

 Navigation

 	
 index

 	
 next |

 	Sphinx and Read the Docs Tips

Sphinx and Read the Docs Tips

I am using Sphinx [http://sphinx-doc.org/], in conjunction with the awesome Read the Docs [https://readthedocs.org/] documentation building and hosting service,
to document my open source senior project Bemuse.

After fiddling for a couple of days, I have few tips and techniques to share.

Note

This is not a pro tip!
I only use this name because the subdomain “tips” is already used.
I’m also not a Pythonian; I just found Sphinx to be the right (and superior) tool for the right job.
Therefore, my code may not be idiomatic – I mean, Pythonic.

	Inferring Release Number from Git Tags

	Creating Custom Link Roles

	Better Fonts in PDF Output

Contributing

The content lives on GitHub at dtinth/rtfd-protips [https://github.com/dtinth/rtfd-protips].

If you have any tips to share, or any fixes or improvements, feel free to send me pull requests.

 Copyright 2015, Thai Pangsakulyanont.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sphinx and Read the Docs Tips

Inferring Release Number from Git Tags

When starting a Sphinx documentation using sphinx-quickstart,
it asks you for version number of the docs.
This already makes me question about the maintenance burden.

The version number is already stored in the project as Git tags and package.json
(but npm has a built-in command to increment the version number and also create a Git tag).
Having to specify the version number in Sphinx documentation doesn’t seem right to me.

After finding out that the configuration file is just a Python script,
I modified it to infer the version number from Git tags:

import re
The full version, including alpha/beta/rc tags.
release = re.sub('^v', '', os.popen('git describe').read().strip())
The short X.Y version.
version = release

This code uses git describe to generate a version number based on current Git commit.
If we are on a tag, such as v0.10.1, git describe returns that tag name:

$ git describe
v0.10.1

However, if we are not on the tag,
git describe will find the closest tag to this commit,
and append the number of commits since that tag, along with the commit ID:

$ git describe
v0.10.1-53-gd8be3ff

So there you have it.
When building, the version number will describe exactly what commit the documentation is being built for.

	Date:	2015-03-11

	Author:	Thai Pangsakulyanont

 Copyright 2015, Thai Pangsakulyanont.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sphinx and Read the Docs Tips

Creating Custom Link Roles

I think it’d be cool – especially in the developer’s documentation – to link to the corresponding source code on GitHub.

In my project’s docs, inside the architecture section, for example,
describes the directory structure in the project.
Each item links to corresponding GitHub source code:

Directory Structure

	assets [https://github.com/bemusic/bemuse/tree/master/assets]

	Image assets for use in the game.
These assets can be referred from webpack code by require('assets/...').

	bin [https://github.com/bemusic/bemuse/tree/master/bin]

	Useful scripts for routine work.
Examples include setting up Git commit hooks and releasing a new version.

	config [https://github.com/bemusic/bemuse/tree/master/config]

	Configuration code for webpack and other things.

And the corresponding source code:

Directory Structure

:tree:`assets`
 Image assets for use in the game.
 These assets can be referred from webpack code by ``require('assets/...')``.
:tree:`bin`
 Useful scripts for routine work.
 Examples include setting up Git commit hooks and releasing a new version.
:tree:`config`
 Configuration code for webpack and other things.

As you can see, a custom role, :tree:, is created to link to source code.
To do that, you have to write a Sphinx extension.

Fortunately, this is easy.
There are tutorials on defining custom roles in Sphinx [http://doughellmann.com/2010/05/09/defining-custom-roles-in-sphinx.html] and a more in-depth guide about creating a text role from Docutils [http://docutils.sourceforge.net/docs/howto/rst-roles.html].

First, you have to add a custom search path to conf.py, so that your extension may be loaded:

sys.path.insert(0, os.path.abspath('.') + '/_extensions')

Next, create the extension file. I call it _extensions/bemuse.py.
It looks like this:

from docutils import nodes

def setup(app):
 app.add_role('github', autolink('https://github.com/%s'))
 app.add_role('module', autolink('https://github.com/bemusic/bemuse/tree/master/src/%s'))
 app.add_role('tree', autolink('https://github.com/bemusic/bemuse/tree/master/%s'))

def autolink(pattern):
 def role(name, rawtext, text, lineno, inliner, options={}, content=[]):
 url = pattern % (text,)
 node = nodes.reference(rawtext, text, refuri=url, **options)
 return [node], []
 return role

The setup function is called by Sphinx for an extension to add custom roles.

Since each role does similar thing: turn texts into links using some predefined pattern, I created a function, called autolink, that returns a function that turns text into link using some specified pattern.

Finally, add that extension to the configuration file:

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.
extensions = ['bemuse']

	Date:	2015-03-11

	Author:	Thai Pangsakulyanont

 Copyright 2015, Thai Pangsakulyanont.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Sphinx and Read the Docs Tips

Better Fonts in PDF Output

One thing I like a lot about Sphinx is that it can generate PDF files for your documentation,
complete with table of contents, chapters and section numbers.

Read the Docs also automatically generate PDF documentations for you.

But there is one thing: the styling.
While the HTML documentation looks nice and modern,
thanks to Read the Docs’ theme [http://ericholscher.com/blog/2013/nov/4/new-theme-read-the-docs/],
the PDF documentation looks ugly and dull.

I think the major problem is the typeface.
On HTML documentation, we have Lato and Roboto Slab font,
which gives it a modern feel.
For code, various modern monospace fonts are used (Consolas, Andale Mono, and so on.)

On PDF documentation, however, the default typefaces are Helvetica, Times, and Courier.

Are you serious?! Helvetica and Times makes your documentation look ancient and uninteresting.
Courier is fat and thin and is kind of hard-to-read.
This needs to change.

Sphinx uses pdfLaTeX to generate PDF documentation,
and Read the Docs uses TeX Live in its build infrastructure.
With TeX Live comes several nice fonts [http://tex.stackexchange.com/a/59405], which you can safely use in Read the Docs environment.

To use them, simply include the package, according to each font package’s documentation, in the preamble option.
For example, here is my configuration:

latex_elements = {
The paper size ('letterpaper' or 'a4paper').
 'papersize': 'letterpaper',

The font size ('10pt', '11pt' or '12pt').
 'pointsize': '11pt',

Additional stuff for the LaTeX preamble.
 'preamble': r'''
 \usepackage{charter}
 \usepackage[defaultsans]{lato}
 \usepackage{inconsolata}
 ''',
}

In this configuration,
Charter is used as serif font,
Lato as sans-serif font,
and Inconsolata as monospace font.
Even though the colors and layout don’t change,
changing the typeface can give your PDF documentation a radically different feel.
such wow. many modern. [http://readthedocs.org/projects/protips/downloads/pdf/latest/]

	Date:	2015-03-11

	Author:	Thai Pangsakulyanont

 Copyright 2015, Thai Pangsakulyanont.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Sphinx and Read the Docs Tips

Index

 Copyright 2015, Thai Pangsakulyanont.
 Created using Sphinx 1.2.2.

 _static/plus.png

search.html

 Navigation

 		
 index

 		Sphinx and Read the Docs Tips »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Thai Pangsakulyanont.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

