

Welcome to Prototype Kernel’s documentation!

This project and GitHub [https://github.com/netoptimizer/prototype-kernel] repository is meant for speeding up Linux
Kernel development work, this also includes Documentation. The
directory layout tries to keep close to the Kernel directory layout.
This helps when/if upstreaming the work.

Contents:

	Documentation
	Compiling

	Prototype Kernel
	XDP and eBPF

	Prototype Kernel own documentation

	Linux Networking Subsystem
	XDP - eXpress Data Path

	Linux Memory Management Subsystem
	The page_pool documentation

	eBPF - extended Berkeley Packet Filter
	Introduction

	Documentation

	Blogposts, Reports and Write-ups
	Eval Generic netstack XDP patch

Indices and tables

	Index

	Search Page

Documentation

This documentation is available at: prototype-kernel.readthedocs.io [https://prototype-kernel.readthedocs.io]

Files in this Documentation/ [https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/Documentation] directory is (like the kernel) based on
reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html] files and Sphinx [http://www.sphinx-doc.org/] can be used for generating
pretty documentation. Just like this documentation is being
auto-generated on Read The Docs [https://prototype-kernel.readthedocs.io].

Compiling

To generate pretty Sphinx [http://www.sphinx-doc.org/] documentation locally simply run

make html

The generated output will be located in _build/html/index.html.

Prototype Kernel

This documentation is for how to use the prototype-kernel project [https://github.com/netoptimizer/prototype-kernel] itself.

XDP and eBPF

This github repository also contains samples for XDP and eBPF in the
directory samples/bpf/ [https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf]. The build process is different. Simply
run make in the directory.
Also see XDP/eBPF build environment.

Prototype Kernel own documentation

The prototype-kernel project [https://github.com/netoptimizer/prototype-kernel] is meant for compiling kernel modules
outside the normal kernel git tree, but still using the kernels make
system.

The purpose is getting a separate git development tree for developing
and refining your kernel module or Documentation over time, before
pushing it upstream for the Linux Kernel.

Contents:

	Prototype Kernel build process
	Compiling modules

	Push to remote host

	Enable/disable modules

Prototype Kernel build process

In the kernel/ directory we try to keep close to the kernel
directory layout, in the hopes that it will make it easier, when
posting/proposing these changes upstream.

Note

It is a pre-requisite that you have a developement kernel tree
available for compiling against (or install your distributions
kernel-devel package).

Compiling modules

To compile your modules simply type make in the kernel
directory.

The Makefile tries to detect the kernel directory to compile
against by following the running kernels build symlink in:

/lib/modules/`uname -r`/build/

To compile against another (specific) kernel tree use:

make kbuilddir=~/git/kernel/net-next/

Notice look in the Kbuild files, they define and control which
modules are compiled, also see the .config file.

Push to remote host

Q: Want to compile locally and push the binary modules to a remote host.
A: Yes, this is supported.

The Makefile target “push_remote” uploads the kernel module to a
remote host. (You need to setup SSH-keys to SSH allow root logins.)

Usage example:

make push_remote kbuilddir=~/git/kernel/net-next/ HOST=192.168.122.49

If you want to run this manually call the script directly:

./scripts/push_remote.sh 192.168.122.49

Enable/disable modules

It can be practical to allow manual enable/disable of which modules
are getting build. This is supported by locally adjusting .config.
On first run the content is based on config.default.

This feature is useful when developing against API’s that have not
been included the mainline kernel yet. See CONFIG_SLAB_BULK_API=m for
an example.

Linux Networking Subsystem

This is the top-level documentation for the Linux Networking subsystem.

Contents:

	XDP - eXpress Data Path
	Introduction

	Disclaimer

	Design

	Implementation

	Use-cases

	End-user documentation

XDP - eXpress Data Path

This is the top-level XDP documentation tree.

Contents:

	Introduction
	What is XDP?

	Presentations

	Disclaimer
	Important to understand

	Design
	Overall design

	Requirements

	Implementation
	XDP actions

	Userspace API

	Missing Features

	Drivers

	Use-cases
	Use-case: DDoS

	Use-case: DDoS scrubber

	Use-case: Load Balancer

	End-user documentation
	XDP/eBPF build environment

	XDP programs with eBPF

Introduction

What is XDP?

XDP or eXpress Data Path provides a high performance, programmable
network data path in the Linux kernel. XDP provides bare metal packet
processing at the lowest point in the software stack. Much of the
huge speed gain comes from processing RX packet-pages directly out of
drivers RX ring queue, before any allocations of meta-data structures
like SKBs occurs.

The IO Visor Project have an introduction to XDP [https://www.iovisor.org/technology/xdp].

Presentations

List of XDP focused presentations:

	March 2016 [https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf] - Initial presentation by Facebook (Tom and Alexei)

	July 2016 [http://www.slideshare.net/IOVisor/express-data-path-linux-meetup-santa-clara-july-2016] - IO visor (Brenden Blanco)

	September 2016 [http://people.netfilter.org/hawk/presentations/xdp2016/xdp_intro_and_use_cases_sep2016.pdf] - Intro and use-case, Red Hat Inc. (Jesper Brouer)

	April 2017 - Keynote NetDevconf 2.1: XDP Mythbusters [http://netdevconf.org/2.1/session.html?miller]

	April 2017 - XDP/eBPF tutorial: XDP for the Rest of Us [http://netdevconf.org/2.1/session.html?gospodarek]

	April 2017 - Facebook Droplet [http://netdevconf.org/2.1/session.html?zhou]

	April 2017 - CloudFlare integrating XDP [http://netdevconf.org/2.1/session.html?bertin]

Historically the Network Performance BoF [http://people.netfilter.org/hawk/presentations/NetDev1.1_2016/links.html] at NetDev 1.1 (Feb 2016)
was the first presentation to propose the idea of processing RX
packet-pages directly out of the driver RX ring queue.

Press coverage

List of press coverage:

	April 2016 [http://lwn.net/Articles/682538/] - LWN.net covered the very early patches

Related resources

List of related presentations or write-ups:

	(Juli 2016): Next Steps for Linux Network Stack [http://people.netfilter.org/hawk/presentations/theCamp2016/theCamp2016_next_steps_for_linux.pdf] (Video [http://video.thecamp.dk/jesper-brauer-100gbit-challenge/])

	(Juli 2016): CETH [http://www.slideshare.net/IOVisor/ceth-for-xdp-linux-meetup-santa-clara-july-2016] Common Ethernet Driver Framework (Huawei)

	(Aug 2016): What Can BPF Do For You [http://schd.ws/hosted_files/lcccna2016/ec/iovisor-lc-bof-2016.pdf] (LinuxCon [http://sched.co/86Av])

	(Sep 2016): Dive into BPF [https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/]: a list of reading material

	(Oct 2016): XDP in OpenStack (video) [https://www.youtube.com/watch?v=1oAsRzrwAAw] for DDoS protection

	(Oct 2016): NetDev 1.2 video [https://www.youtube.com/watch?v=NlMQ0i09HMU&feature=youtu.be&t=3m3s] by David Miller [https://en.wikipedia.org/wiki/David_S._Miller]

	(April 2017): BPF and XDP Reference Guide [http://cilium.readthedocs.io/en/latest/bpf/#bpf-and-xdp-reference-guide]: Cilium developer’s guide

Disclaimer

XDP is not for every use-case.

Important to understand

It is important to understand that the XDP speed gains comes at a cost
of loss of generalization and fairness.

XDP does not provide fairness. There is no buffering (qdisc) layer to
absorb traffic bursts when the TX device is too slow, packets will
simply be dropped. Don’t use XDP in situations where the RX device
is faster than the TX device, as there is no back-pressure to save
the packet from being dropped. There is no qdisc layer or BQL (Byte
Queue Limit) to save you from introducing massive bufferbloat.

Using XDP is about specialization. Crafting a solution towards a very
specialized purpose, that will require selecting and dimensioning the
appropriate hardware. Using XDP requires understanding the dangers and
pitfalls, that come from bypassing large parts of the kernel network
stack code base, which is there for good reasons.

That said, XDP can be the right solution for some use-cases, and can
yield huge (orders of magnitude) performance improvements, by allowing
this kind of specialization.

Design

XDP is designed for high performance. It uses known techniques and
applies selective constraints to achieve performance goals. XDP is
also designed for programmability. New functionality can be
implemented on the fly without needing kernel modification

Contents:

	Overall design
	Programmability

	Capabilities negotiation

	Data plane split

	Requirements
	Driver RX hook

	Early drop

	Write access to packet data

	Header push and pop

	Page per packet

	Packet forwarding

	RX bulking

Overall design

Requirements defined in document Requirements.

Programmability

XDP is designed for programmability.

Users want programmability as close as possible to the device
hardware, to reap the performance gains, but they also want
portability. The purpose of XDP is making such programs portable
across multiple devices and vendors.

(It is even imagined that XDP programs should be able to run in
user space, either for simulation purposes or combined with other raw
packet data-plane frameworks like netmap or DPDK).

It is expected that some HW vendors will take steps towards offloading
XDP programs into their hardware. It is fine if they compete on this
to sell more hardware. It is no different from producing the fastest
chip. XDP also encourages innovation for new HW features, but when
extending XDP programs with a new hardware feature (e.g. which only a
single vendor supports), this must be expressed within the XDP API as
a capability or feature (see section Capabilities negotiation).
This functions as a common capabilities API from which vendors can
choose what to implement (based on customer demand).

Capabilities negotiation

Warning

This interface is missing in the implementation

XDP has hooks and feature dependencies in the device drivers.
Planning for extendability, not all device drivers will necessarily
support all of the future features of XDP, and new feature adoption
in device drivers will occur at different development rates.

Thus, there is a need for the device driver to express what XDP
capabilities or features it provides.

When attaching/loading an XDP program into the kernel, a feature or
capabilities negotiation should be conducted. This implies that an
XDP program needs to express what features it wants to use.

If an XDP program being loaded requests features that the given device
driver does not support, the program load should simply be rejected.

Note

I’m undecided on whether to have an query interface, because
users could just use the regular load-interface to probe for
supported options. The downside of probing is the issues SElinux
runs into, of false alarms, when glibc tries to probe for
capabilities.

Implementation issue

The current implementation is missing this interface. Worse, the two
actions XDP_DROP and XDP_TX should have been expressed
as two different capabilities, because XDP_TX requires more changes to
the device driver than a simple drop like XDP_DROP.

One can (easily) imagine that an older driver only wants to implement
the XDP_DROP facility. The reason is that XDP_TX would require
changing too much driver code, which is a concern for an old, stable
and time-proven driver.

Data plane split

Requirements

Driver RX hook

Gives us access to packet-data payload before allocating any meta-data
structures, like SKBs. This is key to performance, as it allows
processing RX “packet-pages” directly out of the driver’s RX ring
queue.

Early drop

Early drop is key for the DoS (Denial of Service) mitigation use-cases.
It builds upon a principle of spending/investing as few CPU cycles as
possible on a packet that will get dropped anyhow.

Doing this “inline”, before delivery to the normal network stack, has
the advantage that a packet that does need delivery to the normal
network stack can still get all the features and benefits as before;
there is thus no need to deploy a bypass facility merely to re-inject
“good” packets into the stack again.

Write access to packet data

XDP needs the ability to modify packet data. This is unfortunately
often difficult to obtain, as it requires fundamental changes to the
driver’s memory model.

Unfortunately most drivers don’t have “writable” packet data as
default. This is due to a workaround for performance bottlenecks in
both the page-allocator and DMA APIs, which has the side-effect of
necessitating read-only packet pages.

Instead, most drivers (currently) allocate both a SKB and a writable
memory buffer, in which to copy (“linearise”) the packet headers, and
also store skb_shared_info. Then the remaining payload (pointing
past the headers just copied) is attached as (read-only) paged data.

Header push and pop

The ability to push (add) or pop (remove) packet headers indirectly
depends on write access to packet-data. (One could argue that a pure
pop could be implemented by only adjusting the payload offset, thus
not needing write access).

This requirement goes hand-in-hand with tunnel encapsulation or
decapsulation. It is also relevant for e.g adding a VLAN header, as
needed by the Use-case: DDoS scrubber in order
to work around the XDP_TX single NIC limitation.

This requirement implies the ability to adjust the packet-data start
offset/pointer and packet length. This requires additional data to be
returned.

This also has implications for how much headroom drivers should
reserve in the SKB.

Page per packet

On RX many NIC drivers split up a memory page, to share it for multiple
packets, in-order to conserve memory. Doing so complicates handling
and accounting of these memory pages, which affects performance.
Particularly the extra atomic refcnt handling needed for the page can
hurt performance.

XDP defines upfront a memory model where there is only one packet per
page. This simplifies page handling and open up for future
extensions.

This requirement also (upfront) result in choosing not to support
things like, jumbo-frames, LRO and generally packets split over
multiple pages.

In the future, this strict memory model might be relaxed, but for now
it is a strict requirement. With a more flexible
Capabilities negotiation it might be possible to negotiate another
memory model. Given some specific XDP use-case might not require this
strict memory model.

Packet forwarding

Implementing a router/forwarding data plane is DPDK’s prime example
for demonstrating superior performance. For the sheer ability to
compare against DPDK, XDP also needs a forwarding capability.

RX bulking

Implementation

This document section is primarily for coordinating the XDP
infrastructure developers.

Keeping track of Missing Features and details about suboptimal
implementations that need to be looked at.

Contents:

	XDP actions
	XDP_PASS

	XDP_DROP

	XDP_TX

	XDP_ABORTED

	Fall-through

	Userspace API
	Planning for API extension

	Troubleshooting and Monitoring

	Missing Features
	Missing: Push/pop headers

	Missing: Multi-port TX

	Missing: Capabilities negotiation

	Missing: XDP program per RX queue

	Missing: Cache prefetching

	Drivers
	Mellanox: mlx4

	Mellanox: mlx5

	Netronome: nfp

	virtio-net

	Cavium/Qlogic: qede

	Cavium: thunder

	Broadcom: bnxt

	Intel: ixgbe

XDP actions

XDP_PASS

XDP_PASS means the XDP program chose to pass the packet to the normal
network stack for processing. Note that the XDP program is allowed to
have modified the packet-data.

XDP_DROP

XDP_DROP is perhaps the simplest and fastest action. It simply
instructs the driver to drop the packet. Given this action happens at
the earliest RX stage in the driver, dropping a packet simply implies
recycling it back-into the RX ring queue it just “arrived” on. There
is simply no faster way to drop a packet. This comes close to a
driver hardware test feature.

XDP_TX

The XDP_TX action result in TX bouncing the received packet-page back
out the same NIC it arrived on. This is usually combined with
modifying the packet contents before returning action XDP_TX.

The XDP_TX feature can be used for implementing a special kind of
one-legged Load-Balancer as described in
Use-case: Load Balancer.

XDP_ABORTED

The XDP_ABORTED action is not something a functional program should
ever use as a return code. This return code is something an eBPF
program returns in case of an eBPF program error, e.g. division by
zero. For this reason XDP_ABORTED will always be the value zero.

This XDP_ABORTED action results in the packet getting dropped.

For how to troubleshoot this kind of unlikely error event, see the
section Troubleshooting and Monitoring.

Fall-through

There must also be a fall-through default: case, which is hit if
the program returns an unknown action code (e.g. future action this
driver does not support).

These unknown return codes will result in packet drop.

See the section Troubleshooting and Monitoring for how to catch
these kind of situations.

Code example

The basic action code block the driver use, is simply a switch-case
statement as below.

switch (action) {
 case XDP_PASS:
 break; /* Normal netstack handling */
 case XDP_TX:
 if (driver_xmit(dev, page, length) == NETDEV_TX_OK)
 goto consumed;
 goto xdp_drop; /* Drop on xmit failure */
 default:
 bpf_warn_invalid_xdp_action(action);
 case XDP_ABORTED:
 case XDP_DROP:
xdp_drop:
 if (driver_recycle(page, ring))
 goto consumed;
 goto next; /* Drop */
 }
}

Warning

It is still undecided whether the action code needs
to be partitioned into opcodes, with some of the upper
bits used as values for the given opcode. This can be
extended later.

Userspace API

Warning

The userspace API specification should have been defined properly
before code was accepted upstream. Concerns have been raised about
the current API upstream. Users should expect this first API
attempt will need adjustments; this cannot be considered a stable
API yet.

Most importantly, capabilities negotiation is missing;
see Capabilities negotiation.

Planning for API extension

The kernel documentation about syscalls [https://github.com/torvalds/linux/blob/master/Documentation/adding-syscalls.txt] have some good
considerations when designing an extendable API, and Michael Kerrisk [http://man7.org/]
also have some entertaining API examples [http://man7.org/conf/index.html].

Note

With XDP_FLAGS in commit 85de8576a0b1 [https://git.kernel.org/davem/net-next/c/85de8576a0b1] (Daniel) prepared
add/replace/delete logic for XDP programs.

Struct xdp_prog

Currently (4.8-rc6) the XDP program is simply a bpf_prog pointer.
While this is good for simplicity, it limits extendability for
upcoming features.

Maybe we should introduce a new struct xdp_prog that can carry
information related to the XDP program. Notice this approach does
not affect performance (tested and benchmarked), because the extra
dereference for the eBPF program only happens once per 64 packets in
the poll function.

The features that need this are:

	Multi-port TX:
Need to know own port index and port lookup table.

	XDP program per RX queue:
Need setup info about program type, global or specific, due to
program-replacement semantics.

	Capabilities negotiation:
Need to store information about features program wants to use,
in order to validate this.

Todo

How kernel devel works: This new struct xdp_prog
feature cannot go into the kernel before one of the three users of
the struct is also implemented. (Note, Jesper has implemented this
struct change and has even benchmarked that it does not hurt
performance).

XDP meta-data

The struct xdp_md carry XDP meta-data (“_md”). It is still
extensible because it has a internal BPF insn rewriter.

Troubleshooting and Monitoring

Users need the ability to both monitor and troubleshoot an XDP
program; particularly so in case of error events like XDP_ABORTED,
and in case an XDP program starts to return invalid and unsupported
action codes (caught by the Fall-through).

Note

Daniel choose to implement this as tracepoints.
See commit: a67edbf4fb6d (“bpf: add initial bpf tracepoints”)
https://git.kernel.org/davem/net-next/c/a67edbf4fb6d
Scheduled for kernel 4.11.

Warning

The current (4.8-rc6) implementation is not optimal in this area.
In the Fall-through case, the packet is dropped and a
warning is generated only once about the invalid XDP program
action code, by calling: bpf_warn_invalid_xdp_action(action_code);

The facilities and behavior need to be improved in this area.

Two options are on the table currently:

	Counters.

Simply add counters to track these events. This allows admins and
monitoring tools to catch and count these events. This does require
standardizing these counters to help monitor tools.

	Tracepoints.

Another option is adding tracepoints to these situations. These are
much more flexible than counters. The downside is that these error
events might never be caught, if the tracepoint isn’t active.

An important design consideration is that the monitor facility must
not be too expensive to execute, even though events like XDP_ABORTED
and Fall-through should normally be very rare. This is
because an external attacker (given the DDoS uses-cases) might find a
way to trigger these events, which would then serve as an attack
vector against XDP.

Missing Features

Record missing implementation features here.

Missing: Push/pop headers

Requirement defined here: Header push and pop.

Needed by Use-case: DDoS scrubber

	Initial support for XDP head adjustment added to net-next in this commit:

	https://git.kernel.org/davem/net-next/c/293bfa9b486

Initial support only covers driver mlx4.

Todo

Update document once feature is available in a kernel release.
Plus, keep track of drivers supporting this feature.

Todo

Create new section under Userspace API that describe
howto use this and point to sample programs.

The eBPF program gets a new helper function called: bpf_xdp_adjust_head

Missing: Multi-port TX

Missing: Capabilities negotiation

See: Capabilities negotiation

Missing: XDP program per RX queue

Changes to the user space API are needed to add this feature.

Missing: Cache prefetching

Drivers

XDP depends on drivers implementing the RX hook and set-up API.
Adding driver support is fairly easy, unless it requires changing the
driver’s memory model (which is often the case).

Mellanox: mlx4

The first driver implementing XDP were the Mellanox mlx4 driver.
The corresponding NIC is called ConnectX-3 [http://www.mellanox.com/page/products_dyn?product_family=127&mtag=connectx_3_en] and ConnectX-3 pro [http://www.mellanox.com/page/products_dyn?product_family=162&mtag=connectx_3_pro_en_card].
These NICs run Ethernet at 10Gbit/s and 40Gbit/s.

Mellanox: mlx5

The Mellanox driver mlx5 support XDP since kernel v4.9, but kernel
v4.10 is recommended as some minor fixes got applied.

These NICs run Ethernet at 10G, 25G, 40G, 50G and 100Gbit/s. They are
called ConnectX-4 [http://www.mellanox.com/page/products_dyn?product_family=204&mtag=connectx_4_en_card] and ConnectX-4-Lx [http://www.mellanox.com/page/products_dyn?product_family=219&mtag=connectx_4_lx_en_card] (Lx is limited to max 50G or
2x 25G).

Netronome: nfp

Driver: nfp
Kernel release: v4.10

virtio-net

Driver: virtio-net
Kernel release: v4.10

Cavium/Qlogic: qede

Driver: qede
Kernel release: v4.10

Cavium: thunder

	Driver: thunder/nicvf

	
	Kernel release: v4.12

Broadcom: bnxt

	Driver: bnxt

	
	Kernel release: v4.12

Intel: ixgbe

	Driver: ixgbe

	
	Kernel release: v4.12

Use-cases

XDP use-cases; some are only proposals.

Contents:

	Use-case: DDoS
	End-host protection

	Use-case: DDoS scrubber
	DDoS volume attacks

	Forward clean traffic

	Need: traffic sampling XDP_DROP

	Need: traffic sampling XDP_TX

	Use-case: Load Balancer
	Traditional load balancer

	Untraditional XDP load balancer

	Need: RX HW hash

Use-case: DDoS

DDoS protection was the primary use-case XDP was born out of.
CloudFlare [https://blog.cloudflare.com/single-rx-queue-kernel-bypass-with-netmap/] presented their DDoS use-case [https://blog.cloudflare.com/partial-kernel-bypass-merged-netmap/] at the Network
Performance BoF [http://people.netfilter.org/hawk/presentations/NetDev1.1_2016/links.html] at NetDev 1.1, which convinced many Kernel
developers that this was something that needed to be solved.

End-host protection

When a server is under DoS (Denial-of-Service) attack, the attacker is
trying to use as many resource on the server as possible, in order to
not leave processing time to service the legitimate users.

Owing to XDP running so early in the software stack, there is almost
no processing cost associated with dropping a packet. This makes it a
viable option to load a XDP program directly on the server, as
filtering out bad/attacker traffic (this early) frees up processing
resources.

As XDP is still part of the Linux network stack, packets that “pass”
the XDP filter still have all features for further filtering that the
kernel normally provides. It works in concert with the regular
network stack, rather than trying to by-pass it.

Use-case: DDoS scrubber

	Version

	0.2

	Status

	Proposal, need some new XDP features

This document investigates whether XDP can be used for implementing a
machine that does traffic scrubbing at the edge of the network.

DDoS volume attacks

This idea/use-case comes from a customer. They have a need to perform
traffic scrubbing or cleaning when getting attacked by DDoS volume
attacks. They have much larger pipes to the Internet than their
internal backbone can actually handle.

Usually a specific IP address is attacked. When that happens, the IP
address is placed into MPLS-VRF alternative routing tables, so the
traffic gets routed through some scrubbing servers.

The purpose of the scrubbing servers is to reduce (or drop) enough
traffic, such that the DoS volume attack is less than the capacity of
the internal backbone.

Forward clean traffic

The clean/good traffic needs to be forwarded towards the internal
backbone.

To get around the XDP limitation of only sending back out the same
NIC, they want to add a VLAN header to the packet before calling
XDP_TX, allowing them to catch the traffic and re-steer it back
into the main MPLS-VRF routing table.

Need: traffic sampling XDP_DROP

They want a way to analyze the traffic they drop (XDP_DROP), to catch
false positives. This could be implemented by sampling the drop
traffic, by returning XDP_PASS a percentage of the times, and then
have a userspace tcpdump running.

To indicate which eBPF rule caused the drop, they were thinking of
modifying the packet header by adding a VLAN id. That way the tcpdump
could run on a net_device with a given VLAN.

Note

NEW-ACTION: The sampling could be implemented more efficiently,
if there were a XDP_DUMP action which sent the sampled packets to
an AF_PACKET socket.

Need: traffic sampling XDP_TX

If the scrubber filter is not good enough, then too much bad traffic
is allowed through. This is usually the base case, once the attack
starts.

Thus, they have need for analysing the traffic that gets forwarded
with XDP_TX. (ISSUE) There is currently no way to sample or dump
the XDP_TX traffic.

A physical solution could be to do switch-port mirroring of the
traffic, and then have another machine (or even the same machine)
receive traffic for analysis. They were talking about just using the
same machine (as there usually are two NIC ports), but the worry is
that this would cost double the PCIe bandwidth.

Warning

NEW-FEATURE: A software solution could be a combination of
XDP_TX and XDP_DUMP. Doing both XDP_TX and XDP_DUMP would
only cost an extra page refcnt. They only need sampling. The
XDP_DUMP should be implemented such that it has a limited queue
size, and simply drops if the queue is full.

Need: smaller eBPF programs

They experience different DDoS attacks. They don’t want to have one
big eBPF program that needs to handle every kind of attack. This
program would also get too slow once the size increase.

DDoS attacks are usually very specific, and are often stopped by
spotting a very specific pattern in the packet that is constant enough
to identify the bad traffic. It is key that they can quickly construct
an XDP program matching this very specific pattern, without risking
affecting the stability of other XDP filters.

They also have a need to handle several simultaneous attacks, usually
targeting different destination IP addresses.

Warning

NEED-RXQ-FEATURE: This could be solved by using NIC HW filters
to steer the traffic a specific RX queue, and then allow XDP/eBPF
programs to run on specific queues.

Ethtool filters for mlx4

The HW filter capabilities are highly dependent on the HW, and limited
by what can be expressed by ethtool.

From below documentation, it looks like mlx4 have the filters needed
for this project.

Taken from mlx4 Linux User Manual [http://www.mellanox.com/related-docs/prod_software/Mellanox_EN_for_Linux_User_Manual_v2_0-3_0_0.pdf]

Ethtool domain is used to attach an RX ring, specifically its QP to a
specified flow. Please refer to the most recent ethtool manpage for
all the ways to specify a flow.

Examples:

	ethtool -U mlx4p1 flow-type ether dst f4:52:14:7a:58:f1 loc 5 action 2

All packets that contain the above destination MAC address are to
be steered into rx-ring 2 (its underlying QP), with
location/priority 5 (within the ethtool domain)

	ethtool -U mlx4p1 flow-type tcp4 dst-port 22 loc 255 action 2

All packets that contain the above destination IP address and source
port are to be steered into rx-ring 2. When destination MAC is not
given, the user’s destination MAC is filled automatically.

	ethtool -u mlx4p1

Shows all of ethtool’s steering rule

When configuring two rules with the same location/priority, the second
rule will overwrite the first one, so this ethtool interface is
effectively a table.

Inserting Flow Steering rules in the kernel requires support from both
the ethtool in the user space and in kernel (v2.6.28).

Use-case: Load Balancer

The load-balancer use-case originated from Facebook, as they have a
need to load-balance their traffic. They obviously already load
balance, but are looking for a faster and more scalable approach.

Facebook currently use the IPVS [http://www.linuxvirtualserver.org/] (IP Virtual Server) load balancer
software, which is part of the standard Linux Kernel (since kernel
2.6.10). They even wrote a Python module [https://github.com/facebook/gnlpy/blob/master/ipvs.py] for configuring IPVS,
which is a pure-python replacement for ipvsadm [https://kernel.org/pub/linux/utils/kernel/ipvsadm/] (ipvsadm git [https://git.kernel.org/cgit/utils/kernel/ipvsadm/ipvsadm.git/] tree).

Facebook presented at NetDevConf 2.1 [http://netdevconf.org/2.1/session.html?zhou] (April 2017) that they are
starting to deploy an XDP based solution for both this Load Balancer
solution (that gave a 10x speedup compared to IPVS) and a DDoS
protection solution named droplet. See: slides [http://netdevconf.org/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf] and YouTube
video [https://www.youtube.com/watch?v=YEU2ClcGqts].

Traditional load balancer

Traditionally a service load balancer (like IPVS) has more NICs
(Network Interface Cards), and forwards traffic to the back-end
servers (called “real server” for IPVS).

The current XDP implementation (XDP_TX in kernel 4.8) can only
forward packets back out the same NIC they arrived on. This makes XDP
unsuited for implementing a traditional multi-NIC load balancer.

A traditional load balancer easily becomes a single point of failure.
Thus, multiple load balancers are usually deployed, in a
High Availability [https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations] (HA) cluster. In order to make load balancer
failover transparent to client applications, the load balancer(s) need
to synchronize their state (E.g. via IPVS sync protocol [http://www.linuxvirtualserver.org/docs/sync.html] sending UDP
multicast, preferable send on a separate network/NIC).

Untraditional XDP load balancer

Imagine implementing a load balancer without any dedicated servers for
load balancing, 100% scalable and with no single point of failure.

Be the load balancer yourself!

The main idea is, allow XDP to be the load-balancing layer. Running
the XDP load balancer software directly on the “back-end” server, with
no dedicated central server.

It corresponds to running IPVS on the backend (“real servers”), which
is possible, and some IPVS examples [http://kb.linuxvirtualserver.org/wiki/Examples] are available (e.g Ultra
Monkey [http://www.ultramonkey.org/2.0.1/topologies/sl-ha-lb-eg.html]). But that is generally not recommended (in high load
situations), because it increases the load on the application server
itself, which leaves less CPU time for serving requests.

Why is this a good idea for XDP then?

XDP has a speed advantage. The XDP load balance forwarding decision
happens very early, before the OS has spent/invested too many
cycles on the packet. This means the XDP load balancing functionality
should not increase the load on the server significantly. Thus, it
should be okay to run the service and LB on the same server. One can
even imagine having a feedback loop into the LB-program decision,
based on whether the service is struggling to keep up.

Who will balance the incoming traffic?

The router can distribute/spread incoming packets across the servers
in the cluster, e.g. via using Equal-Cost Multi-Path routing (ECMP)
like Google’s Maglev [https://cloudplatform.googleblog.com/2016/03/Google-shares-software-network-load-balancer-design-powering-GCP-networking.html] solutions does. Google then use some consistent
hashing techniques to forward packets to the correct service backend
servers.

Serving correct client

The challenging part, in such a distributed system of load balancers,
is to coordinate packets getting forwarded to the (correct) server
responsible for serving the client.

Google uses a consistent hashing scheme, but other solutions are also
possible.

Hardware setup

As mentioned under Disclaimer, it is very important to
understand hardware environment this kind of setup works within.

When using the same network segment for the load balancing traffic
(due to XDP_TX limitations), extra care need to be taken when
dimensioning the network capacity.

One can create a cluster of servers, all connected to the same
10Gbit/s switch, and the switch has the same 10Gbit/s uplink capacity
limitation. The 10Gbit/s capacity is bidirectional, meaning both RX
and TX have 10Gbit/s. No (incoming) network overload situation can
occur, because the uplink can only forward with 10G, and LB server can
RX with 10G and TX with 10G to another “service-server”, happening
over the Ethernet switch fabric, thus RX capacity of the
“service-server” is still 10G. Sending traffic back to the uplink
happens via “direct-return” from the “service-server”, still have 10G
capacity left in the Ethernet switch fabric. Thus, with a proper HW
setup the XDP_TX limitation can be dealt with.

Need: RX HW hash

Warning

FEATURE:
provide NIC RX HW hash has as meta-data input to XDP program.

A scheme to determine which flows a given server is responsible
for serving can benefit from getting the NIC RX hardware hash as
input.

The XDP load balancing decision can be made faster, if it does not
have to read+parse the packet contents before making a route decision.
This is possible if basing the decision on the RX hardware hash,
available via the RX descriptor.

Note

Requires: setting up the same NIC HW hash on all servers in the cluster.

End-user documentation

This part of the XDP documentation is targeted at end-users, describing
how to use and setup XDP.

The XDP program running (inside the driver hook point) is an eBPF
program. eBPF is a general kernel facility not restricted to the XDP
use-case. Thus, have its own documentation here: eBPF - extended Berkeley Packet Filter.
This documentation is focused on using eBPF for the XDP specific
use-case.

Contents:

	XDP/eBPF build environment
	Tool chain

	Build samples/bpf

	Linux distros

	XDP programs with eBPF
	Kernel samples/bpf

	Special XDP eBPF cases

XDP/eBPF build environment

Tool chain

The XDP program running (in the driver hook point) is an eBPF program
(see eBPF - extended Berkeley Packet Filter). Unless you want to write eBPF
machine-code like instruction by hand, you likely want to install some
front-ends, that allow you to write some restricted-C code.

	Tools for compiling kernel bpf samples [https://github.com/torvalds/linux/blob/master/samples/bpf/README.rst] requires having installed:

	
	clang >= version 3.4.0

	llvm >= version 3.7.1

Note that LLVM’s tool ‘llc’ must support target ‘bpf’, list version
and supported targets with command: llc --version.

There is also toolkit called BCC [https://github.com/iovisor/bcc/blob/master/README.md] (BPF Compiler Collection) that makes
eBPF programs easier to write, and front-ends in Python and lua. But
it also depend on LLVM.

Build samples/bpf

This github repository also contains some bpf and XDP examples in the
directory samples/bpf/ [https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf]. Simply run make in that directory to
build the bpf samples.

Linux distros

Fedora 25

Since Fedora 25, the package BCC [https://github.com/iovisor/bcc/blob/master/README.md] is included with the distribution,
and LLVM+clang in the correct versions.

Install commands for Fedora 25:

dnf install llvm llvm-libs llvm-doc clang clang-libs
dnf install bcc bcc-tools bcc-doc --enablerepo=updates-testing
dnf install kernel-devel
dnf install python3-pyroute2

Note

As of this writing (2017-01-18) BCC for F25 is still in the
updates-testing repository.

XDP programs with eBPF

Two projects with example code:

	Using kernel samples/bpf [https://github.com/torvalds/linux/blob/master/samples/bpf/] XDP programs and libbpf [https://github.com/torvalds/linux/blob/master/tools/lib/bpf/]

	Using BCC [https://github.com/iovisor/bcc/blob/master/README.md] toolkit

Kernel samples/bpf

The kernel include some examples of XDP-eBPF programs,
see kernel samples/bpf [https://github.com/torvalds/linux/blob/master/samples/bpf/].

There are also some XDP eBPF code examples in the prototype-kernel [https://github.com/netoptimizer/prototype-kernel]
project under prototype-kernel/kernel/samples/bpf [https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf]. Simply run
make inside this directory to compile the samples.

Special XDP eBPF cases

With XDP the eBPF program gets “direct” access to the raw/unstructured
packet-data. Thus, eBPF uses some “direct access” instruction for
accessing this data, but for safety this need to pass the in-kernel
validator.

Walking the packet data, requires writing the boundary checks in a
specialized manor.

Like:

if (data + nh_off > data_end)
 return rc;

Linux Memory Management Subsystem

This is the top-level documentation for the Linux Kernel’s Memory
Management subsystem.

Contents:

	The page_pool documentation
	Introduction

	Design: page_pool

The page_pool documentation

This is top-level for the page_pool documentation.

Contents:

	Introduction
	Motivation

	Advantages

	Design: page_pool
	Overall design

	Memory Model for Networking

Introduction

The page_pool is a generic API for drivers that have a need for a pool
of recycling pages used for streaming DMA.

Motivation

The page_pool is primarily motivated by two things (1) performance
and (2) changing the memory model for drivers.

Drivers have developed performance workarounds when the speed of the
page allocator and the DMA APIs became too slow for their HW
needs. The page pool solves them on a general level providing
performance gains and benefits that local driver recycling hacks
cannot realize.

A fundamental property is that pages are returned to the page_pool.
This property allow a certain class of Optimization principle.

Memory model

Once drivers are converted to using page_pool API, then it will become
easier to change the underlying memory model backing the driver with
pages (without changing the driver).

One prime use-case is NIC zero-copy RX into userspace. As DaveM
describes in his Google-plus post [https://plus.google.com/+DavidMiller/posts/EUDiGoXD6Xv], the mapping and unmapping
operations in the address space of the process has a cost that cancels
out most of the gains of such zero-copy schemes.

This mapping cost can be solved the same way as the keeping DMA mapped
trick. By keeping the pages VM-mapped to userspace. This is a layer
that can be added later to the page_pool. It will likely be
beneficial to also consider using huge-pages (as backing) to reduce
the TLB-stress.

Advantages

Advantages of a recycling page pool as bullet points:

	Faster than going through page-allocator. Given a specialized
allocator require less checks, and can piggyback on driver’s
resource protection (for alloc-side).

	DMA IOMMU mapping cost is removed by keeping pages mapped.

	Makes DMA pages writable by predictable DMA unmap point.
(UPDATE kernel v4.10: This can also be acheived via
Alexander Duyck [https://twitter.com/alexanderduyck]’s changes to the DMA API, namely using
DMA_ATTR_SKIP_CPU_SYNC [https://github.com/torvalds/linux/blob/v4.10/Documentation/DMA-attributes.txt#L71], which skips DMA sync as a part the unmap,
but requires driver to carefully DMA sync needed memory)

	OOM protection at device level, as having a feedback-loop knows
number of outstanding pages.

	Flexible memory model allowing zero-copy RX, solving memory early
demux (does depend on HW filters into RX queues)

	Less fragmentation of the page buddy algorithm, when driver
maintains a steady-state working-set.

Design: page_pool

Design documentation for the page_pool.

	Overall design
	Optimization principle

	Memory Model
	DMA map+unmap

	Common driver layer

	Drivers old memory model

	Driver work-arounds

	Allocation side

	Memory Model for Networking
	Design target

	Background
	Writable packet page

	Read-only packet page

	NIC RX Zero-Copy
	Kernel safety

	Userspace delivery and OOM

	Early demux problem

Overall design

The page_pool is designed for performance, and for creating a flexible
and common memory model for drivers. Most drivers are based on
allocating pages for their DMA receive-rings. Thus, it is a design
goal to make it easy to convert these drivers.

Using page_pool provides an immediate performance improvement, and
opens up for the longer term goal of zero-copy receive into userspace.

Optimization principle

A fundamental property is that pages must be recycled back into
the page_pool (when the last user of the page is done).

Recycling pages allow a certain class of optimizations, which is to
move setup and tear-down operations out of the fast-path, sometimes
known as constructor/destruction operations. DMA map/unmap is one
example of operations this applies to. Certain page alloc/free
validations can also be avoided in the fast-path. Another example
could be pre-mapping pages into userspace, and clearing them
(memset-zero) outside the fast-path.

Memory Model

The page_pool should be as transparent as possible. This mean that
page coming out of a page_pool, should be considered a normal page
(with as few restrictions as possible). This implies a more tight
integration with the existing page allocator APIs. (This should also
make it easier to compile out.)

Driver are still allowed to split-up page and manipulate refcnt.

DMA map+unmap

The page_pool API takes over the DMA map+unmap operations, based on
the Optimization principle. The cost of DMA map+unmap depend
on the hardware architecture, and whether features like DMA IOMMU have
been enabled or not. Thus, the benefit is harder to quantify.

Taking over DMA map+unmap operations, also implies the page_pool
cannot be a complete drop-in replacement for the page allocator.

Common driver layer

It is important to have a common layer drivers use for allocating and
freeing pages.

The time budget for XDP direct forwarding between interfaces (based on
different drivers) cannot rely on pages going through the page
allocator (as the base cost is higher than the budget). The page_pool
recycle technique is needed here, across drivers.

Drivers also need a flexible memory model for supporting different
use-cases, which have trade-offs for different usage scenarios. And
the page_pool need to support these scenarios.

Network scenarios: XDP requires drivers to change the memory model to
one packet per page. When no XDP program is loaded, the driver can
instead choose to conserve memory by splitting up the page to share is
for multiple RX packets. When mapping pages to userspace, one packet
per page is likely also needed. For more details on networking see
Memory Model for Networking.

Drivers old memory model

Drivers (not using the page_pool) allocate pages for DMA operations
directly from the page allocator. Pages are freed into the page
allocator once their refcnt reach zero. Thus, pages are cycles
through the page allocator. This actually comes at a fairly high
cost, measurable by the page_bench micro-benchmarks [https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench] and graphs in
MM-summit2016 presentation [http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf].

Driver work-arounds

Warning

Document not complete

Allocation side

Piggyback on drivers RX protection for page allocations.

Memory Model for Networking

This design describes how the page_pool change the memory model for
networking in the NIC (Network Interface Card) drivers.

Note

The catch for driver developers is that, once an application
request zero-copy RX, then the driver must use a specific
SKB allocation mode and might have to reconfigure the
RX-ring.

Design target

Allow the NIC to function as a normal Linux NIC and be shared in a
safe manor, between the kernel network stack and an accelerated
userspace application using RX zero-copy delivery.

Target is to provide the basis for building RX zero-copy solutions in
a memory safe manor. An efficient communication channel for userspace
delivery is out of scope for this document, but OOM considerations are
discussed below (Userspace delivery and OOM).

Background

The SKB or struct sk_buff is the fundamental meta-data structure
for network packets in the Linux Kernel network stack. It is a fairly
complex object and can be constructed in several ways.

From a memory perspective there are two ways depending on
RX-buffer/page state:

	Writable packet page

	Read-only packet page

To take full potential of the page_pool, the drivers must actually
support handling both options depending on the configuration state of
the page_pool.

Writable packet page

When the RX packet page is writable, the SKB setup is fairly straight
forward. The SKB->data (and skb->head) can point directly to the page
data, adjusting the offset according to drivers headroom (for adding
headers) and setting the length according to the DMA descriptor info.

The page/data need to be writable, because the network stack need to
adjust headers (like TimeToLive and checksum) or even add or remove
headers for encapsulation purposes.

A subtle catch, which also requires a writable page, is that the SKB
also have an accompanying “shared info” data-structure struct
skb_shared_info. This “skb_shared_info” is written into the
skb->data memory area at the end (skb->end) of the (header) data. The
skb_shared_info contains semi-sensitive information, like kernel
memory pointers to other pages (which might be pointers to more packet
data). This would be bad from a zero-copy point of view to leak this
kind of information.

Read-only packet page

When the RX packet page is read-only, the construction of the SKB is
significantly more complicated and even involves one more memory
allocation.

	Allocate a new separate writable memory area, and point skb->data
here. This is needed due to (above described) skb_shared_info.

	Memcpy packet headers into this (skb->data) area.

	Clear part of skb_shared_info struct in writable-area.

	Setup pointer to packet-data in the page (in skb_shared_info->frags)
and adjust the page_offset to be past the headers just copied.

It is useful (later) that the network stack have this notion that part
of the packet and a page can be read-only. This implies that the
kernel will not “pollute” this memory with any sensitive information.
This is good from a zero-copy point of view, but bad from a
performance perspective.

NIC RX Zero-Copy

Doing NIC RX zero-copy involves mapping RX pages into userspace. This
involves costly mapping and unmapping operations in the address space
of the userspace process. Plus for doing this safely, the page memory
need to be cleared before using it, to avoid leaking kernel
information to userspace, also a costly operation. The page_pool base
“class” of optimization is moving these kind of operations out of the
fastpath, by recycling and lifetime control.

Once a NIC RX-queue’s page_pool have been configured for zero-copy
into userspace, then can packets still be allowed to travel the normal
stack?

Yes, this should be possible, because the driver can use the
SKB-read-only mode, which avoids polluting the page data with
kernel-side sensitive data. This implies, when a driver RX-queue
switch page_pool to RX-zero-copy mode it MUST also switch to
SKB-read-only mode (for normal stack delivery for this RXq).

XDP can be used for controlling which pages that gets RX zero-copied
to userspace. The page is still writable for the XDP program, but
read-only for normal stack delivery.

Kernel safety

For the paranoid, how do we protect the kernel from a malicious
userspace program. Sure there will be a communication interface
between kernel and userspace, that synchronize ownership of pages.
But a userspace program can violate this interface, given pages are
kept VMA mapped, the program can in principle access all the memory
pages in the given page_pool. This opens up for a malicious (or
defect) program modifying memory pages concurrently with the kernel
and DMA engine using them.

An easy way to get around userspace modifying page data contents is
simply to map pages read-only into userspace.

Note

The first implementation target is read-only zero-copy RX
page to userspace and require driver to use SKB-read-only
mode.

Advanced: Allowing userspace write access?

What if userspace need write access? Flipping the page permissions per
transfer will likely kill performance (as this likely affects the
TLB-cache).

I will argue that giving userspace write access is still possible,
without risking a kernel crash. This is related to the SKB-read-only
mode that copies the packet headers (in to another memory area,
inaccessible to userspace). The attack angle is to modify packet
headers after they passed some kernel network stack validation step
(as once headers are copied they are out of “reach”).

Situation classes where memory page can be modified concurrently:

	When DMA engine owns the page. Not a problem, as DMA engine will
simply overwrite data.

	Just after DMA engine finish writing. Not a problem, the packet
will go through netstack validation and be rejected.

	While XDP reads data. This can lead to XDP/eBPF program goes into a
wrong code branch, but the eBPF virtual machine should not be able
to crash the kernel. The worst outcome is a wrong or invalid XDP
return code.

	Before SKB with read-only page is constructed. Not a problem, the
packet will go through netstack validation and be rejected.

	After SKB with read-only page has been constructed. Remember the
packet headers were copied into a separate memory area, and the
page data is pointed to with an offset passed the copied headers.
Thus, userspace cannot modify the headers used for netstack
validation. It can only modify packet data contents, which is less
critical as it cannot crash the kernel, and eventually this will be
caught by packet checksum validation.

	After netstack delivered packet to another userspace process. Not a
problem, as it cannot crash the kernel. It might corrupt
packet-data being read by another userspace process, which one
argument for requiring elevated privileges to get write access
(like NET_CAP_ADMIN).

Userspace delivery and OOM

These RX pages are likely mapped to userspace via mmap(), so-far so
good. It is key to performance to get an efficient way of signaling
between kernel and userspace, e.g what page are ready for consumption,
and when userspace are done with the page.

It is outside the scope of page_pool to provide such a queuing
structure, but the page_pool can offer some means of protecting the
system resource usage. It is a classical problem that resources
(e.g. the page) must be returned in a timely manor, else the system,
in this case, will run out of memory. Any system/design with
unbounded memory allocation can lead to Out-Of-Memory (OOM)
situations.

Communication between kernel and userspace is likely going to be some
kind of queue. Given transferring packets individually will have too
much scheduling overhead. A queue can implicitly function as a
bulking interface, and offers a natural way to split the workload
across CPU cores.

This essentially boils down-to a two queue system, with the RX-ring
queue and the userspace delivery queue.

Two bad situations exists for the userspace queue:

	Userspace is not consuming objects fast-enough. This should simply
result in packets getting dropped when enqueueing to a full
userspace queue (as queue must implement some limit). Open
question is; should this be reported or communicated to userspace.

	Userspace is consuming objects fast, but not returning them in a
timely manor. This is a bad situation, because it threatens the
system stability as it can lead to OOM.

The page_pool should somehow protect the system in case 2. The
page_pool can detect the situation as it is able to track the number
of outstanding pages, due to the recycle feedback loop. Thus, the
page_pool can have some configurable limit of allowed outstanding
pages, which can protect the system against OOM.

Note, the Fbufs paper [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9688] propose to solve case 2 by allowing these
pages to be “pageable”, i.e. swap-able, but that is not an option for
the page_pool as these pages are DMA mapped.

Effect of blocking allocation

The effect of page_pool, in case 2, that denies more allocations
essentially result-in the RX-ring queue cannot be refilled and HW
starts dropping packets due to “out-of-buffers”. For NICs with
several HW RX-queues, this can be limited to a subset of queues (and
admin can control which RX queue with HW filters).

The question is if the page_pool can do something smarter in this
case, to signal the consumers of these pages, before the maximum limit
is hit (of allowed outstanding packets). The MM-subsystem already
have a concept of emergency PFMEMALLOC reserves and associate
page-flags (e.g. page_is_pfmemalloc). And the network stack already
handle and react to this. Could the same PFMEMALLOC system be used
for marking pages when limit is close?

This requires further analysis. One can imagine; this could be used at
RX by XDP to mitigate the situation by dropping less-important frames.
Given XDP choose which pages are being send to userspace it might have
appropriate knowledge of what it relevant to drop(?).

Note

An alternative idea is using a data-structure that blocks
userspace from getting new pages before returning some.
(out of scope for the page_pool)

Early demux problem

Todo

Describe the early demux problem, and how page_pool solves this.

eBPF - extended Berkeley Packet Filter

Introduction

The Berkeley Packet Filter (BPF) started (article 1992 [http://www.tcpdump.org/papers/bpf-usenix93.pdf]) as a
special-purpose virtual machine (register based filter evaluator) for
filtering network packets, best known for its use in tcpdump. It is
documented in the kernel tree, in the first part of:
Documentation/networking/filter.txt [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt]

The extended BPF (eBPF) variant has become a universal in-kernel
virtual machine, that has hooks all over the kernel. The eBPF
instruction set is quite different, see description in section “BPF
kernel internals” of Documentation/networking/filter.txt [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt] or look at
this presentation by Alexei [http://www.slideshare.net/AlexeiStarovoitov/bpf-inkernel-virtual-machine].

	Areas using eBPF:

	
	XDP - eXpress Data Path

	Traffic control [http://man7.org/linux/man-pages/man8/tc-bpf.8.html]

	Sockets

	Firewalling (xt_bpf module)

	Tracing

	Tracepoints

	kprobe (dynamic tracing of a kernel function call)

	cgroups

Documentation

The primary user documentation for extended BPF is in the man-page for
the bpf(2) [http://man7.org/linux/man-pages/man2/bpf.2.html] syscall.

An excellent BPF and XDP Reference Guide [http://cilium.readthedocs.io/en/latest/bpf/] is being maintained by the
Cilium project [https://www.cilium.io/].

This documentation is focused on the kernel tree’s samples/bpf/ [https://github.com/torvalds/linux/blob/master/samples/bpf/] and
tools/lib/bpf/ [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/]. It is worth mentioning that other projects exist,
like BCC (BPF Compiler Collection), that has a slightly different user-facing
syntax, but is interfacing with the same kernel facilities as those
covered by this documentation.

	eBPF maps

	Types of eBPF maps

	Troubleshooting eBPF

	BCC (BPF Compiler Collection)

eBPF maps

This document describes what eBPF maps are, how you create them
(Creating a map), and how to interact with them (Interacting with
maps). The different map types available are described here:
Types of eBPF maps.

Using eBPF maps is a method to keep state between invocations of the
eBPF program, and allows sharing data between eBPF kernel programs,
and also between kernel and user-space applications.

Basically a key/value store with arbitrary structure (from man-page
bpf(2) [http://man7.org/linux/man-pages/man2/bpf.2.html]):

eBPF maps are a generic data structure for storage of different data
types. Data types are generally treated as binary blobs, so a user
just specifies the size of the key and the size of the value at
map-creation time. In other words, a key/value for a given map can
have an arbitrary structure.

The map handles are file descriptors, and multiple maps can be created
and accessed by multiple programs (from man-page bpf(2) [http://man7.org/linux/man-pages/man2/bpf.2.html]):

A user process can create multiple maps (with key/value-pairs being
opaque bytes of data) and access them via file descriptors.
Different eBPF programs can access the same maps in parallel. It’s
up to the user process and eBPF program to decide what they store
inside maps.

Creating a map

A map is created based on a request from userspace, via the bpf [http://man7.org/linux/man-pages/man2/bpf.2.html]
syscall (specifically bpf_cmd [http://lxr.free-electrons.com/ident?i=bpf_cmd] BPF_MAP_CREATE), which returns a new
file descriptor that refers to the map. On error, -1 is returned and
errno is set to EINVAL, EPERM, or ENOMEM. These are the struct
bpf_attr setup arguments to use when creating a map via the
syscall:

bpf(BPF_MAP_CREATE, &bpf_attr, sizeof(bpf_attr));

Notice how this kernel ABI is extensible, as more struct arguments can
easily be added later as the sizeof(bpf_attr) is passed along to the
syscall. This also implies that API users must clear/zero
sizeof(bpf_attr), as compiler can size-align the struct differently,
to avoid garbage data to be interpreted as parameters by future
kernels.

The following configuration attributes are needed when creating the map:

union bpf_attr {
 struct { /* anonymous struct used by BPF_MAP_CREATE command */
 __u32 map_type; /* one of enum bpf_map_type */
 __u32 key_size; /* size of key in bytes */
 __u32 value_size; /* size of value in bytes */
 __u32 max_entries; /* max number of entries in a map */
 __u32 map_flags; /* prealloc or not */
 };
}

Kernel sample/bpf ELF convention

For programs under samples/bpf/, defining a map have been integrated
with ELF binary generated by LLVM. This is purely one example of a
userspace convention and not part of the kernel ABI. It still invokes
the bpf syscall.

Map definitions are done by defining a struct bpf_map_def with an
elf section __attribute__ SEC("maps"), in the xxx_kern.c file.
The maps file descriptor is available in the userspace xxx_user.c
file, via global array variable map_fd[], and the array map index
corresponds to the order the maps sections were defined in elf file of
xxx_kern.c file. Behind the scenes it is the load_bpf_file() call
(from samples/bpf/bpf_load [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/samples/bpf/bpf_load.c]) that takes care of parsing ELF file
compiled by LLVM, pickup ‘maps’ section and creates maps via the bpf
syscall.

struct bpf_map_def {
 unsigned int type;
 unsigned int key_size;
 unsigned int value_size;
 unsigned int max_entries;
 unsigned int map_flags;
};

struct bpf_map_def SEC("maps") my_map = {
 .type = BPF_MAP_TYPE_XXX,
 .key_size = sizeof(u32),
 .value_size = sizeof(u64),
 .max_entries = 42,
 .map_flags = 0
};

Qdisc Traffic Control convention

It is worth mentioning, that qdisc TC (Traffic Control), also use ELF
files for defining the maps, but it uses another layout. See man-page
tc-bpf(8) [http://man7.org/linux/man-pages/man8/tc-bpf.8.html] and tc bpf examples [https://git.kernel.org/cgit/linux/kernel/git/shemminger/iproute2.git/tree/examples/bpf] in iproute2.git [https://git.kernel.org/cgit/linux/kernel/git/shemminger/iproute2.git/about/] tree.

Interacting with maps

Interacting with eBPF maps happens through some lookup/update/delete
primitives.

When writing eBFP programs using load helpers and libraries from
samples/bpf/ and tools/lib/bpf/. Common function name API have been
created that hides the details of how kernel vs. userspace access
these primitives (which is quite different).

The common function names (parameters and return values differs):

void bpf_map_lookup_elem(map, void *key. ...);
void bpf_map_update_elem(map, void *key, ..., __u64 flags);
void bpf_map_delete_elem(map, void *key);

The flags argument in bpf_map_update_elem() allows to define
semantics on whether the element exists:

/* File: include/uapi/linux/bpf.h */
/* flags for BPF_MAP_UPDATE_ELEM command */
#define BPF_ANY 0 /* create new element or update existing */
#define BPF_NOEXIST 1 /* create new element only if it didn't exist */
#define BPF_EXIST 2 /* only update existing element */

Userspace

The userspace API map helpers are defined in tools/lib/bpf/bpf.h [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/bpf.h]
and looks like this:

/* Userspace helpers */
int bpf_map_lookup_elem(int fd, void *key, void *value);
int bpf_map_update_elem(int fd, void *key, void *value, __u64 flags);
int bpf_map_delete_elem(int fd, void *key);
/* Only userspace: */
int bpf_map_get_next_key(int fd, void *key, void *next_key);

Interacting with an eBPF map from userspace, happens through the
bpf [http://man7.org/linux/man-pages/man2/bpf.2.html] syscall and a file descriptor. See how the map handle int
fd is a file descriptor . On success, zero is returned, on
failures -1 is returned and errno is set.

Wrappers for the bpf syscall is implemented in tools/lib/bpf/bpf.c [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/bpf.c],
and ends up calling functions in kernel/bpf/syscall.c [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/syscall.c], like
map_lookup_elem [http://lxr.free-electrons.com/ident?i=map_lookup_elem].

/* Corresponding syscall bpf commands from userspace */
enum bpf_cmd {
 [...]
 BPF_MAP_LOOKUP_ELEM,
 BPF_MAP_UPDATE_ELEM,
 BPF_MAP_DELETE_ELEM,
 BPF_MAP_GET_NEXT_KEY,
 [...]
};

Notice how void *key and void *value are passed as a void
pointers. Given the memory seperation between kernel and userspace,
this is a copy of the value. Kernel primitives like
copy_from_user() and copy_to_user() are used, e.g. see
map_lookup_elem [http://lxr.free-electrons.com/ident?i=map_lookup_elem], which also kmalloc+kfree memory for a short
period.

From userspace, there is no function call to atomically increment or
decrement the value ‘in-place’. The bpf_map_update_elem() call will
overwrite the existing value, with a copy of the value supplied.
Depending on the map type, the overwrite will happen in an atomic way,
e.g. using locking mechanisms specific to the map type.

Kernel-side eBPF program

The API mapping for eBPF programs on the kernel-side is fairly hard to
follow. It related to samples/bpf/bpf_helpers.h [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/samples/bpf/bpf_helpers.h] and maps into
kernel/bpf/helpers.c [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/helpers.c] via macros.

/* eBPF program helpers */
void *bpf_map_lookup_elem(void *map, void *key);
int bpf_map_update_elem(void *map, void *key, void *value, unsigned long long flags);
int bpf_map_delete_elem(void *map, void *key);

The eBPF-program running kernel-side interacts more directly with the
map data structures. For example the call bpf_map_lookup_elem()
returns a direct pointer to the ‘value’ memory-element inside the
kernel (while userspace gets a copy). This allows the eBPF-program to
atomically increment or decrement the value ‘in-place’, by using
appropiate compiler primitives like __sync_fetch_and_add(), which
is understood by LLVM when generating eBPF instructions.

Todo

	describe how verifier validate map access to be safe.

	describe int return codes of bpf_map_update_elem + bpf_map_delete_elem.

Export map to filesystem

When Interacting with maps from Userspace a file descriptor is
needed. There are two methods for sharing this file descriptor.

	By passing it over Unix-domain sockets.

	Exporting the map to a special bpf filesystem.

Option 2, exporting or pinning the map through the filesystem is more
convenient and easier than option 1. Thus, this document will focus on
option 2.

Todo

Describe the API for bpf_obj_pin and bpf_obj_get.
Usage examples available in XDP blacklist [https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_user.c] for
bpf_obj_pin() and XDP blacklist cmdline tool [https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_cmdline.c] show use of
bpf_obj_get().

Todo

add link to Daniel’s TC example of using Unix-domain sockets.

Types of eBPF maps

This document describes the different types of eBPF maps available,
and goes into details about the individual map types. The purpose is
to help choose the right type based on the individual use-case.
Creating and interacting with maps are described in another document
here: eBPF maps.

The different types of maps available, are defined by enum
bpf_map_type in include/uapi/linux/bpf.h. These type definition
“names” are needed when creating the map. Example of bpf_map_type,
but remember to lookup latest [http://lingrok.org/search?project=linux-net-next&q=bpf_map_type] available maps in the source code.

enum bpf_map_type {
 BPF_MAP_TYPE_UNSPEC,
 BPF_MAP_TYPE_HASH,
 BPF_MAP_TYPE_ARRAY,
 BPF_MAP_TYPE_PROG_ARRAY,
 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
 BPF_MAP_TYPE_PERCPU_HASH,
 BPF_MAP_TYPE_PERCPU_ARRAY,
 BPF_MAP_TYPE_STACK_TRACE,
 BPF_MAP_TYPE_CGROUP_ARRAY,
 BPF_MAP_TYPE_LRU_HASH,
 BPF_MAP_TYPE_LRU_PERCPU_HASH,
};

Implementation details

In-order to understand and follow the descriptions of the different
map types, in is useful for the reader to understand how a map type is
implemented by the kernel.

On the kernel side, implementing a map type requires defining some
function call (pointers) via struct bpf_map_ops [http://lxr.free-electrons.com/ident?i=bpf_map_ops]. The eBPF programs
(and userspace) have access to the functions calls
map_lookup_elem, map_update_elem and map_delete_elem,
which get invoked from eBPF via bpf-helpers in kernel/bpf/helpers.c [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/helpers.c],
or via userspace the bpf syscall (as described in eBPF maps).

Creating a map requires supplying the following configuration
attributes: map_type, key_size, value_size, max_entries and map_flags.

BPF_MAP_TYPE_ARRAY

Implementation defined in kernel/bpf/arraymap.c [http://lxr.free-electrons.com/source/kernel/bpf/arraymap.c] via struct
bpf_map_ops array_ops [http://lxr.free-electrons.com/ident?i=array_ops].

As the name BPF_MAP_TYPE_ARRAY indicates, this can be seen as an
array. All array elements are pre-allocated and zero initialized at
init time. Key is an index in array and can only be 4 bytes (32-bit).
The constant size is defined by max_entries. This init-time
constant also implies bpf_map_delete_elem (array_map_delete_elem [http://lxr.free-electrons.com/ident?i=array_map_delete_elem])
is an invalid operation.

Optimized for fastest possible lookup. The size is constant for the
life of the eBPF program, which allows verifier+JIT to perform a wider
range of optimizations. E.g. array_map_lookup_elem() [http://lxr.free-electrons.com/ident?i=array_map_lookup_elem] may be
‘inlined’ by JIT.

Small size gotcha, the value_size is rounded up to 8 bytes.

Example usage BPF_MAP_TYPE_ARRAY, based on samples/bpf/sockex1_kern.c [https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/samples/bpf/sockex1_kern.c]:

struct bpf_map_def SEC("maps") my_map = {
 .type = BPF_MAP_TYPE_ARRAY,
 .key_size = sizeof(u32),
 .value_size = sizeof(long),
 .max_entries = 256,
};

u32 index = 42;
long *value;
value = bpf_map_lookup_elem(&my_map, &index);
 if (value)
 __sync_fetch_and_add(value, 1);

The lookup (from kernel side) bpf_map_lookup_elem() returns a pointer
into the array element. To avoid data races with userspace reading
the value, the API-user must use primitives like __sync_fetch_and_add()
when updating the value in-place.

Troubleshooting eBPF

This document should help end-users with troubleshooting their eBPF
programs. With a primary focus on programs under kernels samples/bpf.

Memory ulimits

The eBPF maps uses locked memory, which is default very low.
Your program likely need to increase resource limit RLIMIT_MEMLOCK
see system call setrlimit(2) [http://man7.org/linux/man-pages/man2/setrlimit.2.html].

The bpf_create_map call will return errno EPERM (Operation not
permitted) when the RLIMIT_MEMLOCK memory size limit is exceeded.

Enable bpf JIT

Not seeing the expected performance and perf top showing
__bpf_prog_run() as the top CPU consumer.

Did you remember to enable JIT’ing of the BPF code?
Like:

$ sysctl net/core/bpf_jit_enable=1
net.core.bpf_jit_enable = 1

Notice there is both JIT’ing of eBPF and cBPF (Classical BPF)
implemented in the kernel per arch. You can see current cBPF and eBPF
JITs that are supported by the kernel via:

$ git grep BPF_JIT | grep select
arch/arm/Kconfig: select HAVE_CBPF_JIT
arch/arm64/Kconfig: select HAVE_EBPF_JIT
arch/mips/Kconfig: select HAVE_CBPF_JIT if !CPU_MICROMIPS
arch/powerpc/Kconfig: select HAVE_CBPF_JIT if !PPC64
arch/powerpc/Kconfig: select HAVE_EBPF_JIT if PPC64
arch/s390/Kconfig: select HAVE_EBPF_JIT if PACK_STACK && HAVE_MARCH_Z196_FEATURES
arch/sparc/Kconfig: select HAVE_CBPF_JIT if SPARC32
arch/sparc/Kconfig: select HAVE_EBPF_JIT if SPARC64
arch/x86/Kconfig: select HAVE_EBPF_JIT if X86_64

Also see Cilium JIT [http://cilium.readthedocs.io/en/latest/bpf/#jit] section and BPF sysctl [http://cilium.readthedocs.io/en/latest/bpf/#bpf-sysctls.] section.

ELF binary

The binary containing the eBPF program, which got generated by the
LLVM compiler, is an normal ELF binary. For samples/bpf/ this is the
file named xxx_kern.o. It is possible to inspect this normal ELF file,
with tools like readelf or llvm-objdump.

$ llvm-objdump -h xdp_ddos01_blacklist_kern.o

xdp_ddos01_blacklist_kern.o: file format ELF64-unknown

Sections:
Idx Name Size Address Type
 0 00000000 0000000000000000
 1 .strtab 00000072 0000000000000000
 2 .text 00000000 0000000000000000 TEXT DATA
 3 xdp_prog 000001b8 0000000000000000 TEXT DATA
 4 .relxdp_prog 00000020 0000000000000000
 5 maps 00000028 0000000000000000 DATA
 6 license 00000004 0000000000000000 DATA
 7 .symtab 000000d8 0000000000000000

From the above output some trivial information can be extracted. This
is an XDP program, as the defined program section Idx 3 starts with
the letters “xdp”. From the same line the size column also show the
program size in hex 0001b8 equal 440 bytes, or 55 bpf instructions, as
each insns is 8 bytes (see struct bpf_insn [http://lxr.free-electrons.com/ident?i=bpf_insn]) (shell trick echo
$((0x1b8)) insns=$((0x1b8 / 8))). Do notice this size is not the
JIT’ed program size.

The loader code samples/bpf/bpf_load.c parse this elf file, extract needed
program sections, uses the maps section and relocation section (here
.relxdp_prog) to remap the BPF_PSEUDO_MAP_FD instruction to
point to the correct map (which gets created during parsing of the
maps section, via standard bpf-syscall bpf_create_map).

LLVM disassemble support

Todo

Document what LLVM version this “-S” option got added

In newer versions of LLVM, the tool llvm-objdump, supports showing
section names, asm code and original C code, if compiled with -g.

llvm-objdump -S prog_kern.o

Todo

What does the option -no-show-raw-insn do?

See Cilium Toolchain LLVM [http://cilium.readthedocs.io/en/latest/bpf/#jit-debugging] section for more details.

Extracting eBPF-JIT code

Also see Cilium JIT Debugging [http://cilium.readthedocs.io/en/latest/bpf/#jit-debugging].

For debugging/seeing the generated JIT code, is it possible to change
this proc sysctl:

sysctl net.core.bpf_jit_enable=2

The output looks like:

flen=55 proglen=335 pass=4 image=ffffffffa0006820 from=xdp_ddos01_blac pid=13333
JIT code: 00000000: 55 48 89 e5 48 81 ec 28 02 00 00 48 89 9d d8 fd
JIT code: 00000010: ff ff 4c 89 ad e0 fd ff ff 4c 89 b5 e8 fd ff ff
JIT code: 00000020: 4c 89 bd f0 fd ff ff 31 c0 48 89 85 f8 fd ff ff
JIT code: 00000030: bb 02 00 00 00 48 8b 77 08 48 8b 7f 00 48 89 fa
JIT code: 00000040: 48 83 c2 0e 48 39 f2 0f 87 e1 00 00 00 48 0f b6
JIT code: 00000050: 4f 0c 48 0f b6 57 0d 48 c1 e2 08 48 09 ca 48 89
JIT code: 00000060: d1 48 81 e1 ff 00 00 00 41 b8 06 00 00 00 49 39
JIT code: 00000070: c8 0f 87 b7 00 00 00 48 81 fa 88 a8 00 00 74 0e
JIT code: 00000080: b9 0e 00 00 00 48 81 fa 81 00 00 00 75 1a 48 89
JIT code: 00000090: fa 48 83 c2 12 48 39 f2 0f 87 90 00 00 00 b9 12
JIT code: 000000a0: 00 00 00 48 0f b7 57 10 bb 02 00 00 00 48 81 e2
JIT code: 000000b0: ff ff 00 00 48 83 fa 08 75 49 48 01 cf 31 db 48
JIT code: 000000c0: 89 fa 48 83 c2 14 48 39 f2 77 38 8b 7f 0c 89 7d
JIT code: 000000d0: fc 48 89 ee 48 83 c6 fc 48 bf 00 9c 24 5f 07 88
JIT code: 000000e0: ff ff e8 29 cd 13 e1 bb 02 00 00 00 48 83 f8 00
JIT code: 000000f0: 74 11 48 8b 78 00 48 83 c7 01 48 89 78 00 bb 01
JIT code: 00000100: 00 00 00 89 5d f8 48 89 ee 48 83 c6 f8 48 bf c0
JIT code: 00000110: 76 12 13 04 88 ff ff e8 f4 cc 13 e1 48 83 f8 00
JIT code: 00000120: 74 0c 48 8b 78 00 48 83 c7 01 48 89 78 00 48 89
JIT code: 00000130: d8 48 8b 9d d8 fd ff ff 4c 8b ad e0 fd ff ff 4c
JIT code: 00000140: 8b b5 e8 fd ff ff 4c 8b bd f0 fd ff ff c9 c3

The proglen is the len of opcode sequence generated and flen
is the number of bpf insns. You can use tools/net/bpf_jit_disasm.c to
disassemble that output. bpf_jit_disasm -o will dump the related
opcodes as well.

Perf tool symbols

For JITed progs, you can do sysctl net/core/bpf_jit_kallsyms=1
and f.e. perf script –kallsyms=/proc/kallsyms to show them based
on the tag:

sysctl net/core/bpf_jit_kallsyms=1

Detail see commit: https://git.kernel.org/torvalds/c/74451e66d516c55e3

Remember to use the perf command-line option –kallsyms=/proc/kallsyms
to get the symobols resolved, like:

perf report --no-children --kallsyms=/proc/kallsyms

BCC (BPF Compiler Collection)

BCC is a toolkit to make eBPF programs easier to write, with
front-ends in Python and Lua. BCC requires LLVM and clang (in version
3.7.1 or newer) to be available on target, because BCC programs do
runtime compilation of the restricted-C code into eBPF instructions.

BCC includes several useful tools [https://github.com/iovisor/bcc/tree/master/tools] and examples [https://github.com/iovisor/bcc/tree/master/examples], developed by
recognized performance analyst Brendan Gregg [http://www.brendangregg.com/] and covered with a
tutorial [https://github.com/iovisor/bcc/blob/master/docs/tutorial.md] and slides [http://www.slideshare.net/brendangregg/linux-bpf-superpowers/43/].

The project maintains an overview of eBPF supported kernels [https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md] and
what versions got which specific features. There is also a BCC
Reference Guide [https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md].

Blogposts, Reports and Write-ups

This documentation area is used for publishing reports and write-ups
of my work, which I find relevant for other people. This will closely
resemble previous my blogposts [https://netoptimizer.blogspot.dk/]. Hoping using this rst-text format
will make it less of an hassle to publish my work. (This directory is
not intented to be integrated with the kernels documentation tree).

Contents:

	Eval Generic netstack XDP patch

Eval Generic netstack XDP patch

	Authors

	Jesper Dangaard Brouer

	Version

	1.0.1

	Date

	2017-04-24 Mon

	Updated

	2017-06-08

Given XDP works at the driver level, developing and testing XDP
programs requires access to specific NIC hardware… but this is about
to change in kernel v4.12.

UPDATE (2017-06-08): The mentioned/evaluated patches have been
accepted [https://git.kernel.org/torvalds/c/b5cdae3291f7] and will appear in kernel release v4.12

To ease developing and testing XDP programs, a generic netstack-XDP
patch proposal (PATCH V3 [http://lkml.kernel.org/r/20170412.145415.1441440342830198148.davem@davemloft.net] and PATCH V4 [http://lkml.kernel.org/r/20170413.120925.2082322246776478766.davem@davemloft.net]) have been posted. This
allow for attaching XDP programs to any net_device. If the driver
doesn’t support native XDP, the XDP eBPF program gets attached further
inside the network stack. This is obviously slower and loses the XDP
benefit of skipping the SKB allocation.

The generic netstack-XDP patchset is NOT targetted high
performance, but instead for making it easier to test and develop XDP
programs.

That said, this does provide an excellent opportunity for comparing
performance between NIC-level-XDP and netstack-XDP. This provides the
ability to do what I call zoom-in-benchmarking of the network stack
facilities, that the NIC-XDP programs avoid. Thus, allowing us to
quantify the cost of these facilities.

Special note for the KVM driver virtio_net:

XDP support have been added to KVM via the virtio_net driver, but
unfortunately it is a hassle to configure (given it requires
disabling specific options [https://marc.info/?l=xdp-newbies&m=149486931113651&w=2], which are default enabled).

Benchmark program

The XDP program used is called: xdp_bench01_mem_access_cost and is
available in the prototype kernel samples/bpf [https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf] directory as
xdp_bench01_mem_access_cost_kern.c [https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_bench01_mem_access_cost_kern.c] and _user.c [https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_bench01_mem_access_cost_user.c].

UPDATE (2017-06-08): The xdp_bench01_mem_access_cost program
have gotten an option called --skb-mode, which will force using
“Generic XDP” even on interfaces that do support XDP natively. This
is practical for doing this kind of comparison as described in the
document.

Baseline testing with NIC-level XDP

First establish a baseline for the performance of NIC-level XDP. This
will serve as baseline against the patch being evaluated. The packet
generator machine is running pktgen_sample03_burst_single_flow.sh [https://github.com/torvalds/linux/blob/master/samples/pktgen/pktgen_sample03_burst_single_flow.sh],
which implies these tests are single CPU RX performance, as the UDP
flow will hit a single hardware RX-queue, and thus only activate a
single CPU.

Baseline with mlx5 on a Skylake CPU:
Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz.

Network card (NIC) hardware: NIC: ConnectX-4 Dual 100Gbit/s, driver
mlx5. Machines connected back-to-back with Ethernet-flow control
disabled.

Dropping packet without touching the packet data (thus avoiding
cache-miss) have a huge effect on my system. HW indicate via PMU
counter LLC-load-misses that DDIO is working on my system, but the
L3-to-L1 cache-line miss is causing the CPU to stall:

[jbrouer@skylake prototype-kernel]$
 sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2
XDP_action pps pps-human-readable mem
XDP_DROP 19851067 19,851,067 no_touch
XDP_DROP 19803663 19,803,663 no_touch (**used in examples**)
XDP_DROP 19795927 19,795,927 no_touch
XDP_DROP 19792161 19,792,161 no_touch
XDP_DROP 19792109 19,792,109 no_touch

I have previously posted patches to the mlx5 and mlx4 driver, that
prefetch packet-data into L2, and avoid this cache stall, and I can
basically achieve same result as above, even when reading data.
Mellanox have taken over these patches, but they are stalling on that
on newer E5-26xx v4 CPUs this prefetch already happens in HW.

This is a more realistic XDP_DROP senario where we touch packet data
before dropping it (causes cache miss from L3):

[jbrouer@skylake prototype-kernel]$
 sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2 --read
XDP_action pps pps-human-readable mem
XDP_DROP 11972515 11,972,515 read
XDP_DROP 12006685 12,006,685 read (**used in examples**)
XDP_DROP 12004640 12,004,640 read
XDP_DROP 11997837 11,997,837 read
XDP_DROP 11998538 11,998,538 read
^CInterrupted: Removing XDP program on ifindex:5 device:mlx5p2

An interesting observation and take-ways from these two measurements
is that this cache-miss cost approx 32ns ((1/12006685-1/19803663)*10^9).

For the XDP_TX test to be correct, it is important to swap MAC-addrs
else the NIC HW will not transmit this to the wire (I verified this
was actually TX’ed to the wire):

[jbrouer@skylake prototype-kernel]$
 sudo ./xdp_bench01_mem_access_cost --action XDP_TX --dev mlx5p2 --read
XDP_action pps pps-human-readable mem
XDP_TX 10078899 10,078,899 read
XDP_TX 10109107 10,109,107 read
XDP_TX 10107393 10,107,393 read
XDP_TX 10107946 10,107,946 read
XDP_TX 10109020 10,109,020 read

Testing with network stack generic XDP

This test is based on PATCH V4 [http://lkml.kernel.org/r/20170413.120925.2082322246776478766.davem@davemloft.net] after adjusting the patch according
to the email thread, and and validated XDP_TX can send packets on wire.

Netstack XDP_DROP

As expected there is no difference in letting the XDP prog touch/read
packet-data vs “no_touch”, because we cannot avoid touching given the
XDP/eBPF hook happens much later in the network stack. As can be seen
by these benchmarks:

[jbrouer@skylake prototype-kernel]$
 sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2
XDP_action pps pps-human-readable mem
XDP_DROP 8438488 8,438,488 no_touch
XDP_DROP 8423788 8,423,788 no_touch
XDP_DROP 8425617 8,425,617 no_touch
XDP_DROP 8421396 8,421,396 no_touch
XDP_DROP 8432846 8,432,846 no_touch
^CInterrupted: Removing XDP program on ifindex:7 device:mlx5p2

The drop numbers are good, for the netstack but some distance to the
12,006,685 pps of XDP running on in-the-NIC. Percentage-wise it looks
big a reduction of approx 30%. But nanosec difference is it “only”
(1/12006685*10^9)-(1/8413417*10^9) = -35.57 ns

[jbrouer@skylake prototype-kernel]$
 sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2 --read
XDP_action pps pps-human-readable mem
XDP_DROP 8415835 8,415,835 read
XDP_DROP 8413417 8,413,417 read
XDP_DROP 8236525 8,236,525 read
XDP_DROP 8410996 8,410,996 read
XDP_DROP 8412015 8,412,015 read
^CInterrupted: Removing XDP program on ifindex:7 device:mlx5p2

Do notice, that reaching around 8Mpps is a very good result for
the normal networks stack, because 100Gbit/s with large MTU size
frames (1536 bytes due to overheads) corresponds to 8,138,020 pps
((100*10^9)/(1536*8)). The above test is with small 64bytes packets,
and the generator sending 40Mpps (can be tuned to 65Mpps).

Below perf-stat for this generic netstack-XDP_DROP test, show a high
(2.01) insn per cycle indicate that it is functioning fairly optimal,
and we likely cannot find any “magic” trick as the CPU does not seem
to be stalling on something:

$ sudo ~/perf stat -C7 -e L1-icache-load-misses -e cycles:k \
 -e instructions:k -e cache-misses:k -e cache-references:k \
 -e LLC-store-misses:k -e LLC-store -e LLC-load-misses:k \
 -e LLC-load -r 4 sleep 1

Performance counter stats for 'CPU(s) 7' (4 runs):

 349,830 L1-icache-load-misses (+- 0.53%) (33.31%)
3,989,134,732 cycles:k (+- 0.06%) (44.50%)
8,016,054,916 instructions:k # 2.01 insn per cycle (+- 0.02%) (55.62%)
 31,843,544 cache-misses:k # 17.337 % of all cache refs (+- 0.04%) (66.71%)
 183,671,576 cache-references:k (+- 0.03%) (66.71%)
 1,190,204 LLC-store-misses (+- 0.29%) (66.71%)
 17,376,723 LLC-store (+- 0.04%) (66.69%)
 55,058 LLC-load-misses (+- 0.07%) (22.19%)
 3,056,972 LLC-load (+- 0.13%) (22.19%)

Netstack XDP_TX

When testing XDP_TX it is important to verify that packets are
actually transmitted. This is because the NIC HW can choose to drop
invalid packets, which changes the performance profile and your
results.

Generic netstack-XDP_TX verified actually hitting wire. The slowdown
is higher than expected. Maybe we are stalling on the
tairptr/doorbell update on TX???

[jbrouer@skylake prototype-kernel]$
 sudo ./xdp_bench01_mem_access_cost --action XDP_TX --dev mlx5p2 --read
XDP_action pps pps-human-readable mem
XDP_TX 4577542 4,577,542 read
XDP_TX 4484903 4,484,903 read
XDP_TX 4571821 4,571,821 read
XDP_TX 4574512 4,574,512 read
XDP_TX 4574424 4,574,424 read (**use in examples**)
XDP_TX 4575712 4,575,712 read
XDP_TX 4505569 4,505,569 read
^CInterrupted: Removing XDP program on ifindex:7 device:mlx5p2

Below perf-stat for generic netstack-XDP_TX, show a lower (1.51) insn
per cycle, indicate that the system is stalling on something

$ sudo ~/perf stat -C7 -e L1-icache-load-misses -e cycles:k \
 -e instructions:k -e cache-misses:k -e cache-references:k \
 -e LLC-store-misses:k -e LLC-store -e LLC-load-misses:k \
 -e LLC-load -r 4 sleep 1

Performance counter stats for 'CPU(s) 7' (4 runs):

 518,261 L1-icache-load-misses (+- 0.58%) (33.30%)
3,989,223,247 cycles:k (+- 0.01%) (44.49%)
6,017,445,820 instructions:k # 1.51 insn per cycle (+- 0.31%) (55.62%)
 26,931,778 cache-misses:k # 10.930 % of all cache refs (+- 0.05%) (66.71%)
 246,406,110 cache-references:k (+- 0.19%) (66.71%)
 1,317,850 LLC-store-misses (+- 2.93%) (66.71%)
 30,028,771 LLC-store (+- 0.88%) (66.70%)
 72,146 LLC-load-misses (+- 0.22%) (22.19%)
 12,426,426 LLC-load (+- 2.12%) (22.19%)

Perf details for netstack XDP_TX

My first though is that there is a high probability that this could be
the tairptr/doorbell update. Looking at perf report something else
lights up, which could still be the tailptr, as it stalls on the next
lock operation

Samples: 25K of event 'cycles', Event count (approx.): 25790301710
 Overhead Symbol
+ 24.75% [k] mlx5e_handle_rx_cqe
+ 16.95% [k] __build_skb
+ 10.72% [k] mlx5e_xmit
+ 7.03% [k] build_skb
+ 5.31% [k] mlx5e_alloc_rx_wqe
+ 2.99% [k] kmem_cache_alloc
+ 2.65% [k] ___slab_alloc
+ 2.65% [k] _raw_spin_lock
+ 2.52% [k] bpf_prog_662b9cae761bf6ab
+ 2.37% [k] netif_receive_skb_internal
+ 1.92% [k] memcpy_erms
+ 1.73% [k] generic_xdp_tx
+ 1.69% [k] mlx5e_get_cqe
+ 1.40% [k] __netdev_pick_tx
+ 1.28% [k] __rcu_read_unlock
+ 1.19% [k] netdev_pick_tx
+ 1.02% [k] swiotlb_map_page
+ 1.00% [k] __cmpxchg_double_slab.isra.56
+ 0.99% [k] dev_gro_receive
+ 0.85% [k] __rcu_read_lock
+ 0.80% [k] napi_gro_receive
+ 0.79% [k] mlx5e_poll_rx_cq
+ 0.73% [k] mlx5e_post_rx_wqes
+ 0.71% [k] get_partial_node.isra.76
+ 0.70% [k] mlx5e_page_release
+ 0.62% [k] eth_type_trans
+ 0.56% [k] mlx5e_select_queue
 0.49% [k] skb_gro_reset_offset
 0.42% [k] skb_put

Packet rate 4574424 translates to ~219 nanosec (1/4574424*10^9).

The top contender is mlx5e_handle_rx_cqe(24.75%), which initially
didn’t surprise me, given I know that this function (via inlining)
will be the first to touch the packet (via is_first_ethertype_ip()),
thus causing a cache-line miss. BUT something is wrong. Looking
at perf-annotate, the cache-line miss is NOT occurring, instead 67.24%
CPU time spend on a refcnt increment (due to page_ref_inc(di->page)
used for page-recycle cache). Something is wrong as 24.75% of 219 is
54ns, which is too high even for an atomic refcnt inc. (Note: the
cache-miss is actually avoided due to the prefetch have time to work,
due to this stall on the lock. Thus, removing the stall will
bring-back the cache-line stall).

Inside __build_skb(16.95%) there is 83.47% CPU spend on “rep stos”,
which is clearing/memset-zero the SKB itself. Again something is
wrong as ((1/4574424*10^9)*(16.95/100)) = 37ns is too high for
clearing the SKB (time_bench_memset show this optimally takes 10 ns).

Inside mlx5e_xmit(10.72%) there is 17.96% spend on a sfence asm
instruction. The cost (1/4574424*10^9)*(10.72/100) = 23.43 ns of
calling mlx5e_xmit() might not be too off-target.

My guess is that this is caused the the tailptr/doorbell stall. And
doing bulk/xmit_more we can likely reduce mlx5e_handle_rx_cqe(-12ns as
cache-miss returns) and __build_skb(-27ns). Thus, the performance
target should lay around 5.6Mpps ((1/(218-12-27)*10^9) = 5586592).

Also notice that __cmpxchg_double_slab() show that we are hitting the
SLUB slow(er)-path.

Zooming into perf with Generic-netstack-XDP

Testing Generic-netstack-XDP_DROP again and looking closer at the perf
reports. This will be intersting because we can deduct the cost of
the different parts of the network stack, assuming there is no-fake
stalls due to tailptr/doorbell (like the XDP_TX case)

[jbrouer@skylake prototype-kernel]$
 sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2 --read
XDP_action pps pps-human-readable mem
XDP_DROP 8148835 8,148,835 read
XDP_DROP 8148972 8,148,972 read
XDP_DROP 8148962 8,148,962 read
XDP_DROP 8146856 8,146,856 read
XDP_DROP 8150026 8,150,026 read
XDP_DROP 8149734 8,149,734 read
XDP_DROP 8149646 8,149,646 read

For some unknown reason the Generic-XDP_DROP number are a bit lower,
than above numbers. Using 8148972 pps (8,148,972) as our new
baseline, show (averaged) cost per packet 122.47 nanosec (1/8165032*10^9)

The difference to NIC-level-XDP is:
(1/12006685*10^9)- (1/8148972*10^9) = -39.42 ns

Simply perf recorded 30 sec, and find the CPU this was running on by
added the –sort cpu to the output. The CPU output/column showed that
NAPI was running on CPU 7

sudo ~/perf record -aR -g sleep 30
sudo ~/perf report --no-children --sort cpu,comm,dso,symbol

Now we will drill down on CPU 7 and see what it is doing. We start
with removing the “children” column, to start viewing the overhead on
a per function basis.

I’m using this long perf report command to reduce the columns and
print to stdout and removing the call graph (I’ll manually inspect the
call-graph with the standard terminal-user-interface (TUI))

sudo ~/perf report --no-children --sort symbol \
 --kallsyms=/proc/kallsyms -C7 --stdio -g none

Reduced output:

Samples: 119K of event 'cycles'
Event count (approx.): 119499252009
#
Overhead Symbol
........ ..
#
 34.33% [k] mlx5e_handle_rx_cqe
 10.36% [k] __build_skb
 5.49% [k] build_skb
 5.10% [k] page_frag_free
 4.06% [k] bpf_prog_662b9cae761bf6ab
 4.02% [k] kmem_cache_alloc
 3.85% [k] netif_receive_skb_internal
 3.72% [k] kmem_cache_free
 3.69% [k] mlx5e_alloc_rx_wqe
 2.91% [k] mlx5e_get_cqe
 1.83% [k] napi_gro_receive
 1.80% [k] __rcu_read_unlock
 1.65% [k] skb_release_data
 1.49% [k] dev_gro_receive
 1.43% [k] skb_release_head_state
 1.26% [k] mlx5e_post_rx_wqes
 1.22% [k] mlx5e_page_release
 1.21% [k] kfree_skb
 1.19% [k] eth_type_trans
 1.00% [k] __rcu_read_lock
 0.84% [k] skb_release_all
 0.83% [k] skb_free_head
 0.81% [k] kfree_skbmem
 0.80% [k] percpu_array_map_lookup_elem
 0.79% [k] mlx5e_poll_rx_cq
 0.79% [k] skb_put
 0.77% [k] skb_gro_reset_offset
 0.63% [k] swiotlb_sync_single
 0.61% [k] swiotlb_sync_single_for_device
 0.42% [k] swiotlb_sync_single_for_cpu
 0.28% [k] net_rx_action
 0.21% [k] bpf_map_lookup_elem
 0.20% [k] mlx5e_napi_poll
 0.11% [k] __do_softirq
 0.06% [k] mlx5e_poll_tx_cq
 0.02% [k] __raise_softirq_irqoff

Some memory observations are that we are hitting the fast path of the
SLUB allocator (indicated by no func names from the slower path). The
mlx5 driver-page recycler also have 100% hit rate, verified by looking
at ethtool -S stats, and mlx5 stats “cache_reuse”,
using my ethtool_stats.pl [https://github.com/netoptimizer/network-testing/blob/master/bin/ethtool_stats.pl] tool:

Show adapter(s) (mlx5p2) statistics (ONLY that changed!)
Ethtool(mlx5p2) stat: 8179636 (8,179,636) <= rx3_cache_reuse /sec
Ethtool(mlx5p2) stat: 8179632 (8,179,632) <= rx3_packets /sec
Ethtool(mlx5p2) stat: 40657800 (40,657,800) <= rx_64_bytes_phy /sec
Ethtool(mlx5p2) stat: 490777805 (490,777,805) <= rx_bytes /sec
Ethtool(mlx5p2) stat: 2602103605 (2,602,103,605) <= rx_bytes_phy /sec
Ethtool(mlx5p2) stat: 8179636 (8,179,636) <= rx_cache_reuse /sec
Ethtool(mlx5p2) stat: 8179630 (8,179,630) <= rx_csum_complete /sec
Ethtool(mlx5p2) stat: 18736623 (18,736,623) <= rx_discards_phy /sec
Ethtool(mlx5p2) stat: 13741170 (13,741,170) <= rx_out_of_buffer /sec
Ethtool(mlx5p2) stat: 8179630 (8,179,630) <= rx_packets /sec
Ethtool(mlx5p2) stat: 40657861 (40,657,861) <= rx_packets_phy /sec
Ethtool(mlx5p2) stat: 2602122863 (2,602,122,863) <= rx_prio0_bytes /sec
Ethtool(mlx5p2) stat: 21921459 (21,921,459) <= rx_prio0_packets /sec
[...]

Knowing the cost per packet 122.47 nanosec (1/8165032*10^9), we can
extrapolate the ns used by each function call. Let use oneline for
calculating that for us:

sudo ~/perf report --no-children --sort symbol \
 --kallsyms=/proc/kallsyms -C7 --stdio -g none | \
awk -F% 'BEGIN {base=(1/8165032*10^9)} \
 /%/ {ns=base*($1/100); \
 printf("%6.2f\% => %5.1f ns func:%s\n",$1,ns,$2);}'

Output:

34.33% => 42.0 ns func: [k] mlx5e_handle_rx_cqe
10.36% => 12.7 ns func: [k] __build_skb
 5.49% => 6.7 ns func: [k] build_skb
 5.10% => 6.2 ns func: [k] page_frag_free
 4.06% => 5.0 ns func: [k] bpf_prog_662b9cae761bf6ab
 4.02% => 4.9 ns func: [k] kmem_cache_alloc
 3.85% => 4.7 ns func: [k] netif_receive_skb_internal
 3.72% => 4.6 ns func: [k] kmem_cache_free
 3.69% => 4.5 ns func: [k] mlx5e_alloc_rx_wqe
 2.91% => 3.6 ns func: [k] mlx5e_get_cqe
 1.83% => 2.2 ns func: [k] napi_gro_receive
 1.80% => 2.2 ns func: [k] __rcu_read_unlock
 1.65% => 2.0 ns func: [k] skb_release_data
 1.49% => 1.8 ns func: [k] dev_gro_receive
 1.43% => 1.8 ns func: [k] skb_release_head_state
 1.26% => 1.5 ns func: [k] mlx5e_post_rx_wqes
 1.22% => 1.5 ns func: [k] mlx5e_page_release
 1.21% => 1.5 ns func: [k] kfree_skb
 1.19% => 1.5 ns func: [k] eth_type_trans
 1.00% => 1.2 ns func: [k] __rcu_read_lock
 0.84% => 1.0 ns func: [k] skb_release_all
 0.83% => 1.0 ns func: [k] skb_free_head
 0.81% => 1.0 ns func: [k] kfree_skbmem
 0.80% => 1.0 ns func: [k] percpu_array_map_lookup_elem
 0.79% => 1.0 ns func: [k] mlx5e_poll_rx_cq
 0.79% => 1.0 ns func: [k] skb_put
 0.77% => 0.9 ns func: [k] skb_gro_reset_offset
 0.63% => 0.8 ns func: [k] swiotlb_sync_single
 0.61% => 0.7 ns func: [k] swiotlb_sync_single_for_device
 0.42% => 0.5 ns func: [k] swiotlb_sync_single_for_cpu
 0.28% => 0.3 ns func: [k] net_rx_action
 0.21% => 0.3 ns func: [k] bpf_map_lookup_elem
 0.20% => 0.2 ns func: [k] mlx5e_napi_poll
 0.11% => 0.1 ns func: [k] __do_softirq

top contender mlx5e_handle_rx_cqe

The top contender mlx5e_handle_rx_cqe() in the driver code

34.33% => 42.0 ns func: [k] mlx5e_handle_rx_cqe

When looking at the code/perf-annotate do notice that several function
calls have been inlined by the compiler. The thing that light-up
(56.23% => 23.6 ns) in perf-annotate is touching/reading the
data-packet for the first time, which is reading the ethertype via
is_first_ethertype_ip(), called via:

	which is called from mlx5e_handle_csum()

	which is called by mlx5e_build_rx_skb()

	which is called by mlx5e_complete_rx_cqe()

	which is called by mlx5e_handle_rx_cqe() all inlined.

Notice this is_first_ethertype_ip() call is the reason why
eth_type_trans() is not so hot in this driver.

Analyzing __build_skb and memset

The compiler choose not to inline __build_skb(), and what is primarily
going on here is memset clearing the SKB data, which gets optimized
into an “rep stos” asm-operation, which is actually not optimal for
this size of objects. Looking at perf-annotate shows that 75.65% of
the time of __build_skb() is spend on “rep stos %rax,%es:(%rdi)”.
Thus, extrapolating 12.7 ns (12.7*(75.65/100)) cost of 9.6 ns.

This is very CPU specific how fast or slow this is, but I’ve
benchmarked different alternative approaches with
time_bench_memset.c [https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_memset.c].

Memset benchmarks on this Skylake CPU show that hand-optimizing
ASM-coded memset, can reach 8 bytes per cycles, but only saves approx
2.5 ns or 10 cycles. A more interesting approach would be if we could
memset clear a larger area. E.g. when bulk-allocating SKBs and
detecting they belong to the same page and is contiguous in memory.
Benchmarks show that clearing larger areas is more efficient.

Table with memset “rep-stos” size vs bytes-per-cycle efficiency

$ perl -ne 'while(/memset_(\d+) .* elem: (\d+) cycles/g)\
 {my $bpc=$1/$2; \
 printf("memset %5d bytes cost %4d cycles thus %4.1f bytes-per-cycle\n", \
 $1, $2, $bpc);}' memset_test_dmesg

memset 32 bytes cost 4 cycles thus 8.0 bytes-per-cycle
memset 64 bytes cost 29 cycles thus 2.2 bytes-per-cycle
memset 128 bytes cost 29 cycles thus 4.4 bytes-per-cycle
memset 192 bytes cost 35 cycles thus 5.5 bytes-per-cycle
memset 199 bytes cost 35 cycles thus 5.7 bytes-per-cycle
memset 201 bytes cost 39 cycles thus 5.2 bytes-per-cycle
memset 204 bytes cost 40 cycles thus 5.1 bytes-per-cycle
memset 200 bytes cost 39 cycles thus 5.1 bytes-per-cycle
memset 208 bytes cost 39 cycles thus 5.3 bytes-per-cycle
memset 256 bytes cost 36 cycles thus 7.1 bytes-per-cycle
memset 512 bytes cost 40 cycles thus 12.8 bytes-per-cycle
memset 768 bytes cost 47 cycles thus 16.3 bytes-per-cycle
memset 1024 bytes cost 52 cycles thus 19.7 bytes-per-cycle
memset 2048 bytes cost 84 cycles thus 24.4 bytes-per-cycle
memset 4096 bytes cost 148 cycles thus 27.7 bytes-per-cycle
memset 8192 bytes cost 276 cycles thus 29.7 bytes-per-cycle

I’ve already implemented the SLUB bulk-alloc API, and it could be
extended with detecting if objects are physically contiguous for
allowing clearing multiple object at the same time. (Notice the SLUB
alloc-side fast-path already delivers object from the same page).

Blaming the children

The nanosec number are getting so small, that we might miss the effect
of deep call chains. Thus, lets look at perf report with the
“children” enabled:

 Samples: 119K of event 'cycles', Event count (approx.): 119499252009
 Children Self Symbol
+ 100.00% 0.00% [k] kthread
+ 100.00% 0.00% [k] ret_from_fork
+ 99.99% 0.01% [k] smpboot_thread_fn
+ 99.98% 0.01% [k] run_ksoftirqd
+ 99.94% 0.11% [k] __do_softirq
+ 99.78% 0.28% [k] net_rx_action
+ 99.41% 0.20% [k] mlx5e_napi_poll
+ 92.44% 0.79% [k] mlx5e_poll_rx_cq
+ 86.37% 34.33% [k] mlx5e_handle_rx_cqe
+ 29.40% 1.83% [k] napi_gro_receive
+ 24.50% 3.85% [k] netif_receive_skb_internal
+ 19.41% 5.49% [k] build_skb
+ 14.98% 1.21% [k] kfree_skb
+ 14.15% 10.36% [k] __build_skb
+ 9.43% 0.84% [k] skb_release_all
+ 6.97% 1.65% [k] skb_release_data
+ 5.38% 1.26% [k] mlx5e_post_rx_wqes
+ 5.10% 5.10% [k] page_frag_free
+ 4.86% 4.06% [k] bpf_prog_662b9cae761bf6ab
+ 4.30% 3.69% [k] mlx5e_alloc_rx_wqe
+ 4.30% 0.81% [k] kfree_skbmem
+ 4.02% 4.02% [k] kmem_cache_alloc
+ 3.72% 3.72% [k] kmem_cache_free
+ 2.91% 2.91% [k] mlx5e_get_cqe

Lets calculate the ns cost:

 $ sudo ~/perf report --children --sort symbol \
 --kallsyms=/proc/kallsyms -C7 --stdio -g none | \
 awk -F% 'BEGIN {base=(1/8165032*10^9); \
 print "Children => nanosec Self Symbol/fucntion\n";} \
 /%/ {ns=base*($1/100); \
 printf("%6.2f%s => %5.1f ns %s%s func:%s\n",$1,"%",ns,$2,"%",$3);}'

Children => nanosec Self Symbol/fucntion
100.00% => 122.5 ns 0.00% func: [k] kthread
100.00% => 122.5 ns 0.00% func: [k] ret_from_fork
 99.99% => 122.5 ns 0.01% func: [k] smpboot_thread_fn
 99.98% => 122.4 ns 0.01% func: [k] run_ksoftirqd
 99.94% => 122.4 ns 0.11% func: [k] __do_softirq
 99.78% => 122.2 ns 0.28% func: [k] net_rx_action
 99.41% => 121.8 ns 0.20% func: [k] mlx5e_napi_poll
 92.44% => 113.2 ns 0.79% func: [k] mlx5e_poll_rx_cq
 86.37% => 105.8 ns 34.33% func: [k] mlx5e_handle_rx_cqe
 29.40% => 36.0 ns 1.83% func: [k] napi_gro_receive
 24.50% => 30.0 ns 3.85% func: [k] netif_receive_skb_internal
 19.41% => 23.8 ns 5.49% func: [k] build_skb
 14.98% => 18.3 ns 1.21% func: [k] kfree_skb
 14.15% => 17.3 ns 10.36% func: [k] __build_skb
 9.43% => 11.5 ns 0.84% func: [k] skb_release_all
 6.97% => 8.5 ns 1.65% func: [k] skb_release_data
 5.38% => 6.6 ns 1.26% func: [k] mlx5e_post_rx_wqes
 5.10% => 6.2 ns 5.10% func: [k] page_frag_free
 4.86% => 6.0 ns 4.06% func: [k] bpf_prog_662b9cae761bf6ab
 4.30% => 5.3 ns 3.69% func: [k] mlx5e_alloc_rx_wqe
 4.30% => 5.3 ns 0.81% func: [k] kfree_skbmem
 4.02% => 4.9 ns 4.02% func: [k] kmem_cache_alloc
 3.72% => 4.6 ns 3.72% func: [k] kmem_cache_free
 2.91% => 3.6 ns 2.91% func: [k] mlx5e_get_cqe
 1.80% => 2.2 ns 1.80% func: [k] __rcu_read_unlock
 1.49% => 1.8 ns 1.49% func: [k] dev_gro_receive
 1.43% => 1.8 ns 1.43% func: [k] skb_release_head_state
 1.22% => 1.5 ns 1.22% func: [k] mlx5e_page_release
 1.19% => 1.5 ns 1.19% func: [k] eth_type_trans
 1.00% => 1.2 ns 1.00% func: [k] __rcu_read_lock
 0.84% => 1.0 ns 0.83% func: [k] skb_free_head
 0.80% => 1.0 ns 0.80% func: [k] percpu_array_map_lookup_elem
 0.79% => 1.0 ns 0.79% func: [k] skb_put
 0.77% => 0.9 ns 0.77% func: [k] skb_gro_reset_offset

Interesting here is napi_gro_receive() which is the base-call into the
network stack, everything “under” this call cost 29.40% of the time,
translated to 36.0 ns. This 36 ns cost is interesting as we
calculated the difference to NIC-level-XDP to be 39 ns:

	The difference to NIC-level-XDP is:

	(1/12006685*10^9)- (1/8148972*10^9) = -39.42 ns

Freeing the SKB is summed up under kfree_skb() with 14.98% => 18.3 ns.
In this case kfree_skb() should get attributed under napi_gro_receive(),
due to the direct kfree_skb(skb) call in netif_receive_generic_xdp().
In other situations kfree_skb() happens during the DMA TX completion,
but not here.

Creating, allocating and clearing the SKB is all “under” the
build_skb() call, which attributes to a collective 19.41% or 23.8 ns.
The build_skb() call happens, in-driver, before calling napi_gro_receive.

Thus, one might be lead to conclude that the overhead of the network
stack is (23.8 ns +36 ns) 59.8 ns, but something is not adding up as
this is higher the calculated approx 40ns difference to NIC-level-XDP.

Index

Presentations

List of XDP focused presentations:

	March 2016 [https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf] - Initial presentation by Facebook (Tom and Alexei)

	July 2016 [http://www.slideshare.net/IOVisor/express-data-path-linux-meetup-santa-clara-july-2016] - IO visor (Brenden Blanco)

	September 2016 [http://people.netfilter.org/hawk/presentations/xdp2016/xdp_intro_and_use_cases_sep2016.pdf] - Intro and use-case, Red Hat Inc. (Jesper Brouer)

	April 2017 - Keynote NetDevconf 2.1: XDP Mythbusters [http://netdevconf.org/2.1/session.html?miller]

	April 2017 - XDP/eBPF tutorial: XDP for the Rest of Us [http://netdevconf.org/2.1/session.html?gospodarek]

	April 2017 - Facebook Droplet [http://netdevconf.org/2.1/session.html?zhou]

	April 2017 - CloudFlare integrating XDP [http://netdevconf.org/2.1/session.html?bertin]

Historically the Network Performance BoF [http://people.netfilter.org/hawk/presentations/NetDev1.1_2016/links.html] at NetDev 1.1 (Feb 2016)
was the first presentation to propose the idea of processing RX
packet-pages directly out of the driver RX ring queue.

Press coverage

List of press coverage:

	April 2016 [http://lwn.net/Articles/682538/] - LWN.net covered the very early patches

Related resources

List of related presentations or write-ups:

	(Juli 2016): Next Steps for Linux Network Stack [http://people.netfilter.org/hawk/presentations/theCamp2016/theCamp2016_next_steps_for_linux.pdf] (Video [http://video.thecamp.dk/jesper-brauer-100gbit-challenge/])

	(Juli 2016): CETH [http://www.slideshare.net/IOVisor/ceth-for-xdp-linux-meetup-santa-clara-july-2016] Common Ethernet Driver Framework (Huawei)

	(Aug 2016): What Can BPF Do For You [http://schd.ws/hosted_files/lcccna2016/ec/iovisor-lc-bof-2016.pdf] (LinuxCon [http://sched.co/86Av])

	(Sep 2016): Dive into BPF [https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/]: a list of reading material

	(Oct 2016): XDP in OpenStack (video) [https://www.youtube.com/watch?v=1oAsRzrwAAw] for DDoS protection

	(Oct 2016): NetDev 1.2 video [https://www.youtube.com/watch?v=NlMQ0i09HMU&feature=youtu.be&t=3m3s] by David Miller [https://en.wikipedia.org/wiki/David_S._Miller]

	(April 2017): BPF and XDP Reference Guide [http://cilium.readthedocs.io/en/latest/bpf/#bpf-and-xdp-reference-guide]: Cilium developer’s guide

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Prototype Kernel’s documentation!

 		
 Documentation

 		
 Compiling

 		
 Prototype Kernel

 		
 XDP and eBPF

 		
 Prototype Kernel own documentation

 		
 Prototype Kernel build process

 		
 Linux Networking Subsystem

 		
 XDP - eXpress Data Path

 		
 Introduction

 		
 Disclaimer

 		
 Design

 		
 Implementation

 		
 Use-cases

 		
 End-user documentation

 		
 Linux Memory Management Subsystem

 		
 The page_pool documentation

 		
 Introduction

 		
 Design: page_pool

 		
 eBPF - extended Berkeley Packet Filter

 		
 Introduction

 		
 Documentation

 		
 eBPF maps

 		
 Types of eBPF maps

 		
 Troubleshooting eBPF

 		
 BCC (BPF Compiler Collection)

 		
 Blogposts, Reports and Write-ups

 		
 Eval Generic netstack XDP patch

 		
 Benchmark program

 		
 Baseline testing with NIC-level XDP

 		
 Testing with network stack generic XDP

_static/ajax-loader.gif

