
Sphinx and Read the Docs Tips
Release 0.3.1

Thai Pangsakulyanont

March 11, 2015

Contents

1 Inferring Release Number from Git Tags 1

2 Creating Custom Link Roles 2

3 Better Fonts in PDF Output 3

4 Contributing 4

I am using Sphinx, in conjunction with the awesome Read the Docs documentation building and
hosting service, to document my open source senior project Bemuse.

After fiddling for a couple of days, I have few tips and techniques to share.

Note: This is not a pro tip! I only use this name because the subdomain “tips” is already used.
I’m also not a Pythonian; I just found Sphinx to be the right (and superior) tool for the right job.
Therefore, my code may not be idiomatic – I mean, Pythonic.

1 Inferring Release Number fromGit Tags

When starting a Sphinx documentation using sphinx-quickstart, it asks you for version number
of the docs. This already makes me question about the maintenance burden.

The version number is already stored in the project as Git tags and package.json (but npm has a
built-in command to increment the version number and also create a Git tag). Having to specify
the version number in Sphinx documentation doesn’t seem right to me.

After finding out that the configuration file is just a Python script, I modified it to infer the version
number from Git tags:

http://sphinx-doc.org/
https://readthedocs.org/

import re
The full version, including alpha/beta/rc tags.
release = re.sub(’^v’, ’’, os.popen(’git describe’).read().strip())
The short X.Y version.
version = release

This code uses git describe to generate a version number based on current Git commit. If we are
on a tag, such as v0.10.1, git describe returns that tag name:

$ git describe
v0.10.1

However, if we are not on the tag, git describe will find the closest tag to this commit, and append
the number of commits since that tag, along with the commit ID:

$ git describe
v0.10.1-53-gd8be3ff

So there you have it. When building, the version number will describe exactly what commit the
documentation is being built for.

Date 2015-03-11

Author Thai Pangsakulyanont

2 Creating Custom Link Roles

I think it’d be cool – especially in the developer’s documentation – to link to the corresponding
source code on GitHub.

In my project’s docs, inside the architecture section, for example, describes the directory structure
in the project. Each item links to corresponding GitHub source code:

Directory Structure

assets Image assets for use in the game. These assets can be referred from webpack
code by require(’assets/...’).

bin Useful scripts for routine work. Examples include setting up Git commit hooks and
releasing a new version.

config Configuration code for webpack and other things.

And the corresponding source code:

Directory Structure

:tree:`assets`
Image assets for use in the game.
These assets can be referred from webpack code by ``require(’assets/...’)``.

:tree:`bin`
Useful scripts for routine work.
Examples include setting up Git commit hooks and releasing a new version.

https://github.com/bemusic/bemuse/tree/master/assets
https://github.com/bemusic/bemuse/tree/master/bin
https://github.com/bemusic/bemuse/tree/master/config

:tree:`config`
Configuration code for webpack and other things.

As you can see, a custom role, :tree:, is created to link to source code. To do that, you have to
write a Sphinx extension.

Fortunately, this is easy. There are tutorials on defining custom roles in Sphinx and a more in-depth
guide about creating a text role from Docutils.

First, you have to add a custom search path to conf.py, so that your extension may be loaded:

sys.path.insert(0, os.path.abspath(’.’) + ’/_extensions’)

Next, create the extension file. I call it _extensions/bemuse.py. It looks like this:

from docutils import nodes

def setup(app):
app.add_role(’github’, autolink(’https://github.com/%s’))
app.add_role(’module’, autolink(’https://github.com/bemusic/bemuse/tree/master/src/%s’))
app.add_role(’tree’, autolink(’https://github.com/bemusic/bemuse/tree/master/%s’))

def autolink(pattern):
def role(name, rawtext, text, lineno, inliner, options={}, content=[]):

url = pattern % (text,)
node = nodes.reference(rawtext, text, refuri=url, **options)
return [node], []

return role

The setup function is called by Sphinx for an extension to add custom roles.

Since each role does similar thing: turn texts into links using some predefined pattern, I created
a function, called autolink, that returns a function that turns text into link using some specified
pattern.

Finally, add that extension to the configuration file:

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named ’sphinx.ext.*’) or your custom
ones.
extensions = [’bemuse’]

Date 2015-03-11

Author Thai Pangsakulyanont

3 Better Fonts in PDFOutput

One thing I like a lot about Sphinx is that it can generate PDF files for your documentation, complete
with table of contents, chapters and section numbers.

Read the Docs also automatically generate PDF documentations for you.

http://doughellmann.com/2010/05/09/defining-custom-roles-in-sphinx.html
http://docutils.sourceforge.net/docs/howto/rst-roles.html

But there is one thing: the styling. While the HTML documentation looks nice and modern, thanks
to Read the Docs’ theme, the PDF documentation looks ugly and dull.

I think the major problem is the typeface. On HTML documentation, we have Lato and Roboto Slab
font, which gives it a modern feel. For code, various modern monospace fonts are used (Consolas,
Andale Mono, and so on.)

On PDF documentation, however, the default typefaces are Helvetica, Times, and Courier.

Are you serious?! Helvetica and Times makes your documentation look ancient and uninteresting.
Courier is fat and thin and is kind of hard-to-read. This needs to change.

Sphinx uses pdfLaTeX to generate PDF documentation, and Read the Docs uses TeX Live in its build
infrastructure. With TeX Live comes several nice fonts, which you can safely use in Read the Docs
environment.

To use them, simply include the package, according to each font package’s documentation, in the
preamble option. For example, here is my configuration:

latex_elements = {
The paper size (’letterpaper’ or ’a4paper’).

’papersize’: ’letterpaper’,

The font size (’10pt’, ’11pt’ or ’12pt’).
’pointsize’: ’11pt’,

Additional stuff for the LaTeX preamble.
’preamble’: r’’’

\usepackage{charter}
\usepackage[defaultsans]{lato}
\usepackage{inconsolata}

’’’,
}

In this configuration, Charter is used as serif font, Lato as sans-serif font, and Inconsolata as
monospace font. Even though the colors and layout don’t change, changing the typeface can give
your PDF documentation a radically different feel. such wow. many modern.

Date 2015-03-11

Author Thai Pangsakulyanont

4 Contributing

The content lives on GitHub at dtinth/rtfd-protips.

If you have any tips to share, or any fixes or improvements, feel free to send me pull requests.

http://ericholscher.com/blog/2013/nov/4/new-theme-read-the-docs/
http://tex.stackexchange.com/a/59405
http://readthedocs.org/projects/protips/downloads/pdf/latest/
https://github.com/dtinth/rtfd-protips

	Inferring Release Number from Git Tags
	Creating Custom Link Roles
	Better Fonts in PDF Output
	Contributing

