9

The URL Generator Component

The URL Generator Component generates URLs for the resources in your Puli repository.

9.1 The Problem

When writing HTML, CSS or JavaScript code, you frequently need to refer to other resources of the web server. A
simple example is a HTML tag:

Hard-coded URLs, however, have a few issues:

Changing the Deployment Target

If you decide to host all images on another server – like a Content Delivery Network (CDN) – you need to
manually add the domain name of the CDN to all image paths.

Changing the Version

If you version files by appending ?v1 query parameters, you need to manually update the versions whenever
you publish a new release.

Creating Reusable Packages

If your code is part of a Composer package, you force the users of the package to publish your resources at
exactly the location that you have hardcoded in your code. In the above example, for instance, the user can’t
choose to move the file to /blog/images/logo.png instead.

9.2 How It Works

Puli solves this problem by automating the URL generation of your resources. Instead of hardcoding the URLs, you
pass the Puli path of the resource to the URL Generator Component:

25

https://github.com/puli/url-generator

Puli Documentation, Release 1.0.0-beta4

You can also use relative paths to shorten your code:

The end user of your package finally configures how the URLs should be generated:

At first, the end user registers at least one web server. A web server in Puli has a name and a URL format. The
URL format tells Puli how the generated URLs should look like. In this example we use “localhost” as the name and
https://example.com/%s as the URL format of our web server.

Next, Puli resources are mapped to the web server. Such resources are called public resources. In this example we
map the Puli path /batman/blog/public to the /blog/ directory in the document root of the web server.

The generated URL looks like this:

Puli finally automates the deployment of your public resources to the Web Server. By telling Puli where your web
server is located and how the public resources should be moved there (symlink, copy, rsync, ...), you can install them
with a single CLI command:

$ php puli.phar publish --install
Installing /batman/blog/public into public_html/blog via symlink...

9.3 Getting Started

Read Getting Started with the URL Generator Component to learn how to install and use public resources in your
project.

26 Chapter 9. The URL Generator Component

CHAPTER 10

Getting Started with the URL Generator Component

The way you install and use the URL Generator Component depends on the type of project you are working on:

• In a Symfony Project, the URL Generator Component is installed through Puli’s Symfony Bundle.

• In a PHP Application that will never be a dependency of other Composer packages, the URL Generator Com-
ponent is installed through Puli’s Composer Plugin.

• In a Composer Package that is a dependency of an application or other packages, the URL Generator Component
needs to be installed manually.

10.1 In a Symfony Project

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

In a Symfony application, the URL Generator Component is installed through Puli’s Symfony Bundle. If you followed
Getting Started with the Repository Component, this bundle is already installed in your application.

With Puli’s UrlGenerator class you can generate URLs for a Puli path. Let’s print the URL of the
app/Resources/public/images/logo.png file in a controller:

class PostController
{

public function indexController()
{

$generator = $this->get('puli.url_generator');

echo $generator->generateUrl('/app/public/images/logo.png');
}

}

Tip: In Twig templates you can use the resource_url() function of Puli’s Twig Extension. See the documenta-
tion of the extension for more information.

Before the above code actually works, you need to tell Puli how to generate your URLs. Add a web server for your
web directory with the Puli CLI:

$ php puli.phar server --add localhost web

27

https://github.com/puli/symfony-bundle
http://api.puli.io/latest/class-Puli.UrlGenerator.Api.UrlGenerator.html

Puli Documentation, Release 1.0.0-beta4

In the example, the server is named “localhost”, but you can choose any name you like.

Next, publish the resources under /app/public to the server:

$ php puli.phar publish /app/public localhost

Now the URL is generated correctly in the template:

You can install all public resources in the web directory with the publish --install command:

$ php puli.phar publish --install
Installing /app/public into web via symlink...

10.2 In a PHP Application

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

In a PHP application, the URL Generator Component is installed through Puli’s Composer Plugin. If you followed
Getting Started with the Repository Component, this bundle is already installed in your application.

With Puli’s UrlGenerator class you can generate URLs for a Puli path. Use the Puli factory to create the
UrlGenerator instance:

$factoryClass = PULI_FACTORY_CLASS;
$factory = new $factoryClass();

$repo = $factory->createRepository();
$discovery = $factory->createDiscovery($repo);
$generator = $factory->createUrlGenerator($discovery);

Note: For performance reasons, Puli services such as $factory or $repo should be created only once per ap-
plication. Instead of storing them in global variables, it is usually nicer to use a Dependency Injection Container for
creating the services on demand. A simple Dependency Injection Container for small projects is Pimple.

Use the generateUrl() method to generate URLs for a resource:

echo $generator->generateUrl('/app/public/images/logo.png');

Tip: Install Puli’s Twig Extension to generate URLs in Twig templates.

This code will echo the URL for the res/public/images/logo.png file. Before the code actually works, you
need to tell Puli how to generate your URLs. Add a web server for the document root of your web server with the Puli
CLI:

$ php puli.phar server --add localhost public_html

In the example, the server is named “localhost”, but you can choose any name you like. We assume that the document
root of the server is the public_html directory in your project.

Next, publish the resources under /app/public to the server:

28 Chapter 10. Getting Started with the URL Generator Component

https://github.com/puli/composer-plugin
http://api.puli.io/latest/class-Puli.UrlGenerator.Api.UrlGenerator.html
http://api.puli.io/latest/class-Puli.UrlGenerator.Api.UrlGenerator.html
http://pimple.sensiolabs.org
http://api.puli.io/latest/class-Puli.UrlGenerator.Api.UrlGenerator.html#_generateUrl

Puli Documentation, Release 1.0.0-beta4

$ php puli.phar publish /app/public localhost

Now the URL is generated correctly:

echo $generator->generateUrl('/app/public/images/logo.png');
// => /images/logo.png

You can install all public resources in the public_html directory with the publish --install command:

$ php puli.phar publish --install
Installing /app/public into public_html via symlink...

10.3 In a Composer Package

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

In a Composer package, the URL Generator Component is installed manually. Before you install the component, set
“minimum-stability” to “beta” in composer.json:

{
"minimum-stability": "beta"

}

Install the component with Composer:

$ composer require puli/url-generator:^1.0

With Puli’s UrlGenerator class you can generate URLs for a Puli path. Use the generateUrl() method to
generate URLs for a resource:

echo $generator->generateUrl('/app/public/images/logo.png');

Tip: Install Puli’s Twig Extension to generate URLs in Twig templates.

This code will echo the URL for the res/public/images/logo.png file. However, before this code actually
works, the application that uses your package must register a web server and publish your resources there.

You should never create UrlGenerator instances in a Composer package. Instead, let the application that uses
your package create the URL generator and pass it to your code. This way, every part of the application uses the same
instance and benefits of caching and other optimizations done internally.

10.4 Further Reading

• Read Web Server Configuration to learn more about configuring web servers.

10.3. In a Composer Package 29

http://api.puli.io/latest/class-Puli.UrlGenerator.Api.UrlGenerator.html
http://api.puli.io/latest/class-Puli.UrlGenerator.Api.UrlGenerator.html#_generateUrl
http://api.puli.io/latest/class-Puli.UrlGenerator.Api.UrlGenerator.html

Puli Documentation, Release 1.0.0-beta4

30 Chapter 10. Getting Started with the URL Generator Component

CHAPTER 11

Web Server Configuration

Before Puli can generate URLs for your public resources, you need to add a web server to the Puli configuration and
publish your resources there.

11.1 Adding a Web Server

A web server can be added with the server --add command of the Puli CLI:

$ php puli.phar server --add localhost public_html

This command adds a new server to your puli.json. The command receives a name for the server as first argument.
Here we chose “localhost”, but you can use any name you like. The second argument is the path to the document root
of the server.

11.2 Listing Web Servers

You can list all configured web servers with the server command:

$ php puli.phar server
Server Name Installer Document Root URL Format
localhost symlink public_html /%s

The command returns a list of servers and their current configuration. In this example, our configuration contains one
server named “localhost”. The document root of the server is the public_html directory. Resources are installed
there using symbolic links. Finally, the format string /%s is used to generate URLs for the resources published to this
server. You will learn more about URL formats in Custom URL Formats.

11.3 Changing a Web Server

The configuration of a web server can be changed with the server -u (or --update) command:

$ php puli.phar server -u localhost --document-root public_html

The first argument is the name of the server you want to change. You can pass additional options with the updated
options. Run server -h to learn more about the supported options and their usage:

31

Puli Documentation, Release 1.0.0-beta4

$ php puli.phar server -h

11.4 Deleting a Web Server

A web server can be deleted with the server -d (or --delete) command:

$ php puli.phar server -d localhost

11.5 Publishing Resources

To publish resources to a server, use the publish command:

$ php puli.phar publish /app/public localhost

The command stores the created mapping in your puli.json file. The first argument is the Puli path of the re-
source(s) you want to publish. The second is the name of the server you want to publish the resources in.

By default, the resources are published in the document root of the web server. If you want to publish the resources in
a sub-directory instead, pass the path to the directory in the third argument:

$ php puli.phar publish /batman/blog/public localhost /blog

11.6 Listing Public Resources

You can display all public resources with the publish command:

$ php puli.phar publish
The following resources are published:

Server localhost
Location: public_html
Installer: symlink
URL Format: /%s

4f1f14 /app/public /
d1a9d5 /batman/blog/public /blog

Use "puli publish --install" to install the resources on your servers.

Every public resource is identified by a UUID. This UUID can be used to update or delete the resource.

11.7 Unpublishing a Resource

To unpublish a resource, call publish -d (or --delete) with the UUID of the resource in question:

$ php puli.phar publish -d d1a9d5

32 Chapter 11. Web Server Configuration

Puli Documentation, Release 1.0.0-beta4

11.8 Installing Resources

The publish command does not actually move your public resources to the web server. This is done by publish
--install:

$ php puli.phar publish --install
Installing /app/public into public_html via symlink...
Installing /batman/blog/public into public_html/blog via symlink...

By default, Puli tries to create symbolic links in the document of your web server. If that’s not possible, it will fall
back to copying your files.

11.9 Custom URL Formats

By default, web servers use the URL format /%s to generate URLs for resources published to that server. The format
is a simple sprintf-string: The %s in the format is replaced by the path of the resource relative to the document root of
the server.

For example, if you publish your /app/public directory to the document root of your server, Puli will generate the
URL /images/logo.png for the Puli path /app/public/images/logo.png.

You can change the URL format with the --url-format option when adding or changing a server:

$ php puli.phar server -u localhost --url-format http://example.com/%s

There are two major use cases for changing the default URL format:

• When you install your resources on a different server, you need to include the domain name in every URL.

• By appending a query string (like ?v2) to your generated URLs you can implement a very simple cache invali-
dation mechanism for your resources.

11.8. Installing Resources 33

http://php.net/manual/en/function.sprintf.php

Puli Documentation, Release 1.0.0-beta4

34 Chapter 11. Web Server Configuration

CHAPTER 12

The Discovery Component

The Discovery Component connects Composer packages that consume resources with Composer packages that pro-
vide resources.

12.1 The Problem

At the moment, you need to write a lot of boilerplate code if you use different packages that use each other’s files.
Suppose you install the following two packages in your application:

• The package thor/translator, which uses *.yml files to translate text to some language.

• The package batman/blog, which contains the files blog.en.yml and blog.fr.yml with translations
for the strings in the package.

As user of these packages, you have to register the *.yml files with the Translator instance of the
thor/translator package:

$translator = new Translator(array(
__DIR__.'/../vendor/batman/blog/res/trans/blog.en.yml',
__DIR__.'/../vendor/batman/blog/res/trans/blog.fr.yml',

));

If you’re lucky, your framework does this job for you. However, offloading this task to framework developers doesn’t
scale, since for any combination of package and framework, someone needs to write and maintain such integration
code. That’s a lot of duplicated work.

12.2 How It Works

Puli’s Discovery Component solves this problem by decentralizing the resource registration process. Composer pack-
ages are divided into resource consumers and resource providers.

35

https://github.com/puli/discovery

Puli Documentation, Release 1.0.0-beta4

Resource consumers, like our translator, register a name for the resources they want to use. This name is called a
binding type. In this example, the developer of the translator defines the binding type “thor/translations” and publishes
that type in their documentation.

Other packages (the resource providers) assign their translation files to this binding type. This is called a binding. In
the end, the translator fetches all translation files for its binding type from a ResourceDiscovery instance.

By communicating only through Puli’s Discovery Component and a common binding type, consumers and
providers are completely decoupled from each other. As user of these packages, you only need to pass the
ResourceDiscovery instance to the translator:

$translator = new Translator($discovery);

Puli takes care of everything else.

12.3 Getting Started

Read Getting Started with the Discovery Component to learn how to install and use the Discovery Component in your
project.

36 Chapter 12. The Discovery Component

http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html

CHAPTER 13

Getting Started with the Discovery Component

The way you install and use the Discovery Component depends on the type of project you are working on:

• In a Symfony Project, the Discovery Component is installed through Puli’s Symfony Bundle.

• In a PHP Application that will never be a dependency of other Composer packages, the Discovery Component
is installed through Puli’s Composer Plugin.

• In a Composer Package that is a dependency of an application or other packages, the Discovery Component
needs to be installed manually.

13.1 In a Symfony Project

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

In a Symfony application, the Discovery Component is installed through Puli’s Symfony Bundle. If you followed
Getting Started with the Repository Component, this bundle is already installed in your application.

As a resource consumer, you can define a new binding type with the type --define command of the Puli CLI:

$ php puli.phar type --define thor/translations

Note: The name of a binding type must always start with the vendor name of your Composer package. This prevents
naming collisions and makes sure that you own the type.

The type --define command adds the new binding type to your puli.json.

Use Puli’s ResourceDiscovery to access all bindings bound to your binding type. Each ResourceBinding in-
stance may refer to more than one Resource, for example if the bound path contains the wildcard “*”. Consequently
you need a double loop to access the resources in your code:

class PostController
{

public function indexController()
{

$bindings = $this->get('puli.discovery')->findByType('thor/translations');

foreach ($bindings as $binding) {
foreach ($binding->getResources() as $resource) {

echo $resource->getPath();

37

https://github.com/puli/symfony-bundle
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceBinding.html
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.html

Puli Documentation, Release 1.0.0-beta4

}
}

}
}

As a resource provider, you can bind resources to a binding type with the bind command of the Puli CLI:

$ php puli.phar bind /app/trans/*.yml thor/translations

The bind command adds the new binding to your puli.json.

If a resource consumer and a resource provider are installed at the same time, Puli makes sure that the consumer
receives all resources bound to its binding type by the provider.

13.2 In a PHP Application

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

In a PHP application, the Discovery Component is installed through Puli’s Composer Plugin. If you followed Getting
Started with the Repository Component, this bundle is already installed in your application.

As a resource consumer, you can define a new binding type with the type --define command of the Puli CLI:

$ php puli.phar type --define thor/translations

Note: The name of a binding type must always start with the vendor name of your Composer package. This prevents
naming collisions and makes sure that you own the type.

The type --define command adds the new binding type to your puli.json.

With Puli’s ResourceDiscovery class you can access all bindings bound to your binding type. Use the Puli
factory to create the ResourceDiscovery instance:

$factoryClass = PULI_FACTORY_CLASS;
$factory = new $factoryClass();

$repo = $factory->createRepository();
$discovery = $factory->createDiscovery($repo);

Note: For performance reasons, Puli services such as $factory or $repo should be created only once per ap-
plication. Instead of storing them in global variables, it is usually nicer to use a Dependency Injection Container for
creating the services on demand. A simple Dependency Injection Container for small projects is Pimple.

Each ResourceBinding instance may refer to more than one Resource, for example if the bound path contains
the wildcard “*”. Consequently you need a double loop to access the resources in your code:

$bindings = $discovery->findByType('thor/translations');

foreach ($bindings as $binding) {
foreach ($binding->getResources() as $resource) {

echo $resource->getPath();

38 Chapter 13. Getting Started with the Discovery Component

https://github.com/puli/composer-plugin
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html
http://pimple.sensiolabs.org
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceBinding.html
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.html

Puli Documentation, Release 1.0.0-beta4

}
}

As a resource provider, you can bind resources to a binding type with the bind command of the Puli CLI:

$ php puli.phar bind /app/trans/*.yml thor/translations

The bind command adds the new binding to your puli.json.

If a resource consumer and a resource provider are installed at the same time, Puli makes sure that the consumer
receives all resources bound to its binding type by the provider.

13.3 In a Composer Package

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

In a Composer package, the Discovery Component is installed manually. Before you install the component, set
“minimum-stability” to “beta” in composer.json:

{
"minimum-stability": "beta"

}

Install the component with Composer:

$ composer require puli/discovery:^1.0

As a resource consumer, you can define a new binding type with the type --define command of the Puli CLI:

$ php puli.phar type --define thor/translations

Note: The name of a binding type must always start with the vendor name of your Composer package. This prevents
naming collisions and makes sure that you own the type.

The type --define command adds the new binding type to your puli.json.

With Puli’s ResourceDiscovery class you can access all bindings bound to your binding type. Each
ResourceBinding instance may refer to more than one Resource, for example if the bound path contains the
wildcard “*”. Consequently you need a double loop to access the resources in your code:

use Puli\Discovery\Api\ResourceDiscovery;

class TranslationLoader
{

private $discovery;

public function __construct(ResourceDiscovery $discovery)
{

$this->discovery = $discovery;
}

public function loadTranslations($catalog, $language)
{

$bindings = $this->discovery->findByType('thor/translations');

13.3. In a Composer Package 39

http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceBinding.html
http://api.puli.io/latest/class-Puli.Repository.Api.Resource.html

Puli Documentation, Release 1.0.0-beta4

$resourceName = $catalog.'.'.$language.'.yml';

foreach ($bindings as $binding) {
foreach ($binding->getResources() as $resource) {

if ($resourceName === $resource->getName()) {
return Yaml::parse($resource->getBody());

}
}

}

return array();
}

}

You should never create ResourceDiscovery instances in a Composer package. Instead, let the application that
uses your package create the discovery and pass it to your code. This way, every part of the application uses the same
instance and benefits of caching and other optimizations done internally.

As a resource provider, you can bind resources to a binding type with the bind command of the Puli CLI:

$ php puli.phar bind /batman/blog/trans/*.yml thor/translations

The bind command adds the new binding to your puli.json.

If a resource consumer and a resource provider are installed at the same time, Puli makes sure that the consumer
receives all resources bound to its binding type by the provider.

13.4 Further Reading

• Read Consuming Resources to learn more about resource consumers.

• Read Providing Resources to learn more about resource providers.

40 Chapter 13. Getting Started with the Discovery Component

http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html

CHAPTER 14

Consuming Resources

Resource consumers are packages that load resources of a specific type or format from other packages. Imagine a
translation package that contains a Translator class. Translations used by the Translator can be provided by
other packages, the resource providers, in the form of *.yml files.

Puli supplies the infrastructure to connect resource consumers with their providers. The consumer defines a binding
type for the type of resource it is interested in. The provider binds resources to this binding type. At last, the consumer
is able to load all bound resources through Puli’s ResourceDiscovery.

14.1 Defining a Binding Type

A binding type can be defined with the type --define command of the Puli CLI:

$ php puli.phar type --define thor/translations

This command adds the new binding type to the puli.json file of your package.

Note: The name of a binding type must always start with the vendor name of your Composer package. This prevents
naming collisions and makes sure that you own the type.

You should publish the name of your binding type in your documentation so that resource providers for your package
know which type to use.

14.2 Listing Binding Types

You can list all defined binding types with the type command:

$ php puli.phar type
The following binding types are currently enabled:

Package: thor/translator

Type Description Parameters
thor/translations

41

http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html

Puli Documentation, Release 1.0.0-beta4

14.3 Type Descriptions

You should add a short description for your binding type that explains what kind of resource the binding type expects
to be bound to. A description can be set with the --description option when adding the type:

$ php puli.phar type --define thor/translations \
--description "A Yaml file with translations for the Translator class."

The description is shown in the output of the type command:

$ php puli.phar type
The following binding types are currently enabled:

Package: thor/translator

Type Description Parameters
thor/translations A Yaml file with translations for the

Translator class.

14.4 Changing a Binding Type

Binding types can be changed with the type -u (or --update) command. The command takes the name of the
binding type as argument and one or more options for the value that you want to change:

$ php puli.phar type -u thor/translations \
--description "A Yaml file with translations for the Translator class."

Call type -h to learn about the different options supported by the -u command:

$ php puli.phar type -h

14.5 Deleting a Binding Type

Binding types can be removed with the type -d (or --delete) command:

$ php puli.phar type -d thor/translations

This command will remove the given binding type from your puli.json. Note that you can only remove binding
types defined in your own package. If you try to remove a binding type defined by a different package installed through
Composer, the type -d command will fail.

14.6 Loading Bound Resources

You can load the bindings for your binding type with the findByType() method of the ResourceDiscovery.
Pass the name of your binding Type as first and only argument:

$bindings = $discovery->findByType('thor/translations');

The method returns an array of ResourceBinding instances. With getResources(), you can load the re-
sources matched by the binding:

42 Chapter 14. Consuming Resources

http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html#_findByType
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceBinding.html
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceBinding.html#_getResources

Puli Documentation, Release 1.0.0-beta4

foreach ($bindings as $binding) {
foreach ($binding->getResources() as $resource) {

// do something with $resource...
}

}

14.7 Loading Bindings for a Resource

You can load the bindings for a specific resource with the findByPath() method. This method accepts a Puli path
as first argument:

$bindings = $discovery->findByPath('/batman/blog/trans/messages.en.yml');

If you are only interested in bindings of one binding type, pass the name of the binding type as second argument:

$bindings = $discovery->findByPath('/batman/blog/trans/messages.en.yml', 'thor/translations');

14.8 Binding Parameters

You can define custom parameters for a binding type. These parameters can be used to store additional data with a
binding. For example, consider that the name of the translation catalog (here: “messages”) is not taken from the file
name, but from the binding parameter “catalog”.

You can add the parameter with the --param option when defining the binding type:

$ php puli.phar type --define thor/translations --param catalog

Each binding must now specify a value for this parameter:

$ php puli.phar bind /batman/blog/trans/messages.*.yml --param catalog="blog"

Use getParameterValue() on the ResourceBinding to check the value of your parameter:

$bindings = $discovery->findByType('thor/translations');

foreach ($bindings as $binding) {
if ('blog' === $binding->getParameterValue('catalog')) {

// do something with $binding...
}

}

14.9 Optional Parameters

Often it makes sense to define a default value for a binding parameter. You can set a default value by setting the
--param option in the form <param>="<default>":

$ php puli.phar type --define thor/translations --param catalog="messages"

Note: The quotes (”) are optional if the parameter value does not contain spaces.

14.7. Loading Bindings for a Resource 43

http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceDiscovery.html#_findByPath
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceBinding.html#_getParameterValue
http://api.puli.io/latest/class-Puli.Discovery.Api.ResourceBinding.html

Puli Documentation, Release 1.0.0-beta4

Binding parameters with a default value are optional. If no parameter value is set for a binding, the default value is
used.

44 Chapter 14. Consuming Resources

CHAPTER 15

Providing Resources

Resource providers are packages that contain resources that should be loaded by a specific resource consumer. Imagine
a package with a list of translations stored in a messages.en.yml file that is supposed to be loaded by a specific
translator. If the translation package, the resource consumer, defines a binding type, you can pass your translation file
to that type. Puli takes care of supplying your file to the translator.

15.1 Adding a Binding

A binding can be added with the bind command of the Puli CLI:

$ php puli.phar bind /batman/blog/trans/*.yml thor/translations

The command takes a Puli path or a glob as first argument. The second argument is the name of the binding type you
want to bind your resources to. The created binding is added to the puli.json file of your package.

The bind command fails if the binding type is not found. You should always install the packages defining the binding
types you are using (“require” or “require-dev” in composer.json) so that Puli can validate whether your binding
is specified correctly. If, for some reason, that’s not possible, use -f (or --force when adding your binding:

$ php puli.phar bind -f /batman/blog/trans/*.yml thor/translations

15.2 Listing Bindings

Bindings can be listed with the bind command without arguments:

$ php puli.phar bind
The following bindings are currently enabled:

Package: batman/blog

UUID Glob Type
bb5a07 /batman/blog/trans/*.yml thor/translations

Each binding has a UUID that is used to identify the binding.

45

Puli Documentation, Release 1.0.0-beta4

15.3 Changing a Binding

Bindings can be changed with the bind -u (or --update) command. The command takes the UUID of the binding
together with one or more options with the values that you want to change:

$ php puli.phar bind -u bb5a07 --query /batman/blog/trans/messages.*.yml

Call bind -h to learn about the different options supported by the -h command:

$ php puli.phar bind -h

15.4 Deleting a Binding

Bindings can be removed with the bind -d (or --delete) command:

$ php puli.phar bind -d bb5a07

This command removes the given binding from your puli.json. You can only remove bindings defined by your
package. If you try to remove a binding of a different package, the command will fail.

15.5 Disabling a Binding

You can’t delete bindings defined by other packages, but you can disable them with the bind --disable com-
mand:

$ php puli.phar bind --disable bb5a07

This command marks the matching binding as disabled in your puli.json. Disabled bindings are treated like
deleted bindings, except that they are not physically removed.

Disabled bindings only work in the puli.json of the root package. For any other installed package, disabled
bindings are ignored.

15.6 Enabling a Binding

A disabled binding can be enabled with the bind --enable command:

$ php puli.phar bind --enable bb5a07

This command simply reverses the effects of bind --disable in your puli.json file.

15.7 Binding Parameters

If the binding type you are binding to specifies binding parameters, you can set values for these parameters with the
--param option of the bind command. The option must be passed in the format <param>="<value>":

$ php puli.phar bind /batman/blog/trans/*.yml thor/translations --param catalog="blog"

46 Chapter 15. Providing Resources

Puli Documentation, Release 1.0.0-beta4

Note: The quotes (”) are optional if the parameter value does not contain spaces.

You can learn which parameters are supported/required by the binding type by calling the type command:

$ php puli.phar type
The following binding types are currently enabled:

Package: thor/translator

Type Description Parameters
thor/translations A Yaml file with translations for the catalog

Translator class.

15.7. Binding Parameters 47

Puli Documentation, Release 1.0.0-beta4

48 Chapter 15. Providing Resources

CHAPTER 16

The Puli Bridge for Symfony

Puli supports a bridge for the Symfony components. The bridge provides a file locator for the Symfony Config compo-
nent that locates configuration files through a Puli repository. With this locator, you can refer from one configuration
file to another by its Puli path:

routing.yml
_acme_demo:

resource: /acme/demo-bundle/config/routing.yml

16.1 Installation

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

Install the Puli Bridge with Composer:

$ composer require puli/symfony-bridge:^1.0

16.2 Configuration

To locate configuration files with Puli, create a new PuliFileLocator and pass it to your file loaders:

use Puli\SymfonyBridge\Config\PuliFileLocator;
use Symfony\Component\Routing\Loader\YamlFileLoader;

$loader = new YamlFileLoader(new PuliFileLocator($repo));

// Locates the file through Puli's repository
$routes = $loader->load('/acme/blog/config/routing.yml');

The PuliFileLocator receives Puli’s ResourceRepository as only argument.

16.3 Chained Locators

If you want to use the PuliFileLocator and Symfony’s conventional FileLocator side by side, you can use
them both by wrapping them into a FileLocatorChain:

49

https://github.com/puli/symfony-bridge
http://symfony.com
http://symfony.com/doc/current/components/config/introduction.html
http://symfony.com/doc/current/components/config/introduction.html
http://api.puli.io/latest/class-Puli.SymfonyBridge.Config.PuliFileLocator.html
http://api.puli.io/latest/class-Puli.SymfonyBridge.Config.PuliFileLocator.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
http://api.puli.io/latest/class-Puli.SymfonyBridge.Config.PuliFileLocator.html
http://api.puli.io/latest/class-Puli.SymfonyBridge.Config.FileLocatorChain.html

Puli Documentation, Release 1.0.0-beta4

use Puli\SymfonyBridge\Config\PuliFileLocator;
use Puli\SymfonyBridge\Config\FileLocatorChain;
use Puli\SymfonyBridge\Config\ChainableFileLocator;
use Symfony\Component\Routing\Loader\YamlFileLoader;

$locatorChain = new FileLocatorChain(array(
new PuliFileLocator($repo),
// Symfony's FileLocator expects a list of paths
new ChainableFileLocator(array(__DIR__)),

));

$loader = new YamlFileLoader($locatorChain);

// Loads the file from __DIR__/config/routing.yml
$routes = $loader->load('config/routing.yml');

ChainableFileLocator is a simple extension of Symfony’s FileLocator that supports the interface required
by the locator chain. Note that this locator must come after the PuliFileLocator in the chain.

Puli also provides a chainable version of the file locator bundled with the Symfony HttpKernel component: Use the
ChainableKernelFileLocator if you want to load configuration files from Symfony bundles:

use Puli\SymfonyBridge\Config\PuliFileLocator;
use Puli\SymfonyBridge\Config\FileLocatorChain;
use Puli\SymfonyBridge\Config\ChainableFileLocator;
use Puli\SymfonyBridge\HttpKernel\ChainableKernelFileLocator;

$locatorChain = new FileLocatorChain(array(
new PuliFileLocator($repo),
new ChainableKernelFileLocator($httpKernel),
new ChainableFileLocator(array(__DIR__)),

));

$loader = new YamlUserLoader($locatorChain);

// Loads the file from AcmeBlogBundle
$routes = $loader->load('@AcmeBlogBundle/Resources/config/routing.yml');

Take care again that the ChainableKernelFileLocator comes last in the chain.

16.4 Limitations

Due to limitations with Symfony’s FileLocatorInterface, relative file references are not properly supported.
Let’s load some routes for example:

$routes = $loader->load('/acme/blog/config/routing-dev.yml');

Assume that this file contains the following import:

routing-dev.yml
_main:

resource: routing.yml

What happens if we override this file in the Puli repository?

// Load files from /path/to/blog
$repo->add('/acme/blog', '/path/to/blog');

50 Chapter 16. The Puli Bridge for Symfony

http://api.puli.io/latest/class-Puli.SymfonyBridge.Config.ChainableFileLocator.html
http://api.puli.io/latest/class-Puli.SymfonyBridge.Config.PuliFileLocator.html
http://symfony.com/doc/current/components/http_kernel/introduction.html
http://api.puli.io/latest/class-Puli.SymfonyBridge.HttpKernel.ChainableKernelFileLocator.html
http://api.puli.io/latest/class-Puli.SymfonyBridge.HttpKernel.ChainableKernelFileLocator.html

Puli Documentation, Release 1.0.0-beta4

// Override just routing.yml with a custom file
$repo->add('/acme/blog/config/routing.yml', '/path/to/routing.yml');

// Load the routes
$routes = $loader->load('/acme/blog/config/routing-dev.yml');

// Expected: Routes loaded from
// - /path/to/blog/config/routing-dev.yml
// - /path/to/routing.yml

// Actual: Routes loaded from
// - /path/to/blog/config/routing-dev.yml
// - /path/to/blog/config/routing.yml

This is a limitation in Symfony and cannot be worked around. For this reason, PuliFileLocator does not support
relative file paths.

16.4. Limitations 51

http://api.puli.io/latest/class-Puli.SymfonyBridge.Config.PuliFileLocator.html

Puli Documentation, Release 1.0.0-beta4

52 Chapter 16. The Puli Bridge for Symfony

CHAPTER 17

The Puli Bundle for Symfony Projects

There are two ways of using Puli with the Symfony framework:

• New projects can be started based on the Symfony Puli Edition.

• Existing projects can be extended with the Puli Bundle.

Both ways are described in detail below.

17.1 Starting a Project from the Symfony Puli Edition

A new project can be started based on the Symfony Puli Edition with Composer. Install Composer and enter the
following command in a terminal:

$ composer create-project puli/symfony-puli-edition /path/to/project "~2.5@dev"

Tip: To download the vendor files faster, add the --prefer-dist option at the end of any Composer command.

Composer will create a new project based on the Symfony Puli Edition in /path/to/project with Symfony 2.5.

Read the Installing and Configuring Symfony to learn more about installing Symfony distributions.

17.2 Installing the Puli Bundle

If you cannot or don’t want to start off the Symfony Puli Edition, you need to install the Puli Bundle with Composer.
Install Composer and enter the following command in a terminal:

$ composer require "puli/symfony-bundle:~1.0"

Note: Make sure that the “minimum-stability” setting is set to “beta” in composer.json, otherwise the installation will
fail:

{
...,
"minimum-stability": "beta"

}

53

http://symfony.com
https://github.com/puli/symfony-puli-edition
https://github.com/puli/symfony-bundle
https://getcomposer.org
https://getcomposer.org/doc/00-intro.md
http://symfony.com/doc/current/book/installation.html
https://getcomposer.org
https://getcomposer.org/doc/00-intro.md

Puli Documentation, Release 1.0.0-beta4

This will download the bundle to your project.

When this command completes, run composer install to initialize the Composer plugin for Puli:

$ composer install

Now, enable the bundle by modifying AppKernel:

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{

// ...

public function registerBundles()
{

$bundles = array(
// ...,
new Puli\SymfonyBundle\PuliBundle(),

);

// ...
}

}

The bundle is now installed in your project.

17.3 Bundle Usage

17.3.1 Configuration Files

With the bundle, you can load configuration files by Puli paths. This is mostly needed when loading bundle routes in
routing.yml or routing_dev.yml:

routing_dev.yml
_wdt:

resource: /symfony/web-profiler-bundle/config/routing/wdt.xml
prefix: /_wdt

This entry will load all routes found under the Puli path /symfony/web-profiler-bundle/config/routing/wdt.xml.
Usually, the first two directories of a Puli path correspond to the name of a Composer package. In this example, the file
config/routing/wdt.xml is loaded from the Resources directory in the package “symfony/web-profiler”.

Read The Puli Bridge for Symfony if you want to learn more about using Puli with Symfony configuration files.

17.3.2 Twig Templates

With the bundle, it is possible to refer to Twig templates by Puli paths. This is typically done in the controller when
rendering a template:

// DemoController.php

// ...

54 Chapter 17. The Puli Bundle for Symfony Projects

Puli Documentation, Release 1.0.0-beta4

class DemoController extends Controller
{

/**
* @Route("/hello/{name}", name="_demo_hello")

*/
public function helloAction($name)
{

return $this->render('/acme/demo-bundle/views/demo/hello.html.twig', array(
'name' => $name,

));
}

// ...
}

In this example, the template at the Puli path /acme/demo-bundle/views/demo/hello.html.twig is ren-
dered.

Within Twig templates, you can also refer to other templates by Puli paths:

{# views/demo/hello.html.twig #}

{% extends "/acme/demo-bundle/views/layout.html.twig" %}

...

This will let the hello.html.twig template extend the template /acme/demo-bundle/views/layout.html.twig.
Instead of passing the absolute Puli path, it is usually more comfortable to pass relative paths instead:

{# views/demo/hello.html.twig #}

{% extends "../layout.html.twig" %}

...

Read The Puli Extension for Twig to learn more about the Puli extension for Twig.

17.3. Bundle Usage 55

Puli Documentation, Release 1.0.0-beta4

56 Chapter 17. The Puli Bundle for Symfony Projects

CHAPTER 18

The Puli Extension for Twig

Puli provides an extension for the Twig templating engine. With this extension, you can refer to template files through
Puli paths:

echo $twig->render('/acme/blog/views/show.html.twig');

The extension also adds a resource_url() function for generating URLs for public resources:

18.1 Installation

Important: Before you continue, install the Puli CLI and the Repository Component in your project.

Install the extension with Composer:

$ composer require puli/twig-extension:^1.0

18.2 Configuration

To activate the extension, create a new PuliTemplateLoader and register it with Twig. The loader enables Twig
to load templates through Puli paths:

use Puli\TwigExtension\PuliTemplateLoader;

$twig = new \Twig_Environment(new PuliTemplateLoader($repo));

The loader receives Puli’s ResourceRepository as only argument.

Next, create a new PuliExtension and add it to Twig. The extension adds the resource_url() function and
does a few more tweaks to properly support Puli in Twig:

use Puli\TwigExtension\PuliExtension;

// The $urlGenerator is only needed if you use the resource_url() function
$twig->addExtension(new PuliExtension($repo, $urlGenerator));

57

https://github.com/puli/twig-extension
http://twig.sensiolabs.org
https://getcomposer.org
http://api.puli.io/latest/class-Puli.TwigExtension.PuliTemplateLoader.html
http://api.puli.io/latest/class-Puli.Repository.Api.ResourceRepository.html
http://api.puli.io/latest/class-Puli.TwigExtension.PuliExtension.html

Puli Documentation, Release 1.0.0-beta4

18.3 Usage in Twig

Using Puli in Twig is straight-forward: Use Puli paths wherever you would usually use a file path. For example:

{% extends '/acme/blog/views/layout.html.twig' %}

{% block content %}
{# ... #}

{% endblock %}

Contrary to Twig’s default behavior, you can also refer to templates using relative paths:

{% extends 'layout.html.twig' %}

{% block content %}
{# ... #}

{% endblock %}

18.4 Resource URLs

You can generate URLs for public Puli resources with the resource_url() function:

The function accepts both absolute and relative paths:

Note: The resource must have been published with the publish command of the Puli CLI, otherwise the URL
generator will fail. See the URL generator documentation for more information.

Puli (pronounced “poo-lee”) is a universal package system for PHP. Puli aims to replace “bundles”, “plugins”, “mod-
ules” and similar specialized packages of different frameworks with one generic, framework independent solution.

58 Chapter 18. The Puli Extension for Twig

https://github.com/puli/puli

CHAPTER 19

The Puli Package

A Puli package is a directory that contains PHP code, non-PHP files and a puli.json file. The puli.json file
configures how your application and other Puli packages access and load the contents of your package.

my-package/
src/

... PHP files ...
res/

... non-PHP files ...
puli.json

Puli packages are typically installed with Composer. Add a composer.json to the package and distribute it on
Packagist. Then your package can be installed with the composer command line utility:

$ composer require vendor/my-package

59

https://getcomposer.org
https://packagist.org

Puli Documentation, Release 1.0.0-beta4

60 Chapter 19. The Puli Package

CHAPTER 20

Features of Puli Packages

Resource Access

Puli provides a naming convention (so called Puli paths) to access non-PHP files (YAML, XML, CSS, HTML,
images and more) from a Puli package:

// views/index.html.twig in the "batman/blog" package
echo $twig->render('/batman/blog/views/index.html.twig');

The path is resolved by reading path mappings from the puli.json files of your installed Puli packages.
Authors of these packages, such as the author of the “batman/blog” package, map prefixes to actual directories
with the Puli Command Line Interface (CLI):

$ php puli.phar map /batman/blog res

61

Puli Documentation, Release 1.0.0-beta4

Discovery

Puli packages may act as consumers and as providers of resources and PHP classes. For example, a translator
package (the consumer) may request translation files from other installed packages (the providers).

Consumers, like our translator, give a name to the resources they want to load, such as “thor/translations”. This
name is called a binding type. Other packages (the resource providers) assign their translation files to this type.
This is called binding. In the end, you as the user of both packages only need to pass Puli’s Discovery to the
Translator class:

$translator = new Translator($discovery);

The translator then loads all bound translation files from the discovery without any further configuration.

Package Overrides

Puli packages may override other packages. For example, your application or a specialized theme package may
replace the style.css file provided by a generic package “batman/blog” by a custom version:

$ php puli.phar map /batman/blog/css/style.css res/css/blog/style.css

Resource URLs

Puli publishes CSS files, JavaScript files and images bundled in your packages and generates their public URLs
for you. You can pass Puli paths to simple utility functions to generate URLs in your PHP or HTML code:

Puli paths can be marked public with the Puli CLI:

$ php puli.phar publish /batman/blog/public localhost /blog/

Here, we published the /batman/blog/public directory to the sub-directory /blog/ of the server “local-
host”. That server must also be defined with the Puli CLI:

$ php puli.phar server --add localhost public_html

This command registers the server “localhost” with the directory public_html used as document root. Now
Puli has enough information to generate your URLs:

62 Chapter 20. Features of Puli Packages

http://api.puli.io/latest/class-Puli.Discovery.Api.Discovery.html

Puli Documentation, Release 1.0.0-beta4

Resource Installation

If you want, you can use Puli also to install your public resources on the server. If the server is your localhost,
Puli creates simple symbolic links or file copies in your document root:

$ php puli.phar publish --install
Installing /batman/blog/public into public_html/blog via symlink...

For the final release of Puli, this functionality will be moved to plugins for Gulp, Brunch or similar asset man-
agement tools.

63

Puli Documentation, Release 1.0.0-beta4

64 Chapter 20. Features of Puli Packages

CHAPTER 21

Getting Started

Read Installation to get started with Puli.

65

Puli Documentation, Release 1.0.0-beta4

66 Chapter 21. Getting Started

CHAPTER 22

Infrastructure

Puli’s core packages maintain Puli’s infrastructure for you.

Package Source Current Version Next Stable Release
The Puli Manager GitHub 1.0.0-beta10 late 2016
The Command Line Interface GitHub 1.0.0-beta10 late 2016
The Composer Plugin GitHub 1.0.0-beta10 late 2016

67

https://github.com/puli/manager
https://github.com/puli/manager/releases/tag/1.0.0-beta10
https://github.com/puli/cli
https://github.com/puli/cli/releases/tag/1.0.0-beta10
https://github.com/puli/composer-plugin
https://github.com/puli/composer-plugin/releases/tag/1.0.0-beta10

Puli Documentation, Release 1.0.0-beta4

68 Chapter 22. Infrastructure

CHAPTER 23

Components

The Puli components provide the interface between your PHP code and Puli.

Component Source Current Version Next Stable Release
The Repository Component GitHub 1.0.0-beta10 late 2016
The Discovery Component GitHub 1.0.0-beta9 late 2016
The URL Generator Component GitHub 1.0.0-beta4 late 2016

69

https://github.com/puli/repository
https://github.com/puli/repository/releases/tag/1.0.0-beta10
https://github.com/puli/discovery
https://github.com/puli/discovery/releases/tag/1.0.0-beta9
https://github.com/puli/url-generator
https://github.com/puli/url-generator/releases/tag/1.0.0-beta4

Puli Documentation, Release 1.0.0-beta4

70 Chapter 23. Components

CHAPTER 24

Extensions

Puli’s extensions provide integration with different third-party tools.

Extension Source Current Version Next Stable Release
The Symfony Bridge GitHub 1.0.0-beta4 late 2016
The Symfony Bundle GitHub 1.0.0-beta10 late 2016
The Twig Extension GitHub 1.0.0-beta8 late 2016

71

https://github.com/puli/symfony-bridge
https://github.com/puli/symfony-bridge/releases/tag/1.0.0-beta4
https://github.com/puli/symfony-bundle
https://github.com/puli/symfony-bundle/releases/tag/1.0.0-beta10
https://github.com/puli/twig-extension
https://github.com/puli/twig-extension/releases/tag/1.0.0-beta8

Puli Documentation, Release 1.0.0-beta4

72 Chapter 24. Extensions

CHAPTER 25

Authors

• Bernhard Schussek a.k.a. @webmozart

• The Community Contributors

73

http://webmozarts.com
https://twitter.com/webmozart
https://github.com/puli/docs/graphs/contributors

Puli Documentation, Release 1.0.0-beta4

74 Chapter 25. Authors

CHAPTER 26

Contribute

Contributions to Puli are very welcome!

• Report any bugs or issues you find on the issue tracker.

• You can grab the source code at Puli’s Git organization.

If you find issues in the documentation, please let us know:

• The documentation has a dedicated docs issue tracker.

• The source of the documentation is hosted at the docs Git repository.

75

https://github.com/puli/puli/issues
https://github.com/puli
https://github.com/puli/docs/issues
https://github.com/puli/docs

Puli Documentation, Release 1.0.0-beta4

76 Chapter 26. Contribute

CHAPTER 27

Support

If you are having problems, send a mail to bschussek@gmail.com or shout out to @PuliPHP on Twitter.

77

mailto:bschussek@gmail.com
https://twitter.com/PuliPHP

Puli Documentation, Release 1.0.0-beta4

78 Chapter 27. Support

CHAPTER 28

License

Puli, its extensions and this documentation are licensed under the MIT license.

79

Puli Documentation, Release 1.0.0-beta4

80 Chapter 28. License

CHAPTER 29

Logo

The Puli logo was kindly sponsored by Resonanz Online Marketing.

81

http://www.resonanz-marketing.com/de/index.htm

	Installation
	Requirements
	Installing the Puli CLI
	Next Steps

	Glossary
	The Repository Component
	The Problem
	How It Works
	Getting Started

	Getting Started with the Repository Component
	In a Symfony Project
	In a PHP Application
	In a Composer Package
	Further Reading

	Directory Layout
	Mapping Resources
	Listing Mappings
	Listing Mapped Files
	Changing a Mapping
	Deleting a Mapping
	Referencing Other Packages
	Further Reading

	Working with Resources
	Resources
	Child Resources
	Metadata
	Resource Collections

	Stream Wrappers
	Performance Tweaks

	The URL Generator Component
	The Problem
	How It Works
	Getting Started

	Getting Started with the URL Generator Component
	In a Symfony Project
	In a PHP Application
	In a Composer Package
	Further Reading

	Web Server Configuration
	Adding a Web Server
	Listing Web Servers
	Changing a Web Server
	Deleting a Web Server
	Publishing Resources
	Listing Public Resources
	Unpublishing a Resource
	Installing Resources
	Custom URL Formats

	The Discovery Component
	The Problem
	How It Works
	Getting Started

	Getting Started with the Discovery Component
	In a Symfony Project
	In a PHP Application
	In a Composer Package
	Further Reading

	Consuming Resources
	Defining a Binding Type
	Listing Binding Types
	Type Descriptions
	Changing a Binding Type
	Deleting a Binding Type
	Loading Bound Resources
	Loading Bindings for a Resource
	Binding Parameters
	Optional Parameters

	Providing Resources
	Adding a Binding
	Listing Bindings
	Changing a Binding
	Deleting a Binding
	Disabling a Binding
	Enabling a Binding
	Binding Parameters

	The Puli Bridge for Symfony
	Installation
	Configuration
	Chained Locators
	Limitations

	The Puli Bundle for Symfony Projects
	Starting a Project from the Symfony Puli Edition
	Installing the Puli Bundle
	Bundle Usage

	The Puli Extension for Twig
	Installation
	Configuration
	Usage in Twig
	Resource URLs

	The Puli Package
	Features of Puli Packages
	Getting Started
	Infrastructure
	Components
	Extensions
	Authors
	Contribute
	Support
	License
	Logo

