
Protein Geometry Database
Documentation

Release 1.0.2

Oregon State University Open Source Lab

July 15, 2015

Contents

1 Installation 3
1.1 Install dependencies . 3
1.2 Get the Code . 3
1.3 Configuration . 4

2 Using PGD with Docker 5
2.1 Quick Start: Demonstrating the PGD with Docker Compose and Docker 5
2.2 Using Docker Compose . 6
2.3 Building an Image . 7
2.4 Running a MySQL Container . 7
2.5 Running an Image and Linking it . 7
2.6 Mounting the PGD Code as a Volume . 7

3 Importing Data 9
3.1 Running Splicer From The Command Line . 9
3.2 Example . 10

4 Updating Protein Database 13

5 Site Specific Information 15
5.1 Virtual environments . 15
5.2 Files generated during the update process . 15
5.3 Differences between staging and production . 15

6 Technologies Used By Protein Geometry Database 17
6.1 Django . 17
6.2 jQuery . 17
6.3 Raphael . 17
6.4 Mysql . 17

7 Terminology (WIP) 19

8 Code Modules 21
8.1 PGD Core . 21
8.2 PGD Search . 21
8.3 PGD Splicer . 21

9 Protein Data Models 23
9.1 Protein . 23

i

9.2 Chain . 23
9.3 Residue . 24

10 Optimization 25

11 Optimization: SQL Indexes 27
11.1 Protein . 27
11.2 Residue Joined to Residue . 28

12 SQL Aggregates 29
12.1 Statistics for Dihedral Angles . 29
12.2 Average . 29
12.3 Standard Deviation . 30

13 Optimization: In Memory Tables 31
13.1 Indexing Memory Tables . 31
13.2 Parallelization of Queries . 31
13.3 Startup and Django Configuration Issues . 31
13.4 Growth Concerns . 32

14 Attempted Optimization: De-normalizing Residue Table 33
14.1 Table Size . 33

15 Search Workflow 35
15.1 Models . 35
15.2 Forms . 35
15.3 Conversions . 35
15.4 Workflow . 36

16 Ramachandran Plots 37
16.1 Data Selection . 37
16.2 Statistics Calculation . 37
16.3 Coloring . 37
16.4 Logarithmic Scale . 38
16.5 Color Ranges . 38
16.6 Algorithm . 38

17 Search Statistics 39
17.1 Queries . 39
17.2 Optimization . 40

18 Data Dump 41
18.1 Selecting Data . 41
18.2 Buffered Response . 41

19 Browse 43
19.1 Selecting Data . 43

20 Splicer 45
20.1 Task Structure . 45

21 Developing Splicer 47
21.1 Django Settings . 47
21.2 Running Components from the command line . 47

ii

22 Splicer Processor Task 49
22.1 Running From the command line . 49
22.2 Libraries . 49
22.3 Parsing PDBs . 49
22.4 Example a3 . 50
22.5 Example: Ome . 50
22.6 Example B-factor: Bm, Bs, Bg . 50
22.7 Update Checking . 51

23 Running Splicer 53
23.1 Slow FTP Issues . 53
23.2 Maintaining Connections Between Workunits . 53
23.3 Only Downloading New Files . 53
23.4 Storing files in a network share . 53
23.5 Workunit Thrashing Problem . 54
23.6 Debugging Splicer . 54

24 Running Splicer From The Command Line 55
24.1 Selecting Proteins . 55
24.2 Options . 55
24.3 Downloading PDB Files . 55
24.4 Processing PDB Files . 56
24.5 Parameters . 56
24.6 Options . 56
24.7 Example . 56
24.8 Full Import . 56
24.9 Update Only New . 57
24.10 Update Skipping Download . 57

25 Development workflow 59
25.1 Create an issue in the issue tracker if one does not already exist. 59
25.2 Create a branch from the develop branch based on the issue number. 59
25.3 Write the code, including tests and release notes entry if necessary. 59
25.4 Commit code and update the issue. 59
25.5 Request code review. 60
25.6 Merge changes back into the develop branch. 60

26 Hotfix Workflow 61
26.1 One or more show-stopping bugs are detected between releases . 61
26.2 Create a hotfix branch off the master branch . 61
26.3 Create bug branches off the hotfix branch . 61
26.4 Merge resolved bugs back to hotfix branch and test on staging . 61
26.5 When all bugs are resolved and merged, merge hotfix branch into master branch 61
26.6 Pull master on production and restart Apache . 61
26.7 Merge hotfix branch back into develop . 62

27 Release Workflow 63
27.1 Announce the upcoming release to the PGD list four weeks before release. 63
27.2 Impose a feature freeze on develop three weeks before release. 63
27.3 Start the release branch two weeks before release. 63
27.4 Freeze the release branch one week before release. 63
27.5 Release the software, close tickets and unfreeze develop on the release date. 64

28 Management Commands and Possible Redisign 65

iii

29 Indices and tables 67

iv

Protein Geometry Database Documentation, Release 1.0.2

Contents:

Contents 1

Protein Geometry Database Documentation, Release 1.0.2

2 Contents

CHAPTER 1

Installation

This is a manual installation guide for the Protein Geometry Database (PGD).

1.1 Install dependencies

Certain operating-system packages are required to run the PGD. As an example, here are the additional packages
required for a Centos 7 server with EPEL:

• bzip2

• cairo-devel

• gcc

• gcc-c++

• libffi

• libffi-devel

• mysql

• mysql-devel

• nodejs

• npm

• python-devel

• python-setuptools

• tar

Also required is dsspcmbi, compiled from the DSSP software.

Python 2.7 or greater is required, but Python 3.x is not currently supported.

1.2 Get the Code

1. Make sure you have Git installed.

2. Check it out from the repository:

3

http://swift.cmbi.ru.nl/gv/dssp/

Protein Geometry Database Documentation, Release 1.0.2

git clone https://github.com/osuosl/pgd

1.3 Configuration

The easiest way to spin up an instance of the PGD for testing purposes is with Docker. If Docker is unavailable, an
instance of the PGD can be spun up locally following these instructions.

1. Construct a settings.ini file in the top level of the application. This file must contain values for
SECRET_KEY, with other values optional. Here is an example:

[settings]
MYSQL_ENV_MYSQL_DATABASE=pgd
MYSQL_ENV_MYSQL_USER=pgd
MYSQL_ENV_MYSQL_PASSWORD=kjwb_if4hgkujpb3*7(_8
MYSQL_PORT_3306_TCP_ADDR=mysql.example.org
MYSQL_PORT_3306_TCP_PORT=3306
GOOGLE_ID=UA-8675309-1
SECRET_KEY=2nWoBbgLb1bVbOzM0PaW/q0jScKKcP5j2nWoBbgLb1bVbOzM0P
MEDIA_ROOT=/opt/django/pgd/media
STATIC_ROOT=/opt/django/pgd/static
EMAIL_HOST=smtp.example.org
DEFAULT_FROM_EMAIL=registration@pgd.example.org
SERVER_EMAIL=pgd@pgd.example.org

2. Initialize the database:

$ python manage.py syncdb

3. Collect the static files:

$ python manage.py collectstatic

4. Now the server can be run:

$ python manage.py runserver

See the importing data section for instructions on how to import data.

More information about deploying with WSGI can be found here.

4 Chapter 1. Installation

https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/

CHAPTER 2

Using PGD with Docker

PGD ships with a Dockerfile to make development easier. Consult the docker documentation for instructions on how
to use docker. http://docs.docker.com/reference/

2.1 Quick Start: Demonstrating the PGD with Docker Compose and
Docker

This is for folks who are already familiar with Docker Compose and Docker. If you are new to either of these tools,
please skip ahead to the next section of the documentation.

There are three steps to this process: building the containers, populating them with content, and starting the web server.

2.1.1 Build the containers

Note: The repository contains a script named dev-setup.sh which builds the containers following the same instructions
found in this script. Use at your own risk as the script may not be updated as often as the documentation. When in
doubt, trust the docs!

This is pretty straightforward.

$ docker-compose build

The database containers (for MySQL and PDB files) need to be brought up next.

$ docker-compose up -d mysql pdb

Now create the necessary database tables. For this version of Django, syncdb is still required. The PGD does not use
the admin site at this time, so there’s no need to create an account.

$ docker-compose run web python manage.py syncdb --noinput

This command may fail the first time with a lack of connection due to docker-compose’s not-yet-mature orchestration
functionality. Simply run it again and it should succeed.

2.1.2 Install the content

Note: The repository contains a script named integration_test.sh which tests the scripts mentioned in this section.

5

http://docs.docker.com/reference/

Protein Geometry Database Documentation, Release 1.0.2

Use at your own risk as the script may not be updated as often as the documentation. Again, when in doubt, trust the
docs!

The next step is to create a selection file. It’s possible to use a subset of an existing selection file (say the first hundred
lines) but if you need to generate a new one, use this command:

$ docker-compose run web python ./pgd_splicer/dunbrack_selector.py --pipeout > selection.txt
$ sed 100q selection.txt > top-100-selection.txt

The selected proteins must be retrieved from the worldwide PDB collection. This command may take some time!

$ docker-compose run web python ./pgd_splicer/ftpupdate.py --pipein < top-100-selection.txt

To list the proteins that were successfully downloaded, run this command:

$ docker-compose run web ls /opt/pgd/pdb

You should see 100 files with names like pdb1ae1.ent.gz.

Finally, all the retrieved proteins must be imported into the database. This command will definitely take some time: a
full update currently consists of over twenty-six thousand proteins, and can take upwards of eight hours to process.

$ docker-compose run web python ./pgd_splicer/ProcessPDBTask.py --pipein < top-100-selection.txt

To confirm the number of proteins in the database, use the Django shell:

$ docker-compose run web python manage.py shell
Python 2.7.5 (default, Jun 17 2014, 18:11:42)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from pgd_core.models import Protein
>>> Protein.objects.count()
100
>>>

2.1.3 Start it up!

Looking good! Now it’s time to actually start the web server.

$ docker-compose up

This will generate a screen or two of output from the different containers. Once that output stabilizes, open a web
browser to http://localhost:8000 (or a different host, depending on where you’re running Docker) and you should see
the PGD! Select ‘Search’, remove the default search constraints on omega from the search page, and select ‘Submit’,
and you should see a Ramachandran plot with results. Success!

2.2 Using Docker Compose

Docker Compose is a command line tool to automate using multiple docker containers. Usually multiple long incanta-
tions of docker commands are necessary to get a working development environment. Using docker-compose, a simple
instance of the PGD without any content can be started from scratch with a simple command:

$ docker-compose up

6 Chapter 2. Using PGD with Docker

Protein Geometry Database Documentation, Release 1.0.2

The application will be available on http://localhost:8000.

Note: Docker-Compose is a developer tool, and this early version is prone to certain kinds of race conditions. It
is possible for the web container to come up before the database container, and if the web container can’t find the
database it will fail.

Similarly, to run all the tests in the PGD code base, the following command can be very useful:

$ docker-compose run web python manage.py test

Consult the docker-compose documentation for details on how to modify the docker-compose.yml file, and other
commands you can use with docker-compose.

The following sections will not be necessary if you use docker-compose.

2.3 Building an Image

To build an image with PGD installed, run this command:

$ docker build -t osl_test/pgd .

The -t option specifies the tag for the image. We use osl_test here for testing.

2.4 Running a MySQL Container

PGD relies on a MySQL database. We use the default mysql image. Docker will fetch the mysql image automatically.
The -e option passes an environment variable to the image. In this example we set a series of necessary environment
variables to a simple default. The –name option gives this new container a name so it is easier to remember and
reference when using the docker command.

$ docker run --name pgd_mysql \
-e MYSQL_ROOT_PASSWORD=pgd_root_password \
-e MYSQL_USER=pgd_user \
-e MYSQL_PASSWORD=pgd_user_password \
-e MYSQL_DATABASE=pgd_db \
-d mysql

2.5 Running an Image and Linking it

Once the MySQL container is running, we can run the PGD container we built and link it with MySQL. Linking it
means that the pgd container will be able to transparently access it. We will also forward the container’s port 8000 to
the host’s port 8000.

$ docker run -d --name pgd -p 8000:8000 --link pgd_mysql:mysql osl_test/pgd

This should result in an instance of the PGD running on localhost at port 8000.

2.6 Mounting the PGD Code as a Volume

Some developers may find the following to be convenient:

2.3. Building an Image 7

http://docs.docker.com/compose/

Protein Geometry Database Documentation, Release 1.0.2

$ docker run -d --name pgd \
-p 8000:8000 \
-v /path/to/code:/opt/pgd \
--link pgd_mysql:mysql \
osl_test/pgd

Be warned: this may clash with the Dockerfile’s treatment of settings.py depending on whether one already exists in
the checkout.

8 Chapter 2. Using PGD with Docker

CHAPTER 3

Importing Data

3.1 Running Splicer From The Command Line

Splicer can be run from the command line. It requires that several steps be run separately.

All commands should be run from the project root (directory with settings.py in it).

3.1.1 Selecting Proteins

Proteins must first be selected. Default filtering settings will be used for threshold, resolution and r_factor.

1 ./pgd_splicer/dunbrack_selector.py

This will return information about the the parameters used, the files proteins were selected from, and a list of proteins
in the following format:

code chains threshold resolution rfactor rfree

Save the selection into a file:

1 ./pgd_splicer/dunbrack_selector.py --pipeout > selection.txt

^^^^^^- Options ^^^^^^-

• –pipeout - will only output the data. This should be used if you would like to create output suitable for input
into one of the other steps

3.1.2 Downloading PDB Files

PDB files are downloaded from an FTP site using ftpupdate.py. This script will synchronize ./pdb with the remote
FTP server. Only new files will be downloaded, but it will check the timestamps on all files.

This is a time-consuming step. Be prepared to wait for approximately two days for this to complete on a fresh local
copy, or one day on an update.

1 ./pgd_splicer/ftpupdate.py code [code...]

To only grab the proteins which are selected (and cut down massively on consumed bandwidth and time), try:

1./pgd_splicer/ftpupdate.py --pipein < selection.txt

9

Protein Geometry Database Documentation, Release 1.0.2

3.1.3 Processing PDB Files

PDB files can be imported into the database with ProcessPDBTask.py. Multiple proteins can be fed as commands to
be imported. Errors will be written to ProcessPDB.log.

1 ./pgd_splicer/ProcessPDBTask.py code chains threshold resolution rfactor rfree [repeat]

As before, a selection can be piped in:

1 ./pgd_splicer/ProcessPDBTask.py --pipein < selection.txt

Expect this to take a few days as well.

3.1.4 Parameters

Parameters are all required, and may be repeated for multiple proteins.

• code - protein code to import, should be all uppercase

• chains - list of chains to import, should be a string of chain ids. (ie. ABCDEF). The string should not have
quotes around it.

• threshold, resolution, rfactor, rfree - the value for these fields. These properties are retrieved from the selection
script so they are included as input for processing the protein.

3.1.5 Options

• –pipein - input will be read from a pipe instead of arguments. proteins in the list should be separated by newlines.

3.2 Example

Some examples. Intermediate output is saved to a text file so that it can be examined later.

3.2.1 Full Import

Update all proteins regardless of whether the file was downloaded by ftpupdate. ProcessPDBTask will still check the
update date and exclude pdbs that are not new.

1 ./pgd_splicer/dunbrack_selector.py --pipeout > selected_proteins.txt
2 ./pgd_splicer/ftpupdate.py --pipein < selected_proteins.txt
3 ./pgd_splicer/ProcessPDBTask.py --pipein < selected_proteins.txt

3.2.2 Update Only New

Update only proteins for which we have a new FTP file.

1 ./pgd_splicer/dunbrack_selector.py --pipeout > selected_proteins.txt
2 ./pgd_splicer/ftpupdate.py --pipein --pipeout < selected_proteins.txt > updated_proteins.txt
3 ./pgd_splicer/ProcessPDBTask.py --pipein < updated_proteins.txt

10 Chapter 3. Importing Data

Protein Geometry Database Documentation, Release 1.0.2

3.2.3 Update Skipping Download

If all the pdb files are already downloaded you may skip the FTP step to save time.

1 ./pgd_splicer/dunbrack_selector.py --pipeout > selected_proteins.txt
2 ./pgd_splicer/ProcessPDBTask.py --pipein < selected_proteins.txt

or as a single command:

1 ./pgd_splicer/dunbrack_selector.py --pipeout | ./pgd_splicer/ProcessPDBTask.py --pipein

3.2. Example 11

Protein Geometry Database Documentation, Release 1.0.2

12 Chapter 3. Importing Data

CHAPTER 4

Updating Protein Database

The PGD database is updated approximately four times per year. The following process should be followed to update
the database.

One week before update: generate new selection file and download majority of updates.

From the pgd-staging Django site:

1 > python manage.py fetch --report=date-report.txt --selection=date-selection.txt

One day before update: reset staging database and load new selection file.

From the pgd-staging Django site:

1 > python manage.py shell

1 > from pgd_core.models import Protein
2 > for p in Protein.objects.all():
3 > p.delete()

1 > ./pgd_splicer/ProcessPDBTask.py --pipein < date-selection.txt

On the update day: do the update!

From the pgd-staging Django site:

1 > ./pgd_splicer/dunbrack_selector.py --pipeout > selection.txt
2 > ./pgd_splicer/ftpupdate.py --pipein < selection.txt
3 > ./pgd_splicer/ProcessPDBTask.py --pipein < selection.txt

That last command should be run within script so the output can be examined for particular failure modes once the
command is complete. Error messages and recommended actions:

• “CRC check failed”, “local variable ‘i’ referenced before assignment”, “KeyError”: collect all codes with these
message, delete the files associated with these codes, retrieve them again from the server, and attempt to import
the files again. Example command lines for codes 1B12 and 4AMW:

1 > (cd ./pdb && for code in 1b12 4amw; do rm pdb$code.ent.gz; done)
2 > egrep \(1B12\|4AMW\) selection.txt | ./pgd_splicer/ftpupdate.py --pipein
3 > egrep \(1B12\|4AMW\) selection.txt | ./pgd_splicer/ProcessPDBTask.py --pipein

If the errors persist, document offending codes in bug reports as appropriate and copy the retrieved files aside for
testing and comparison. * “Structure/DSSP mismatch”, “No chains were parsed!”: document offending codes in
update post to PGD mailing list.

Cross-check database against selection file.

13

Protein Geometry Database Documentation, Release 1.0.2

From the pgd-staging Django site:

1 > python manage.py crosscheck --selection=selection.txt

The staging site is now ready for customer preview.

Promote database from staging to production.

From the pgd-prod Django site:

1 > ./update-from-staging.sh

Rename the selection file for archival purposes.

1 > mv selection.txt 201310-selection.txt

On production, in settings.py, update the DATA_VERSION to the date used for the selection file.

14 Chapter 4. Updating Protein Database

CHAPTER 5

Site Specific Information

5.1 Virtual environments

The virtual environments for PGD on zeus are located under the PGD user’s home directory.

• pgd-staging: /home/pgd/.virtualenvs/pgd-staging/

• pgd-prod: /var/lib/django/pgd-prod/pgd (will move to /home/pgd/.virtualenvs/pgd-prod/ ASAP)

In addition to the traditional contents of a virtual environment as directed by the requirements file, the bin directory in
the virtual environment also contains the binary:

dsspcmbi

which is used by ProcessPDBTask.py to import data into the database.

5.2 Files generated during the update process

Text files pertaining to previous updates (selection files, reports, crosschecks, etc.) should be moved to the following
directory after the update is complete:

/home/pgd/update-records

These files should follow a naming format like this before moving:

20131231-selection.txt

Compressed SQL files generated by the update tool should be renamed in the same manner after the update is complete,
but they are too large to be moved at this time.

5.3 Differences between staging and production

The staging directory has two directories which are not found in the production directory. These directories hold the
files downloaded from the WWPDB and CMBI which are imported into the staging database. Their names are:

pdb
dssp

15

Protein Geometry Database Documentation, Release 1.0.2

They may move, possibly to the home directory, at a later date.

The production directory has a number of files which are not present in the staging directory and are also not in source
control.

• Historical copies of the staging and production databases for the pgd_core app.

• There are large compressed SQL files which represent the state of the staging and production databases for
the pgd_core app in the production directory. These are used during the update process, and can be used for
post-update analysis. Any files of this type older than one year can be deleted.

• lib64

• It is not clear to me what this directory is for – it may be part of the virtualenv.

• searchConvert.py

• This file was used to convert certain data structures from version 0.9.2 to 0.9.3 and can probably be deleted.

• static/pdf/2011_tronrud-shelxl.pdf

• This is a local copy of the paper which is cited as a source when referencing PGD in publications. There are
five other papers in that directory which are in the repository, so this one should probably be added.

• update-from-staging.sh

• This script is executed to update the production database from the staging database.

In addition to these differences, the settings.py for staging and production is different with regard to database config-
uration and version settings.

16 Chapter 5. Site Specific Information

CHAPTER 6

Technologies Used By Protein Geometry Database

6.1 Django

Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design. Django
provides some of the following features that are useful to PGD:

• Object Relational Mapping (ORM) - maps python classes to SQL tables, including a comprehensive
query engine.

• Form API for validation of user input

• Templating system for layout of presentation

Read more at: djangoproject.com

6.2 jQuery

jQuery is a fast and concise JavaScript Library that simplifies HTML document traversing, event handling, animating,
and Ajax interactions for rapid web development. jQuery is used extensively in the front end to provide a “web 2.0”
experience with dynamically updating pages.

Read more at: jquery.com

6.3 Raphael

Raphaël is a small JavaScript library that should simplify your work with vector graphics on the web. Raphael is cross
browser supported and is used to render graphs within PGD.

Read more at: raphaeljs.com

6.4 Mysql

Mysql is an opensource database

17

Protein Geometry Database Documentation, Release 1.0.2

18 Chapter 6. Technologies Used By Protein Geometry Database

CHAPTER 7

Terminology (WIP)

Protein *

Sidechain *

Residue

• Each residue has many attributes

– Conformation Angles (Angles of Rotation)

* phi, psi, ome (omega), omep (omega prime)

– Bond Angles

* a1, a2, a3, a4, a5, a6, a7

– Bond Lengths

* L1, L2, L3, L4, L5

– Secondary Structure

* ss

– Chi Angles, properties vary per Residue

* chi1, chi2, chi3, chi4, chi5

– bm

– bs

– bg

– h_bond_energy

– zeta

– terminal_flag

– xpr

Plots

• In the plot each hit is sorted into a box based on the values of its attributes listed as “X Axis” and “Y Axis”.
Any attribute can be chosen as X or Y. The “Plotted Attribute” of all the hits that end up in the same box are
averaged (and the standard deviation is calculated). If no hits fall in a box there is no meaningful average so the
box is left blank. The occupied boxes are colored based on the average value in that box.

19

Protein Geometry Database Documentation, Release 1.0.2

• The exception is the default, when the “Plotted Attribute” is “Observations”. Then the color is simply calculated
from the number of hits that end up in the box, with zero being black. Regardless of the “Plotted Attribute” the
same boxes should always be black.

Search

• Returns a set of residues

• When the “Plotted Attribute” is “Observations” the color is simply calculated from the number of hits that end
up in the box, with zero being black. Regardless of the “Plotted Attribute” the same boxes should always be
black.

20 Chapter 7. Terminology (WIP)

CHAPTER 8

Code Modules

The Protein Geometry Database makes use of Django “apps”. Apps are synonymous with a module or plugin. They
are module bits of an application that are, for the most part, portable between other apps.

PGD is divided into three apps to allow code to be portable.

8.1 PGD Core

PGD Core defines the core data structures. There is no functionality contained within this app. It is intended to contain
only the database so that it can be reused in other applications

8.2 PGD Search

PGD Search contains logic for searching and displaying data from PGD Core. This includes search logic, models, and
the web front end.

8.3 PGD Splicer

PGD Splicer contains all of the code required for importing data from PDB files into objects defined within PGD Core

21

Protein Geometry Database Documentation, Release 1.0.2

22 Chapter 8. Code Modules

CHAPTER 9

Protein Data Models

Protein data model is composed of three classes: Protein, Chain, and Residue. The models are designed to represent
the protein in the most compact way. With proper SQL indexes this is also the most efficient method of storing the
data for search queries when the database contains greater than 2 million residues.

The models are defined as Django models meaning the data exists as both Python classes and SQL Tables. This allows
the data to be accessed through SQL, or preferably as Python objects through the Django Query API. Django models
can be used from any program provided your Django environment is configured

For more information on Django models:

• Django Model Reference

• Django Query Reference

9.1 Protein

Represents a Protein.

• code - 4 letter code for protein as imported from pdb.

• rfactor

• rfree

• resolution

• threshold

• residues - related field collection, returns queryset of all residues related to this protein

• chains - related field colleciton, returns queryset of all chain related to this protein

9.2 Chain

Chain id’s are stored to allow importing of multiple chains from a single protein. The search interface does not
currently include selection of chains.

• protein (protein_id) Foreign Key relation to the protein this residue belongs to. May be retrieved as a Protein
object or identifier

• residues - related field collection, returns queryset of all residues related to this protein

23

https://docs.djangoproject.com/en/dev/topics/db/models/#topics-db-models
https://docs.djangoproject.com/en/dev/topics/db/queries/#topics-db-queries

Protein Geometry Database Documentation, Release 1.0.2

9.3 Residue

Represents a Residue (Amino Acid) belonging to a protein

• id - unique identifier for residue, internal to database

• oldID - identifier as listed in PDB file. May include icodes appended to the end.

• chainIndex - numerical index of residue in the chain. All chain breaks are represented as a single gap in
numbers. IE. 1,2,4,5.

• protein (protein_id) Foreign Key relation to the protein this residue belongs to. May be retrieved as a Protein
object or identifier

• prev (prev_id) - Foreign Key relation to the previous residue in the chain, this may be retrieved as a Residue
object or identifier

• next (next_id) - Foreign Key relation to the next residue in the chain, this may be retrieved as a Residue object
or identifier

• Bond Lengths

– L1 -

– L2 -

– L3 -

– L4 -

– L5 -

• Bond Angles

– A1 -

– A2 -

– A3 -

– A4 -

– A5 -

– A6 -

– A7 -

• Dihedral Angles

– Omega

– Phi

– Psi

– Zeta

• Sidechain

– X1 through X4 as defined by mmlib.

• B-Factor

– Bm - Average b-factor of mainchain atoms

– Bs - Average b-factor of sidechain

– Bg - Average b-factor of Cg atom if present

24 Chapter 9. Protein Data Models

CHAPTER 10

Optimization

PGD has been optimized using the following techniques

• SQL Indexes

• SQL Aggregate Functions

• In Memory Tables

• Denormalized Search Table

25

https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationsql_indexes
https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationsql_aggregates
https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationram
https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationde_normalization

Protein Geometry Database Documentation, Release 1.0.2

26 Chapter 10. Optimization

CHAPTER 11

Optimization: SQL Indexes

Like any database PGD relies on SQL Indexes for improved performance. This is a description of indexes used, and
some that didn’t work.

Please see the section on Memory Table Indexes for more information about the types of indexes used with memory
tables.

11.1 Protein

11.1.1 Primary Key Index

The primary key index is used when specific proteins have been selected by Code (primary key)

11.1.2 Resolution Index

The index on resolution is used in most cases. It filters large sets of proteins. The default query, with resolution <= 1.2
reduces the number of proteins from 16,000 to 2500.

As the number of proteins nears the total number of proteins MySQL will switch to performing a full table scan. Even
with indexes on other fields it does not appear to use them.

11.1.3 Failed Indexes

We also attempted to create indexes with resolution and other fields. No noticeable increase was detected, MySQL
always opted for the individual Resolution Index.

11.1.4 Protein Joined to Residue

When joining a Residue with its Protein an index on Residue.protein_id is used

11.1.5 Failed Indexes

We attenmpted to add additional fields to the protein_id index. It was actually slower than the protein_id index alone.

27

https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationram#IndexingMemoryTables

Protein Geometry Database Documentation, Release 1.0.2

11.2 Residue Joined to Residue

Residues are joined to Residues for the previous and next relationships using the Primary Key index on Residue.

11.2.1 Note on Join Direction for Previous and Next

Residues join from residue_0.next to residue_1.id

SELECT * FROM pgd_core_residue r0 INNER JOIN pgd_core_residue r1 ON (r0.next = r1.id)

instead of residue_0.id to residue_1.prev

SELECT * FROM pgd_core_residue r0 INNER JOIN pgd_core_residue r1 ON (r0.next = r1.id)

The latter appeared to be a faster query but is not possible with Django. The custom clause requires adding the where
clause with queryset.extra(). But django will also add the original clause.

28 Chapter 11. Optimization: SQL Indexes

https://docs.djangoproject.com/en/dev/ref/models/querysets/#extra-select-none-where-none-params-none-tables-none-order-by-none-select-params-none

CHAPTER 12

SQL Aggregates

SQL aggregates are functions that run on the server. They can perform statistics such as Count, Average, Standard
Deviation, Min, and Max. Aggregate functions can also be paired with GROUP BY to calculate statistics for different
groupings of data.

Django supports aggregate functions as of 1.1. Read more about it here: Django Aggregates

SELECT COUNT(L1), MIN(L1), MAX(L1), AVG(L1), STDDEV(L1) FROM pgd_core_residue GROUP BY aa;

Aggregate functions increase the speed of calculations because they are run on the data in place. Transferring data
between the database server and application server requires significant overhead.

12.1 Statistics for Dihedral Angles

Dihedral angles require special function for average and standard deviation. The special function takes into account
that the angles may wrap around from 180 to -180. Both of these functions work like any other aggregate functions.
They have also been wrapped in a custom Django Aggregate function to work with django querysets.

12.2 Average

::

IF(DEGREES(ATAN2(

-AVG(SIN(RADIANS(ome))) ,-AVG(COS(RADIANS(ome))))

) < 0 ,DEGREES(ATAN2(

-AVG(SIN(RADIANS(ome))) ,-AVG(COS(RADIANS(ome))))

) + 180 ,DEGREES(ATAN2(

-AVG(SIN(RADIANS(ome))) ,-AVG(COS(RADIANS(ome))))

) - 180

) AS ome_avg

This works by converting the value into vectors. It adjusts the angles by +180 or -180 depending on whether it is a
positive or negative angle. This shifts the vectors into the same space so that they may be averaged.

29

https://docs.djangoproject.com/en/dev/topics/db/aggregation/

Protein Geometry Database Documentation, Release 1.0.2

12.3 Standard Deviation

::

SQRT(

IF (((ome+360)%360 - avgs.ome_avg) < 180 ,SUM(POW((ome+360)%360-avgs.ome_avg, 2))
,SUM(POW(360-((ome+360)%360-avgs.ome_avg),2))

)/(COUNT(ome)-1)) AS OME_STDDEV

This function is very similar to a normal standard deviation calculation. The only difference is that a dihedral angle
can have two deviations, the short and long way around the circle. We always want to use the shortest distance.

12.3.1 Average Selection

This standard deviation aggregate requires that the average be passed in. There are only two ways to match a list of
averages to groups, subqueries or case logic. Neither is an ideal solution but case logic is the lesser of two evils.

CASE SS WHEN 'B' THEN 'foo' WHEN 'H' THEN 'bar' END

This results in queries that are very long (text size), but execution time is fast enough.

30 Chapter 12. SQL Aggregates

CHAPTER 13

Optimization: In Memory Tables

Loading PGD tables in memory, if indexed properly, will greatly outperform on-disk tables. It is a solution dependent
on a capable enough server.

13.1 Indexing Memory Tables

Memory tables will only outperform a properly indexed on-disk table if it is also indexed. Above a certain threshold a
full table scan of a memory table is still slower than a binary search of an index, even when it is on disk.

Memory tables support indexing, but mysql does not correctly index when using btree. Btree is the default for on-disk
tables, and is generally faster than a Hash index. however, mysql will generate an empty index when btree is used with
memory tables. This means that any table joined with a memory table must also be in memory.

13.2 Parallelization of Queries

Memory addresses can be read by multiple threads simultaneously, unlike disks which require seeking back and forth.
Without seek times to slow down simultaneous reads, multiple queries can be run on an in memory table at the same
time. This can reduce the time required for a query to the longest in the set of queries

Diagram

Note that this becomes a limitation of CPU cores and the number of concurrent threads the server is capable of
handling.

13.3 Startup and Django Configuration Issues

Memory tables do not persist through mysql restarts. They must be recreated and indexed every time the server starts.
This needs to be automated so that when the server first starts it is able to check and create the tables if needed.

Django must also be told what this special table is. The choices are:

• rename the table during the creation process. It might be impossible to determine the state of the tables though.

• change the name of the table in the django configuration to match the in memory table. this can only be done
prior to django loading, the django orm cannot be reinitialized

31

Protein Geometry Database Documentation, Release 1.0.2

13.4 Growth Concerns

Growth of the database is a major concern when dealing with large memory tables. Ram is cheap, but not as cheap as
disk space. The current PGD database requries about 1.5 gigabytes (1.1 for Residues) of ram to load the Protein and
Residue table in memory. Two factors will increase growth:

• Additional Fields - We have at least a 2 dozen new properties to add, which will add around 80% growth in the
short term. There may be more fields added later also.

• Additional Proteins added - Expected to be 10% growth per year.

The works out to the following projects:

• current - 1.5 gigabytes

• 6 Months - 2.4 gigabytes

• 12 Months - 2.64 gigabytes

• 2 Years - 2.9 gigabytes

• 3 Years - 3.19 gigabytes

• 4 Years - 3.51 gigabytes

• 5 Years - 3.86 gigabytes

A server purchased now with 4 gigabytes of ram allocated for the just the memory table would last 5 years. This is
two years past what is normally “end of life” for a server.

32 Chapter 13. Optimization: In Memory Tables

CHAPTER 14

Attempted Optimization: De-normalizing Residue Table

Searching segments of residues requires joining the residue table on itself, numerous times. Even when indexed prop-
erly joins can be slow. To remove the need for joins we de-normalized pgd_core_residue into pgd_search_segment.
This table contained all properties, for each residue, for each possible segment in a protein.

This optimization greatly out-performed joins with less than 20,000 results. However, when the result set increased to
300,000 or more results it was twice as slow. The reason was that the table was too large to perform an entire table
scan. It only was sped up when there was an index touching every field a search had a clause for. It was not feasible to
build an index touch all 200+ fields to allow quick searching.

14.1 Table Size

The table size was not completely unmanageable, it was only 7 gigabytes. This was fine for on-disk, but would not
scale well in memory.

33

Protein Geometry Database Documentation, Release 1.0.2

34 Chapter 14. Attempted Optimization: De-normalizing Residue Table

CHAPTER 15

Search Workflow

PGD Search workflow is designed to take advantage of all of the features provided by Django: Models, Forms, and
QuerySets. Search Models and Forms are interchangeable via methods provided by PGD.

15.1 Models

The Search class closely mimics a protein segment. It is composed of a three classes: Search, SearchResidue, and
SearchCode. By creating Search as django models they can be stored and retrieved from the database.

15.1.1 Search

Search model contains all fields present in a protein.

15.1.2 SearchCode

SearchCode is a list of protein IDs to include in the search

15.1.3 SearchResidue

SearchResidue mimics a Residue object. It contains all fields that a

• Fields are all strings and can use the PGD Query Syntax

• Type fields such as AA_Type and SS_Type are stored as an integer with choices encoded in binary to conserve
space.

15.2 Forms

SearchForms mimic Search Models exactly.

15.3 Conversions

Search and SearchForm are interchangeable.

35

Protein Geometry Database Documentation, Release 1.0.2

• Use function name to convert a Search to a !SearchForm

• Use function name to convert a !SearchForm to a Search

Search can generate Django QuerySets

Use search.queryset()

15.4 Workflow

When submitting the search form, if the search is successful a Search object will be created and stored in the user’s
session. The Search can be retrieved and converted back into a SearchForm to edit the search.

This Search object becomes the basis for rendering all other pages. PGD is taking advantage of two features of
querysets:

• Lazy-execution of SQL Queries - the query is not performed until the results are requested from the object.

• Querysets can be further customized - the query can be refined further to filter the fields returned, statistical
calculations, etc.

These features allow PGD apply view specific logic without recreating the base query for every view. The base query
contains the set of records to operate on. The view applies its specific logic and calculations.

15.4.1 Examples

• Plot page only requires 3 properties to perform its calculation

• Statistics only needs to return Averages, Standard Deviation and other statistics instead of the residue values.

36 Chapter 15. Search Workflow

CHAPTER 16

Ramachandran Plots

PGD provides a pseudo ramachandran plot. Our plot uses square bins rather than a more freeflowing plot. This allows
quicker generation of graphs.

The Plot page uses django querysets, but makes use of [SQL Aggregates]. For ease in explaining how the data is
processed this page will refer to the SQL generated by the querysets

16.1 Data Selection

The Ramachandran plot is generated using a specialized SQL query to group data points into bins.

1. Each coordinate has the minimum value subtracted and then divided by the BIN_SIZE and rounded down (FLOOR). This calculates the bin coordinate for each residue.
2. GROUP BY is applied to both the X and Y coordinates. This sorts the residues into a grid.

select FLOOR((phi-PHI_MIN)/10) as X, FLOOR((psi-PSI_MIN)/10) as Y from pgd_core_residue GROUP BY X, Y

Subtracting the minimum value from the coordinate shifts the start of the bins to the minimum value. The first bin will
always be the same size as other bins. The last bin may be a different size if BIN_SIZE does not divide MAX-MIN
evenly

16.2 Statistics Calculation

Once records are selected statistical calculations are performed depending on the input. By default the ramachandran
plot z-axis displays observations, or the count of residues in that bin.

select Count(*) as count, FLOOR((phi-PHI_MIN)/10) as X, FLOOR((psi-PSI_MIN)/10) as Y from pgd_core_residue GROUP BY X, Y

Optionally the z-axis can also display the average of user selected attribute.

select AVG(a1) as avg, STDDEV(a1) as stddev, FLOOR((phi-PHI_MIN)/10) as X, FLOOR((psi-PSI_MIN)/10) as Y from pgd_core_residue GROUP BY X, Y

16.3 Coloring

Graphs are colored to represent values on a z-axis.

• Reference - The point at which to calculate distance from for determining colors. Used to adjust focus to a
specific value. By default reference is the mean.

37

Protein Geometry Database Documentation, Release 1.0.2

• Outlier Sigma - Number of sigma (standard deviations) beyond which values are considered outliers. Standard
deviation is not recalculated excluding outliers, but they are excluded when calculating the range of colors. This
helps keep the range of colors from spreading too widely due to outliers far from the mean.

16.4 Logarithmic Scale

PGD applies a logarithmic scale to all bins. Logarithmic scaled colors allow a greater range of colors choices to be
applied closer to the Reference. As values approach the extend of OUTLIER_SIGMA** SIGMA* the number of
colors to choose from lessens. This allows differences within values close to the mean to be more apparent.

16.5 Color Ranges

Plots are colored using a predefined tuple of RGB values:

• Max value

• Adjustment value - used to add a minimum value to the color. ie. the Blue plot adds 75 to all blue values,
shifting all colors into a blue hue.

16.6 Algorithm

::

1. The logarithmic scale is first calculated producing a number from 0 to 1.

2. This is multiplied by each value in the RGB MAX tuple

3. each adjustment value in the RGB adjustment is added to the corresponding RGB value

38 Chapter 16. Ramachandran Plots

CHAPTER 17

Search Statistics

The statistics page provides statistics of properties across all results for a specific residue index. Results are grouped
by Amino Acid Type, and or Secondary Structure Type.

17.1 Queries

The statistics page makes use of aggregate functions to calculate values. Because of the different types of grouping
and statistics, it requires several queries to retrieve all of the statistics.

17.1.1 Secondary Structure Counts and Amino Acid Totals

This query produces three values:

• Counts of residues per Secondary Structure Type, per Amino Acid Type.

• Counts of residues per Amino Acid Type.

• Total count of all residues in search.

The SQL required is

Select count(*) as count, aa_type, ss_type from pgd_core_residue GROUP BY aa_type, ss_type WITH ROLLUP;

The WITH ROLLUP clause instructs mysql to include totals for the fields. This produces the total per amino acid
type, and total count of all residues. WITH ROLLUP only affects the first field in the GROUP BY class so totals per
Secondary Structure Type are not produced by this query.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^– Secondary Structure Total Counts ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^–

Count of residues per Secondary Structure Type.

Select count(*) as count, ss_type from pgd_core_residue GROUP BY ss;

17.1.2 Field Statistics

Min, Max, Average, and Standard Deviation are calculated for every residue, per Amino Acid Type, include totals.

SELECT MIN(a1), MAX(a1), AVG(a1), STDDEV(a1) from pgd_core_residue GROUP_BY aa WITH ROLLUP;

39

Protein Geometry Database Documentation, Release 1.0.2

17.1.3 Dihedral Angles Statistics

Dihedral angles (ome, zeta, phi, psi, etc.) require the use of Special Statistics for Dihedral Angles. Average is
calculated in the field statistics query, but standard deviation requires a second query.

17.2 Optimization

Statistics uses the following optimizations:

• SQL Aggregate Functions to reduce network transport overhead

• Parallel Queries to run calculations simultaneously

40 Chapter 17. Search Statistics

https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationsql_aggregates#StatisticsforDihedralAngles
https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationsql_aggregates
https://code.osuosl.org/projects/pgd/wiki/Designmodelsoptimizationram#ParallelizationofQueries

CHAPTER 18

Data Dump

Data dump is a dump of all fields of all segments returned by a search.

18.1 Selecting Data

Queries using Django’s ORM focus on a single object. Accessing related fields such as Residue.prev or Residue.next
result in a second query to resolve those objects. This means to display a single segment of length 5 you must do 4
additional queries.

The solution is to calculate the list of residues for each segment and select them by range. For example, to retrieve a
segment of length 3 where i-3 select all residues from i-1 to i+1 (2 through 4).

Select * from pgd_core_residue where chainIndex between 2 and 4

This allows all residues in a segment to be retrieved in a single query. This reduces the number of queries to the
number of residues in the result set. This may still be a large number of queries but they may be run in parallel and the
buffered nature of datadump spreads them out.

18.2 Buffered Response

Datadump uses an iterable class which uses threads to buffer data. The buffering threads use a paginator to split a
result set into pieces. This allows downloading to start almost immediately after the button is clicked, rather than
waiting for the entire dump to be written to memory.

This is not a perfect solution. Python uses green threads so threads are not truly concurrent. Threads will often be
starved and may simply alternate between filling the buffer and emptying it. This is mainly an issue with the threads
fighting over the lock. There may be a better solution using double-buffering.

41

Protein Geometry Database Documentation, Release 1.0.2

42 Chapter 18. Data Dump

CHAPTER 19

Browse

Browse displays all residues for each segment in a result set. Results a

19.1 Selecting Data

Queries using Django’s ORM focus on a single object. Accessing related fields such as Residue.prev or Residue.next
result in a second query to resolve those objects. This means to display a single segment of length 5 you must do 4
additional queries. To display 25 segments per page would require 125 additional queries.

The solution is to calculate the list of residues for each segment and select them by range. For example, to retrieve a
segment of length 3 where i-3 select all residues from i-1 to i+1 (2 through 4).

Select * from pgd_core_residue where chainIndex between 2 and 4

This allows all residues in a segment to be retrieved in a single query. This reduces the number of queries to the number
of residues in the result set. This may still be a large number of queries but each page is limited to 25 segments per
page.

43

Protein Geometry Database Documentation, Release 1.0.2

44 Chapter 19. Browse

CHAPTER 20

Splicer

Splicer is the tool used to import data from PDB files.

Splicer is built as a Parallel Pydra Task. Pydra is a framework for parallel and distributed jobs with python. Using
Pydra allows splicer run times to be reduced nearly linearly across nodes in the cluster.

20.1 Task Structure

Splicer is made up of several subtasks. It is organized using both ContainerTask (sequential subtasks) and ParallelTask
to divide work up and parallelize it It is organized like so:

• Splicer (!ContainerTask)

– Selector

– ProcessProteinTask(!ParallelTask)

* FTPUpdate

* Processor

* SegmentBuilder

20.1.1 Selector

Selector downloads lists of pdbs from a source, currently Dunbracks PICSES, and processes the list into a python
object.

There are two selectors:

• DunbracksSelector - selects records from dunbracks culled lists

• PDBSelectSelector - selects records from pdbselect lists. This was replaced with dunbrack’s selector

Both selectors filter on and parse protein level properties from the list.

20.1.2 FTP Update

Synchronizes a local cache of PDBs with a remote ftp server. By default it will synchronize all files located on the
remote directory, optionally it can be given a list of PDB codes to synchronize.

FTP Update compares dates to the milisecond. This requires using the MODTIME (mdtm) FTP command.

45

https://code.osuosl.org/projects/pydra#ContainerTask
https://code.osuosl.org/projects/pydra#ParallelTask
http://dunbrack.fccc.edu/PISCES.php

Protein Geometry Database Documentation, Release 1.0.2

20.1.3 Processor

The processor parses a pdb file and extracts properties from it. The current implementation uses BioPython library and
DSSP. This component is covered in depth.

20.1.4 Segment Builder

This is a defunct subtask that was used to build the de-normalized segment table

46 Chapter 20. Splicer

https://code.osuosl.org/projects/pgd/wiki/Designsplicerprocessor

CHAPTER 21

Developing Splicer

These are some special instructions for developing splicer components.

21.1 Django Settings

Django and its ORM can be used outside of its webserver. The only requirements are

• the directory containing settings.py is on the sys.path

• environment variable DJANGO_SETTINGS_MODULE is set to the settings

Splicer components should all do this automatically using python code to add the correct directory to sys.path. This
works as long as the components are run from the directory containing settings.py

import os, sys
#python magic to add the current directory to the pythonpath
sys.path.append(os.getcwd())

--
Setup django environment
--
if not os.environ.has_key('DJANGO_SETTINGS_MODULE'):
os.environ['DJANGO_SETTINGS_MODULE'] - 'settings
--
Done setting up django environment
--

21.2 Running Components from the command line

Splicer Subtasks all contain main code that starts the tasks using arguments passed in. All should give you a list of
required arguments if you do not pass them in. The main intention of this is to allow easier debugging on tasks.

For example ProcessPDBTask requires a pdb code followed by resolution, threshold, rfactor, and rfree. For testing
purposing the properties do not need to be real values.

~/pgd/pgd $./pgd_splicer/ProcessPDBTask.py 12SB 1 2 3 4

47

Protein Geometry Database Documentation, Release 1.0.2

48 Chapter 21. Developing Splicer

CHAPTER 22

Splicer Processor Task

The Splicer Processor Task, also known as ProcessPDBTask accepts a PDB file and processes it into PGD Protein
Models.

22.1 Running From the command line

Like all splicer components ProcessPDBTask can be run from the commandline to simplify debugging the task. It requires the follow arguments:

• PDB Code - 4 character alphanumeric code for a protein.

• Threshold - Float

• Resolution - Float

• Rfactor - Float

• Rfree - Float

When debugging only the PDB code need be a real value. The other values are required, but not validated.

22.2 Libraries

• BioPython - A library that can parse PDB files and contains various functions within its PDB API for extracting
data from them.

• DSSP - A program for calculating secondary structure. BioPython has bindings for this program.

22.3 Parsing PDBs

Some properties are available as simple properties using the Residue class within BioPython. Most others require
calculations involving individual Atoms within a Residue

22.3.1 Parsing Geometric Properties

Geometric properties must be calculated from raw atom data. BioPython supplies several functions for calculating functions between atom vectors.

49

https://code.osuosl.org/projects/pgd/wiki/Designmodels
https://code.osuosl.org/projects/pgd/wiki/Designmodels
http://biopython.org/wiki/Main_Page
http://www.biopython.org/DIST/docs/api/
http://www.biopython.org/DIST/docs/api/Bio.PDB.Residue.Residue-class.html
http://www.biopython.org/DIST/docs/api/Bio.PDB.Atom.Atom-class.html

Protein Geometry Database Documentation, Release 1.0.2

• calc_length(vector, vector) - Calculates distance between atoms in 3D space (supplied by PGD)

• calc_angle - Calculates the angle between 3 atoms.

• calc_dihedral - Calculates the dihedral (torsion) angle between 4 atoms

These functions require vectors which can be retrieved using Atom.get_vector()

22.4 Example a3

:: N = residue[’N’].get_vector() CA = residue[’CA’].get_vector() C = residue[’C’].get_vector()

a3 = calc_angle(N,CA,C)

22.5 Example: Ome

:: oldCA = prev_residue[’CA’].get_vector() oldC = prev_residue[’C’].get_vector() N = residue[’N’].get_vector() CA
= residue[’CA’].get_vector()

ome = calc_dihedral(oldCA,oldC,N,CA)

22.5.1 Parsing Averaged Properties

Several properties are presented as averages across the Main-Chain, *Side-Chain, and Carbon Gamma atoms.

• Main-Chain - atoms N, C-alpha, C, O, OXT

• Side-Chain - all other atoms excluding Main-Chain, C-gamma, and HETs (water)

• Carbon-gamma - also known as C-gamma or Cg. A single atom.

This properties are calculated as the average of an atom level property across the atoms in this group.

22.6 Example B-factor: Bm, Bs, Bg

"""
Other B Averages

Bm - Average of bfactors in main chain.
Bm - Average of bfactors in side chain.

"""
main_chain = []
side_chain = []
for a in res.child_list:

if a.name in ('N', 'CA', 'C', 'O','OXT'):
main_chain.append(a.get_bfactor())

elif a.name in ('H'):
continue

else:
side_chain.append(a.get_bfactor())

if main_chain != []:
res_dict['bm'] = sum(main_chain)/len(main_chain)

50 Chapter 22. Splicer Processor Task

http://www.biopython.org/DIST/docs/api/Bio.PDB.Vector%27-module.html#calc_angle
http://www.biopython.org/DIST/docs/api/Bio.PDB.Vector%27-module.html#calc_dihedral
http://www.biopython.org/DIST/docs/api/Bio.PDB.Atom.Atom-class.html#get_vector

Protein Geometry Database Documentation, Release 1.0.2

if side_chain != []:
res_dict['bs'] = sum(side_chain)/len(side_chain)

22.6.1 Parsing Side Chain Properties

Side chains are different for each type of atom. They require a map of connections to determine which atoms require
angles, lengths, and dihedral angles calculated.

Currently Chi1, Chi2, Chi3, and Chi4*are calculated using a map in *chi.py. Sidechain lengths and angles will be
added later, requiring an additional map of connections between atoms.

22.7 Update Checking

PDB Processor checks for updates when processing proteins. The Protein Model contains a timestamp which corre-
sponds to the update timestamp on the PDB file it was imported from. A protein will only be processed if the PDB file
is newer.

22.7. Update Checking 51

https://code.osuosl.org/projects/pgd/wiki/Designmodels

Protein Geometry Database Documentation, Release 1.0.2

52 Chapter 22. Splicer Processor Task

CHAPTER 23

Running Splicer

Splicer is intended to be run on a Pydra cluster. These are instructions and notes on running it and dealing with Pydra’s
immaturity.

Splicer can be deployed and run like any other task on a Pydra cluster.

Components of splicer can also be run manually from the command line

23.1 Slow FTP Issues

The FTP server for PDB files is a very slow, rate limited, server located in the UK. PDB files are currently 1.8
gigabytes total for 16,000 proteins in PGD. It can take a long time to download this much data from the FTP server.
This is handled in two ways:

23.2 Maintaining Connections Between Workunits

Each workunit is composed of downloading and processing a PDB file. Rather than disconnecting from the FTP
server, connections are maintained until the last work unit is completed. This removes the overhead for connecting
and disconnecting from the server

23.3 Only Downloading New Files

Checking dates is very fast, the MODTIME command completes almost instantly. This prevents uneeded downloading

23.4 Storing files in a network share

Pydra can’t guarantee that future runs of Splicer will process the same set of proteins on the same hardware. This
means that an up-to-date PDB could be mistaken for a PDB that doesn’t exist. Storing the files on a shared filesystem
ensures that regardless of which Node is assigned the workunit, it will find the same set of PDB files.

Note that this only matters when using

53

https://code.osuosl.org/projects/pydra
https://code.osuosl.org/projects/pydra
https://code.osuosl.org/projects/pydra
https://code.osuosl.org/projects/pgd/wiki/Designsplicercli
https://code.osuosl.org/projects/pydra#Node

Protein Geometry Database Documentation, Release 1.0.2

23.5 Workunit Thrashing Problem

There is an outstanding bug in pydra that causes the node to crash when workunits complete too quickly. Splicer
includes an option to batch process proteins to ensure that this does not happen. Eventually batching workunits will
an automatic feature of Pydra

When running repeat runs of Pydra it is important to increase the workunit size to at least 500-1000. Because the date
checks are very fast it will cycle through the existing proteins very quickly.

23.6 Debugging Splicer

Pydra logs most things that happen within it. A full task history can be viewed by clicking the history icon found on
the pydra tasks page. Clicking on a task instance gives you more details about the task including which workunits
were successful and what their arguments were.

Workunits are logged individually and located in /var/logs/pydra/archive. The logs are aggregated from the Nodes
after it is done with the entire task

54 Chapter 23. Running Splicer

https://code.osuosl.org/projects/pydra#Node
https://code.osuosl.org/projects/pydra#Node
https://code.osuosl.org/projects/pydra#Node
https://code.osuosl.org/projects/pydra#Node
https://code.osuosl.org/projects/pydra#Node

CHAPTER 24

Running Splicer From The Command Line

Splicer can be run from the command line. It requires that several steps be run separately.

All commands should be run from the project root (directory with settings.py in it).

24.1 Selecting Proteins

Proteins must first be selected. Default filtering settings will be used for threshold, resolution and r_factor.

1 ./pgd_splicer/dunbrack_selector.py

This will return information about the the parameters used, the files proteins were selected from, and a list of proteins
in the following format:

code chains threshold resolution rfactor rfree

Save the selection into a file:

1 ./pgd_splicer/dunbrack_selector.py --pipeout > selection.txt

24.2 Options

• –pipeout - will only output the data. This should be used if you would like to create output suitable for input
into one of the other steps

24.3 Downloading PDB Files

PDB files are downloaded from an FTP site using ftpupdate.py. This script will synchronize ./pdb with the remote
FTP server. Only new files will be downloaded, but it will check the timestamps on all files.

This is a time-consuming step. Be prepared to wait for approximately two days for this to complete on a fresh local
copy, or one day on an update.

1 ./pgd_splicer/ftpupdate.py code [code...]

To only grab the proteins which are selected (and cut down massively on consumed bandwidth and time), try:

55

Protein Geometry Database Documentation, Release 1.0.2

1 ./pgd_splicer/ftpupdate.py --pipein < selection.txt

24.4 Processing PDB Files

PDB files can be imported into the database with ProcessPDBTask.py. Multiple proteins can be fed as commands to
be imported. Errors will be written to ProcessPDB.log

1 ./pgd_splicer/ProcessPDBTask.py code chains threshold resolution rfactor rfree [repeat]

As before, a selection can be piped in:

1 ./pgd_splicer/ProcessPDBTask.py --pipein < selection.txt

Expect this to take a few days as well.

24.5 Parameters

Parameters are all required, and may be repeated for multiple proteins.

• code - protein code to import, should be all uppercase

• chains - list of chains to import, should be a string of chain ids. (ie. ABCDEF). The string should not have
quotes around it.

• threshold, resolution, rfactor, rfree - the value for these fields. These properties are retrieved from the selection
script so they are included as input for processing the protein.

24.6 Options

• –pipein - input will be read from a pipe instead of arguments. proteins in the list should be separated by newlines.

24.7 Example

Some examples. Intermediate output is saved to a text file so that it can be examined later.

24.8 Full Import

Update all proteins regardless of whether the file was downloaded by ftpupdate. ProcessPDBTask will still check the
update date and exclude pdbs that are not new.

1 ./pgd_splicer/dunbrack_selector.py --pipeout > selected_proteins.txt
2 ./pgd_splicer/ftpupdate.py --pipein < selected_proteins.txt
3 ./pgd_splicer/ProcessPDBTask.py --pipein < selected_proteins.txt

56 Chapter 24. Running Splicer From The Command Line

Protein Geometry Database Documentation, Release 1.0.2

24.9 Update Only New

Update only proteins for which we have a new FTP file.

1./pgd_splicer/dunbrack_selector.py --pipeout > selected_proteins.txt
2./pgd_splicer/ftpupdate.py --pipein --pipeout < selected_proteins.txt > updated_proteins.txt
3./pgd_splicer/ProcessPDBTask.py --pipein < updated_proteins.txt

24.10 Update Skipping Download

If all the pdb files are already downloaded you may skip the FTP step to save time.

1 ./pgd_splicer/dunbrack_selector.py --pipeout > selected_proteins.txt
2 ./pgd_splicer/ProcessPDBTask.py --pipein < selected_proteins.txt

or as a single command:

1 ./pgd_splicer/dunbrack_selector.py --pipeout | ./pgd_splicer/ProcessPDBTask.py --pipein

24.9. Update Only New 57

Protein Geometry Database Documentation, Release 1.0.2

58 Chapter 24. Running Splicer From The Command Line

CHAPTER 25

Development workflow

25.1 Create an issue in the issue tracker if one does not already exist.

All modifications to the source code should be associated with an issue for tracking purposes.

25.2 Create a branch from the develop branch based on the issue
number.

The branch should be named based on the issue type and number. For now, all issues are considered bugs for naming
purposes. The branch for issue #14109 (a feature) should be named ‘bug/14109’. At this time, the issue should be
updated with the status ‘In Progress’.

25.3 Write the code, including tests and release notes entry if neces-
sary.

If the branch is fixing a bug, then a test should be written first if at all possible to confirm the bug exists as well as
confirm that the bug fix works.

If the branch makes any user-visible changes, then the release notes (news.html) should be updated to reflect the
changes. If you are the first developer to post release notes for the latest development version, add an appropriate
header above the existing release notes following the example format – the release engineer will clean it up if necessary
when making the next release.

25.4 Commit code and update the issue.

If any billable work is done on an issue, then code should be committed, and the issue should be updated with the
number of billable hours spent on the task and a summary of the work that was done. Commits and updates should
happen whenever major subtasks are completed and at close of business.

59

Protein Geometry Database Documentation, Release 1.0.2

25.5 Request code review.

When the code is complete, the tests if any all pass, and the release notes entry has been added if necessary, mark the
issue ‘Needs Review’ and assign it to another team member for review. That individual will review the code, the tests,
the entry, and any other associated changes for accuracy and consistency. If the branch is acceptable, the reviewer will
mark the issue ‘Resolved’. If the branch is unacceptable, the reviewer will mark the issue ‘Needs Work’. In both cases,
the reviewer will update the issue with relevant information and reassign the issue back to the original developer.

25.6 Merge changes back into the develop branch.

Once the branch passes review, it should be merged back into develop using ‘git merge –no-ff’ and then develop should
be pushed back into the origin. Once this is complete, the devloper should update the issue to that effect.

60 Chapter 25. Development workflow

CHAPTER 26

Hotfix Workflow

26.1 One or more show-stopping bugs are detected between releases

An example of a show-stopping bug would be something like #14613 where an unexpected side-effect of a bugfix
caused incomplete results to be returned on unrelated searches.

26.2 Create a hotfix branch off the master branch

The hotfix branch name will take the form hotfix/x.y.z+1

If the current release is 1.2 the hotfix branch is then hotfix/1.2.1 If the current release is 3.7.2 the hotfix branch is then
hotfix/3.7.3

26.3 Create bug branches off the hotfix branch

For each bug that must be fixed, an issue is created and a bug branch named after that issue like all other bugs is created
from the hotfix branch instead of the develop branch like all other bugs.

26.4 Merge resolved bugs back to hotfix branch and test on staging

As each individual bug is resolved, its branch is merged back into the hotfix branch. The hotfix branch can then be
updated on the staging server for testing.

26.5 When all bugs are resolved and merged, merge hotfix branch
into master branch

Do not forget to increment the version, create a new tag, and update the news page with all bug fixes!

26.6 Pull master on production and restart Apache

This should make the new version accessible to the user community.

61

Protein Geometry Database Documentation, Release 1.0.2

26.7 Merge hotfix branch back into develop

Once production is back up and running, take the time to merge the hotfix branch back into develop.

62 Chapter 26. Hotfix Workflow

CHAPTER 27

Release Workflow

27.1 Announce the upcoming release to the PGD list four weeks be-
fore release.

Include the following information:

• version number to be released in x.y.z format

• rough list of features and bugfixes expected to be included

• schedule of events (feature freeze, release branch, etc.)

27.2 Impose a feature freeze on develop three weeks before release.

Features are no longer permitted to be merged into the develop branch, only bugs.

Release engineer checks each resolved ticket to confirm that the branch was indeed merged into the develop branch.

27.3 Start the release branch two weeks before release.

Create a branch from develop named ‘release/x.y.z’ using the version number mentioned in the release announcement.

Log into the dev site and check out the release branch there.

Bugfixes can only be made from and returned to this branch at this time.

27.4 Freeze the release branch one week before release.

Log into the staging site and check out the release branch there.

Only emergency fixes allowed at this point!

63

Protein Geometry Database Documentation, Release 1.0.2

27.5 Release the software, close tickets and unfreeze develop on the
release date.

Merge the release branch back into master and develop branches.

Log into the production site and check out the master branch there.

All resolved tickets should be closed at this time.

Any existing branches should be rebased from develop before development continues.

Features may now be merged back into develop at this time.

64 Chapter 27. Release Workflow

CHAPTER 28

Management Commands and Possible Redisign

2 Databases:

• Staging (aka Silver)

• Master (aka Gold)

Instead of two databases

class Protein(models.Model):
"""
Same as before
"""
...

class GoldProtein(Protein):
"""
Nothing actually goes here
"""

Manage Cammonds:

• Import (Modifies Staging, Reads from Master)

– Fetches pdb files (like fetch does currently)

* –fetch-only as an option

– Stores the selection in the Audit table

– Dumps Proteins from staging

– “ProcessPDBTask”

– Generates a diff (Total, New, Removed) data and stores it in the Audit table

• Promote (Reads Staging, Modifies Master)

– Dumps Data

– Copies Staging into Master

– Updates Master Audit table

65

Protein Geometry Database Documentation, Release 1.0.2

66 Chapter 28. Management Commands and Possible Redisign

CHAPTER 29

Indices and tables

• genindex

• modindex

• search

67

	Installation
	Install dependencies
	Get the Code
	Configuration

	Using PGD with Docker
	Quick Start: Demonstrating the PGD with Docker Compose and Docker
	Using Docker Compose
	Building an Image
	Running a MySQL Container
	Running an Image and Linking it
	Mounting the PGD Code as a Volume

	Importing Data
	Running Splicer From The Command Line
	Example

	Updating Protein Database
	Site Specific Information
	Virtual environments
	Files generated during the update process
	Differences between staging and production

	Technologies Used By Protein Geometry Database
	Django
	jQuery
	Raphael
	Mysql

	Terminology (WIP)
	Code Modules
	PGD Core
	PGD Search
	PGD Splicer

	Protein Data Models
	Protein
	Chain
	Residue

	Optimization
	Optimization: SQL Indexes
	Protein
	Residue Joined to Residue

	SQL Aggregates
	Statistics for Dihedral Angles
	Average
	Standard Deviation

	Optimization: In Memory Tables
	Indexing Memory Tables
	Parallelization of Queries
	Startup and Django Configuration Issues
	Growth Concerns

	Attempted Optimization: De-normalizing Residue Table
	Table Size

	Search Workflow
	Models
	Forms
	Conversions
	Workflow

	Ramachandran Plots
	Data Selection
	Statistics Calculation
	Coloring
	Logarithmic Scale
	Color Ranges
	Algorithm

	Search Statistics
	Queries
	Optimization

	Data Dump
	Selecting Data
	Buffered Response

	Browse
	Selecting Data

	Splicer
	Task Structure

	Developing Splicer
	Django Settings
	Running Components from the command line

	Splicer Processor Task
	Running From the command line
	Libraries
	Parsing PDBs
	Example a3
	Example: Ome
	Example B-factor: Bm, Bs, Bg
	Update Checking

	Running Splicer
	Slow FTP Issues
	Maintaining Connections Between Workunits
	Only Downloading New Files
	Storing files in a network share
	Workunit Thrashing Problem
	Debugging Splicer

	Running Splicer From The Command Line
	Selecting Proteins
	Options
	Downloading PDB Files
	Processing PDB Files
	Parameters
	Options
	Example
	Full Import
	Update Only New
	Update Skipping Download

	Development workflow
	Create an issue in the issue tracker if one does not already exist.
	Create a branch from the develop branch based on the issue number.
	Write the code, including tests and release notes entry if necessary.
	Commit code and update the issue.
	Request code review.
	Merge changes back into the develop branch.

	Hotfix Workflow
	One or more show-stopping bugs are detected between releases
	Create a hotfix branch off the master branch
	Create bug branches off the hotfix branch
	Merge resolved bugs back to hotfix branch and test on staging
	When all bugs are resolved and merged, merge hotfix branch into master branch
	Pull master on production and restart Apache
	Merge hotfix branch back into develop

	Release Workflow
	Announce the upcoming release to the PGD list four weeks before release.
	Impose a feature freeze on develop three weeks before release.
	Start the release branch two weeks before release.
	Freeze the release branch one week before release.
	Release the software, close tickets and unfreeze develop on the release date.

	Management Commands and Possible Redisign
	Indices and tables

