Proto Plus for Python Documentation
Release 0.1.0

Luke Sneeringer

Dec 21, 2018

Contents

1 Installing 3
2 Table of Contents 5
2.1 MESSAZES « + ¢ e e e e e e e e e e e e e e e e e e e 5
22 Fields 6
2.3 Type Marshaling o e e e e e 8
2.4 0 Status e e e e e e e e e e e e e 9
2.5 Reference L 9
Python Module Index 13

Proto Plus for Python Documentation, Release 0.1.0

Beautiful, Pythonic protocol buffers.

This library provides a clean, readable, straightforward pattern for declaraing messages in protocol buffers. It provides
a wrapper around the official implementation, so that using messages feels natural while retaining the power and
flexibility of protocol buffers.

Warning: This tool is a proof of concept and is being iterated on rapidly. Feedback is welcome, but please do not
try to use this in some kind of system where stability is an expectation.

Contents 1

https://developers.google.com/protocol-buffers/

Proto Plus for Python Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Installing

Install this library using pip:

$ pip install proto-plus

This library carries a dependency on the official implementation (protobuf), which may install a C component.

Proto Plus for Python Documentation, Release 0.1.0

4 Chapter 1. Installing

CHAPTER 2

Table of Contents

2.1 Messages

The fundamental building block in protocol buffers are messages. Messages are essentially permissive, strongly-typed
structs (dictionaries), which have zero or more fields that may themselves contain primitives or other messages.

syntax = "proto3";

message Song {
Composer composer = 1;
string title = 2;
string lyrics = 3;
int32 year = 4;

message Composer {
string given_name = 1;
string family_name = 2;

The most common use case for protocol buffers is to write a . proto file, and then use the protocol buffer compiler
to generate code for it.

2.1.1 Declaring messages

However, it is possible to declare messages directly. This is the equivalent message declaration in Python, using this
library:

import proto

class Composer (proto.Message) :
given_name = proto.Field(proto.STRING, number=1)

(continues on next page)

https://developers.google.com/protocol-buffers/docs/proto3#simple

Proto Plus for Python Documentation, Release 0.1.0

(continued from previous page)

family_name = proto.Field(proto.STRING, number=2)

class Song(proto.Message) :
composer = proto.Field(Composer, number=1)
title = proto.Field(proto.STRING, number=2)
lyrics = proto.Field(proto.STRING, number=3)
year = proto.Field(proto.INT32, number=4)

A few things to note:
¢ This library only handles proto3.
e The number is really a field ID. It is not a value of any kind.

 All fields are optional (as is always the case in proto3). As a general rule, there is no distinction between setting
the type’s falsy value and not setting it at all (although there are exceptions to this in some cases).

Messages are fundamentally made up of Fields. Most messages are nothing more than a name and their set of fields.

2.1.2 Usage

Instantiate messages using either keyword arguments or a dict (and mix and matching is acceptable):

>>> song = Song(
composer={'given_name': 'Johann', 'family_name': 'Pachelbel'},
title='Canon in D',
year=1680,
)
>>> song.composer.family_name
'Pachelbel’
>>> song.title
'Canon in D'

2.1.3 Serialization

Serialization and deserialization is available through the serialize () and deserialize () class methods.

The serialize () method is available on the message classes only, and accepts an instance:

serialized_song = Song.serialize (song)

The deserialize () method accepts a bytes, and returns an instance of the message:

song = Song.deserialize (serialized_song)

2.2 Fields

Fields are assigned using the F'ie1d class, instantiated within a Message declaration.

Fields always have a type (either a primitive, a message, or an enum) and a number.

6 Chapter 2. Table of Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes

Proto Plus for Python Documentation, Release 0.1.0

import proto

class Composer (proto.Message) :
given_name = proto.Field(proto.STRING, number=1)
family_name = proto.Field(proto.STRING, number=2)

class Song(proto.Message) :
composer = proto.Field (Composer, number=1)
title = proto.Field(proto.STRING, number=2)
lyrics = proto.Field(proto.STRING, number=3)
year = proto.Field(proto.INT32, number=4)

For messages and enums, assign the message or enum class directly (as shown in the example above).

Note: For messages declared in the same module, it is also possible to use a string with the message class’ name if
the class is not yet declared, which allows for declaring messages out of order or with circular references.

2.2.1 Repeated fields

Some fields are actually repeated fields. In protocol buffers, repeated fields are generally equivalent to typed lists. In
protocol buffers, these are declared using the repeated keyword:

message Album {
repeated Song songs = 1;
string publisher = 2;

Declare them in Python using the RepeatedField class:

class Album(proto.Message) :
songs = proto.RepeatedField(Song, number=1)
publisher = proto.Field(proto.STRING, number=2)

2.2.2 Map fields

Similarly, some fields are map fields. In protocol buffers, map fields are equivalent to typed dictionaries, where the
keys are either strings or integers, and the values can be any type. In protocol buffers, these use a special map syntax:

message Album {
map<uint32, Song> track_list = 1;
string publisher = 2;

Declare them in Python using the MapField class:

class Album(proto.Message) :
track_list = proto.MapField(proto.UINT32, Song, number=1)
publisher = proto.Field(proto.STRING, number=2)

2.2. Fields 7

Proto Plus for Python Documentation, Release 0.1.0

2.2.3 Oneofs (mutually-exclusive fields)

Protocol buffers allows certain fields to be declared as mutually exclusive. This is done by wrapping fields in a oneof
syntax:

import "google/type/postal_address.proto";

message AlbumPurchase {
Album album = 1;
oneof delivery {
google.type.PostalAddress postal_address = 2;
string download_uri = 3;

}

When using this syntax, protocol buffers will enforce that only one of the given fields is set on the message, and setting
a field within the oneof will clear any others.

Declare this in Python using the oneof keyword-argument, which takes a string (which should match for all fields
within the oneof):

from google.type.postal address import PostalAddress

class AlbumPurchase (proto.Message) :
album = proto.Field(Album, number=1)
postal_address = proto.Field(PostalAddress, number=2, oneof='delivery')
download_uri = proto.Field(proto.STRING, number=3, oneof='delivery')

Warning: oneof fields must be declared consecutively, otherwise the C implementation of protocol buffers will
reject the message. They need not have consecutive field numbers, but they must be declared in consecutive order.

2.3 Type Marshaling

Proto Plus provides a service that converts between protocol buffer objects and native Python types (or the wrapper
types provided by this library).

This allows native Python objects to be used in place of protocol buffer messages where appropriate. In all cases, we
return the native type, and are liberal on what we accept.

2.3.1 Well-known types

The following types are currently handled by Proto Plus:

8 Chapter 2. Table of Contents

Proto Plus for Python Documentation, Release 0.1.0

Protocol buffer type Python type Nullable
google.protobuf.BoolValue bool Yes
google.protobuf.BytesValue bytes Yes
google.protobuf.DoubleValue | float Yes
google.protobuf.Duration datetime.timedelta | —
google.protobuf.FloatValue float Yes
google.protobuf.Int32Value int Yes
google.protobuf.Int64Value int Yes
google.protobuf.StringValue | str Yes
google.protobuf.Timestamp datetime.datetime Yes
google.protobuf.UInt32Value | int Yes
google.protobuf.UInt64Value | int Yes

Note: Protocol buffers include well-known types for Timestamp and Duration, both of which have nanosecond
precision. However, the Python datetime and t imedelta objects have only microsecond precision.

If you write a timestamp field using a Python dat et ime value, any existing nanosecond precision will be overwritten.

2.3.2 Wrapper types

Additionally, every Mes sage subclass is a wrapper class. The creation of the class also creates the underlying protocol
buffer class, and this is registered to the marshal.

The underlying protocol buffer message class is accessible with the pb () class method.

2.4 Status

2.4.1 Features and Limitations

Nice things this library does:
* Idiomatic protocol buffer message representation and usage.

* Wraps the official protocol buffers implementation, and exposes its objects in the public API so that they are
available where needed.

2.4.2 Upcoming work

* Improved enum support.
* Specialized behavior for google.protobuf.Value and google.protobuf.Struct objects.

* Specialized behavior for google.protobuf.FieldMask objects.

2.5 Reference

Below is a reference for the major classes and functions within this module.

It is split into two main sections:

2.4. Status 9

Proto Plus for Python Documentation, Release 0.1.0

* The Message and Field section (which uses the message and fields modules) handles constructing mes-
sages.

* The Marshal module handles translating between internal protocol buffer instances and idiomatic equivalents.

2.5.1 Message and Field
class proto.message.Message (mapping=None, **kwargs)
The abstract base class for a message.
Parameters

* mapping (Union[dict, Message])— A dictionary or message to be used to deter-
mine the values for this message.

* kwargs (dict)— Keys and values corresponding to the fields of the message.

classmethod pb (obj=None)
Return the underlying protobuf Message class or instance.

Parameters obj — If provided, and an instance of c1s, return the underlying protobuf instance.

classmethod serialize (instance) — bytes
Return the serialized proto.

Parameters instance — An instance of this message type.
Returns The serialized representation of the protocol buffer.
Return type bytes

classmethod deserialize (payload: bytes) — proto.message.Message
Given a serialized proto, deserialize it into a Message instance.

Parameters payload (bytes)— The serialized proto.
Returns An instance of the message class against which this method was called.
Return type Message

class proto.fields.Field (proto_type, *, number: int, message=None, enum=None, oneof: str =

None, json_name: str = None)
A representation of a type of field in protocol buffers.

descriptor
Return the descriptor for the field.

name
Return the name of the field.

package
Return the package of the field.

pb_type
Return the composite type of the field, or None for primitives.

class proto.fields.MapField (key_type, value_type, *, number: int, message=None, enum=None)
A representation of a map field in protocol buffers.

class proto.fields.RepeatedField (proto_type, *, number: int, message=None, enum=None)
A representation of a repeated field in protocol buffers.

10 Chapter 2. Table of Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Proto Plus for Python Documentation, Release 0.1.0

2.5.2 Marshal

2.5. Reference 11

Proto Plus for Python Documentation, Release 0.1.0

12 Chapter 2. Table of Contents

Python Module Index

P

proto.fields, 10
proto.marshal, 11

13

Proto Plus for Python Documentation, Release 0.1.0

14 Python Module Index

Index

D

descriptor (proto.fields.Field attribute), 10
deserialize() (proto.message.Message class method), 10

F

Field (class in proto.fields), 10

M

MapField (class in proto.fields), 10
Message (class in proto.message), 10

N

name (proto.fields.Field attribute), 10

P

package (proto.fields.Field attribute), 10

pb() (proto.message.Message class method), 10
pb_type (proto.fields.Field attribute), 10
proto.fields (module), 10

proto.marshal (module), 11

R

RepeatedField (class in proto.fields), 10

S

serialize() (proto.message.Message class method), 10

15

	Installing
	Table of Contents
	Messages
	Fields
	Type Marshaling
	Status
	Reference

	Python Module Index

