
projectpredict Documentation
Release 0.1

Justin Tervala

May 15, 2018

Contents

1 What is ProjectPredict? 3

2 Installation 5

3 The Recommendation Engine 7

4 Examples 9

5 Visualization 19

6 Customized PDFs 23

7 Customized Learning Models 25

8 Next Steps 27

9 Sphinx AutoAPI Index 29

10 Indices and tables 45

Python Module Index 47

i

ii

projectpredict Documentation, Release 0.1

Welcome to the documentation for ProjectPredict, the library to project managers schedule tasks intelligently. Just get-
ting started? Read the What is ProjectPredict? section. Interested? Read the Installation section to get ProjectPredict
and get started.

Contents 1

projectpredict Documentation, Release 0.1

2 Contents

CHAPTER 1

What is ProjectPredict?

ProjectPredict is a library to help project managers gain insight into the status of their project using Bayesian net-
works. It is inspired by the paper “Project scheduling: Improved approach to incorporate uncertainty using Bayesian
networks” (Khodakarami, Fenton, & Neil, Project Management Journal, 2007). The project features

• Inferring the latest start date, earliest finish date, and total float for each task in a project

• Recommending which task or tasks should be started next using custom constraints and objective functions

• Task duration specified either through three-point (PERT) estimation or inferring the duration of a task from a
machine learning model

• Visualization of a project timeline using Matplotlib

1.1 The Bayesian network

A project is specified as a directed acyclic graph of tasks. For example, suppose you have three tasks, A, B, C, D, E,
and F. Task C can only be begun when tasks A and B are completed, task D can only be completed when task B is
completed, and tasks D and E can only be begun when task B is completed. The resulting graph would look like this:

3

https://www.pmi.org/learning/library/project-scheduling-approach-incorporate-uncertainty-2371
https://www.pmi.org/learning/library/project-scheduling-approach-incorporate-uncertainty-2371
https://en.wikipedia.org/wiki/Three-point_estimation
https://matplotlib.org

projectpredict Documentation, Release 0.1

Each task is then decomposed into a smaller Bayesian network.

Where 𝐷 is the duration, 𝐸𝑆 is the earliest start date, 𝐿𝑆 is the latest start date, 𝐸𝐹 is the earliest finish date, and 𝐿𝐹
is the deadline or latest finish date. The earliest finish date can be inferred from the graph by traversing the graph in
topological order from the starting tasks (A and B in our example), from the equations

𝐸𝑆𝑖 = max{𝐸𝑆𝑗 + 𝐷𝑗 ∀ predecessor tasks 𝑗}

𝐸𝐹𝑖 = 𝐸𝑆𝑖 + 𝐷𝑖

The latest start date for each task can be inferred by traversing teh graph in reverse topological order from the final
tasks (D and E in our example), from teh equations

𝐿𝐹𝑖 = max{𝐿𝐹𝑗 −𝐷𝑗 ∀ successor tasks 𝑗}

𝐿𝑆𝑖 = 𝐿𝐹𝑖 −𝐷𝑖

For our sample project, tasks A and B must be given an earliest start date, and tasks C and D must be given a latest
finish date. Both of these can take the form of either a probability distribution or a hard date. All tasks must be given
a duration, either using three-point estimation or predicted from a learning model.

Once these values have been inferred for each task, the total float can be defined as 𝑇𝐹𝑖 = 𝐿𝐹𝑖 − 𝐸𝐹𝑖. This is a
measure of the amount of time a task’s duration can be increased without affecting the completion time of the project
as a whole. The smaller the total float of a task, the more critical the task is to the overall project.

4 Chapter 1. What is ProjectPredict?

CHAPTER 2

Installation

The easiest way to install ProjectPredict is to install it from PyPI using pip

pip install projectpredict

Or, using Pipenv, the new officially recommended standard for Python package management,

2.1 Development Installation

Currently the only way to install ProjectPredict for development is to clone it from GitHub.

git clone https://github.com/JustinTervala/ProjectPredict

Set up your virtual environment using virtualenv

git clone https://github.com/JustinTervala/ProjectPredict
cd ProjectPredict
virtualenv venv
source venv/bin/activate

Then install the requirements

pip install -r requirements.txt
pip install -r requirements-dev.txt

Or, using Pipenv

git clone https://github.com/JustinTervala/ProjectPredict
cd ProjectPredict
pipenv install --dev
pipenv shell

5

https://docs.pipenv.org
https://virtualenv.pypa.io/en/stable/

projectpredict Documentation, Release 0.1

2.2 Testing

ProjectPredict uses pytest as its unit testing framework. You can run the tests from the top-level directory by simply
typing “pytest”

pytest --cov=projectpredict

2.3 Building the Documentation

ProjectPredict uses sphinx to build the docs, and uses several plugins. From the top-level directory,

cd docs
pip install -r requirements.txt
make html

This will generate the file in docs/_build/index.html. This file is the entry point to the documentation

6 Chapter 2. Installation

http://www.sphinx-doc.org/en/master/

CHAPTER 3

The Recommendation Engine

ProjectPredict comes with a flexible recommendation engine which can be used to determine which tasks should be
started next. You can constrain the set of tasks both by a minimum and maximum number of tasks as well as by using
custom constraint functions. You can also specify if all tasks must be completed before the next tasks can begin or if
a new set or tasks can be started whenever any of the tasks in the recommended set completes. The default algorithm
selects a set of tasks which maximizes the sum of the total float across the project, weighted by the importance of some
tasks’ deadlines and the risk tolerance.

3.1 The Default Algorithm

The default algorithm iterates through all possible combinations of tasks which can be started (all tasks with no
uncompleted predecessors) and, for each combination infers the latest start date, earliest finish date, and total float of
each task in the project assuming that the combination of tasks is begun at the current time. For each combination it
creates two scores, the float score and the precision score as defined by

𝑠𝑓 =
∑︀

tasks 𝑖 𝑤𝑖𝜇𝑖

𝑠𝑝 =
∑︀

tasks 𝑖 𝑤𝑖/𝜎𝑖

Where 𝜇𝑖 is the mean total float for task 𝑖, 𝜎𝑖 is the mean total float for task 𝑖, and 𝑤𝑖 is the weight of the deadline for
task 𝑖 (defaults to 1 if unspecified).

These scores are then used to select the best combination of tasks. First each score is scaled linearly between 0 and 1
based on the minimum and maximum of both scores.

𝑠𝑓 =
𝑠𝑓−mintask set i 𝑠𝑓𝑖
maxtask set i 𝑠𝑓𝑖

𝑠𝑝 =
𝑠𝑝−mintask set i 𝑠𝑝𝑖
maxtask set i 𝑠𝑝𝑖

Where 𝑠𝑓 and 𝑠𝑝 are the scaled total float score and scaled precision respectively for a task. These two are then
combined with a risk tolerance factor, 𝑟, a value from 0 to 1, to obtain the combined score 𝑠, using 𝑠 = 𝑟𝑠𝑓 +(1−𝑟)𝑠𝑝.
The recommended task set is the set of tasks which has the maximum combined score.

7

projectpredict Documentation, Release 0.1

3.2 Customization

The recommendation algorithm can be customized by specifying a scoring function which will accept the earliest start
date, latest start date, earliest finish date, latest finish date, and total float samples generated for a task set as well as
some optional keyword arguments. A recommendation selection function must also be supplied which accepts the
generated scores and some optional keyword arguments. A list of constraints can be specified by supplying a list of
functions which accept the project and a proposed set of tasks and returns a boolean indicating if the set of task satisfies
the constraints. For examples see Recommendations with Constraints

8 Chapter 3. The Recommendation Engine

CHAPTER 4

Examples

4.1 Your First Project

The simplest way to construct a project is to use deterministic distributions for the duration, earliest start date, and
latest start date. Suppose our project has 6 tasks – A, B, C, D, E, F specified as

Task Duration Earliest start date Latest finish date
A 1 day Anytime –
B 3.5 hours 2018-05-14 12pm –
C 2 days – –
D 3 days – 2018-04-16
E 1 hour – 2018-05-15
F 5 hours – 2018-05-20

With the following dependencies

We first write create Tasks from DurationPdfs for the durations and DatePdfs for the earliest start and latest finish dates

9

projectpredict Documentation, Release 0.1

1 from datetime import datetime
2

3 from projectpredict import Project, Task, TimeUnits, DurationPdf, DatePdf
4 from projectpredict.pdf import DeterministicPdf
5

6

7 taskB_earliest_start_date = datetime(year=2018, month=5, day=14, hour=12)
8

9 # We make a DatePdf centered around taskB_earliest_start_date.
10 # The second parameter should be a zero-mean distribution.
11 # Because this start date is fully deterministic, we use a DeterministicPdf
12 # with value of 0
13 taskB_earliest_start_pdf = DatePdf(taskB_earliest_start_date, DeterministicPdf(0))
14

15 #
16

17 # Because Task A doesn't specify an earliest start date pdf it is assumed that
18 # it can begin any time.
19 taskA = Task(
20 'A',
21 duration_pdf=DurationPdf(DeterministicPdf(1), units=TimeUnits.days)
22)
23

24 taskB = Task(
25 'B',
26 duration_pdf=DurationPdf(DeterministicPdf(3.5), TimeUnits.hours),
27 earliest_start_date_pdf=taskB_earliest_start_pdf
28)
29

30 taskC = Task(
31 'C',
32 duration_pdf=DurationPdf(DeterministicPdf(2), units=TimeUnits.days)
33)
34

35

36 # Final tasks require a latest finish date
37 taskD_latest_finish_date = datetime(year=2018, month=5, day=16)
38 taskE_latest_finish_date = datetime(year=2018, month=5, day=15)
39 taskF_latest_finish_date = datetime(year=2018, month=5, day=20)
40

41

42 taskD = Task(
43 'D',
44 duration_pdf=DurationPdf(DeterministicPdf(3), units=TimeUnits.days),
45 latest_finish_date_pdf=DatePdf(taskD_latest_finish_date, DeterministicPdf(0))
46)
47

48 taskE = Task(
49 'E',
50 duration_pdf=DurationPdf(DeterministicPdf(1), units=TimeUnits.hours),
51 latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0))
52)
53

54 taskF = Task(
55 'F',
56 duration_pdf=DurationPdf(DeterministicPdf(5), units=TimeUnits.hours),
57 latest_finish_date_pdf=DatePdf(taskF_latest_finish_date, DeterministicPdf(0))
58)

10 Chapter 4. Examples

projectpredict Documentation, Release 0.1

Once we have defined the tasks, we can add the tasks and their dependencies to the project.

1 # Construct a Project with the name "MyProject"
2 project = Project('MyProject')
3

4 tasks = [taskA, taskB, taskC, taskD, taskE, taskF]
5 dependencies = [
6 (taskA, taskC),
7 (taskB, taskC),
8 (taskB, taskD),
9 (taskC, taskE),

10 (taskC, taskF)
11]
12 project.add_tasks(tasks)
13 project.add_dependencies(dependencies)

Finally we can get the derived latest start date, earliest finish date, and total float for the tasks.

1 # We can specify a current time. If not specified, then
2 # The current wall time is used
3 current_time = datetime(year=2018, month=5, day=12, hour=12)
4

5 # Because all the distributions are deterministic, we only need 1 iteration
6 stats = project.calculate_task_statistics(current_time=current_time, iterations=1)
7

8 taskA_stats = stats[taskA]
9

10 print('earliest finish: {}'.format(taskA_stats.earliest_finish))
11 print('latest start: {}'.format(taskA_stats.latest_start))
12 print('total float: {}'.format(taskA_stats.total_float))

1 "earliest finish: {'variance': datetime.timedelta(0), 'mean': datetime.datetime(2018,
→˓5, 13, 12, 0)}"

2 "latest start: {'variance': datetime.timedelta(0), 'mean': datetime.datetime(2018, 5,
→˓11, 23, 0)}"

3 "total float: {'variance': datetime.timedelta(0), 'mean': datetime.timedelta(-1,
→˓39600)}"

For this particular project, the total float is negative, indicating that Task A appears to already be past the deadline.
Additionally, we could use calculate_earliest_finish_times() and calculate_latest_start_times() methods to calculate
only the earliest finish dates and latest start dates respectively.

4.2 Using Distributions

The world is almost never kind enough to let us know the exact duration of a task, and some deadlines are more
flexible than others, and some earliest start dates may be uncertain. Rather than blindly guessing a distribution for the
durations, we’ll use three-point (PERT) estimation to derive the distribution using the Task.from_pert() method.

4.2. Using Distributions 11

https://en.wikipedia.org/wiki/Three-point_estimation

projectpredict Documentation, Release 0.1

Task Duration
Best Case Expected Worst Case

A 5 hours 24 hours 36 hours
B 0.5 hours 3.5 hours 10 hours
C 1 day 2 days 4 days
D 0.5 days 3 days 7 days
E 0.2 hours 1 hour 4 hours
F 1 hour 5 hours 10 hours

We’ll also put a zero-mean Gaussian distribution over the earliest start date of Task B and the latest finish date of Task
D.

1 from projectpredict.pdf import GaussianPdf
2

3 taskB_earliest_start_date = datetime(year=2018, month=5, day=14, hour=12)
4

5 taskA = Task.from_pert('A', 5, 24, 36, units=TimeUnits.hours)
6

7 taskB = Task.from_pert('B', 0.5, 3.5, 10, units=TimeUnits.hours,
8 earliest_start_date_pdf=DatePdf(
9 taskB_earliest_start_date,

10 GaussianPdf(0, 2),
11 units=TimeUnits.hours)
12)
13

14 taskC = Task.from_pert('C', 1, 2, 4, units=TimeUnits.days)
15

16 taskD_latest_finish_date = datetime(year=2018, month=5, day=16)
17 taskE_latest_finish_date = datetime(year=2018, month=5, day=15)
18 taskF_latest_finish_date = datetime(year=2018, month=5, day=20)
19

20

21 taskD = Task.from_pert('D', 0.5, 3, 7, units=TimeUnits.days,
22 latest_finish_date_pdf=DatePdf(
23 taskD_latest_finish_date,
24 GaussianPdf(0, 1),
25 units=TimeUnits.days
26)
27)
28

29 taskE = Task.from_pert('E', 0.2, 1, 4, units=TimeUnits.hours,
30 latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0))
31)
32

33 taskF = Task.from_pert('F', 1, 5, 10, units=TimeUnits.hours,
34 latest_finish_date_pdf=DatePdf(taskF_latest_finish_date, DeterministicPdf(0))
35)

From here, we can add the tasks and dependencies to a Project and calculate the statistics same as in the previous
example.

12 Chapter 4. Examples

projectpredict Documentation, Release 0.1

4.3 Learned Model

While using three-point estimation is much better than either deterministic or guessing a distribution, it would be even
better to learn the distribution from a model. Imagine you are using an issue tracker for a software project. Frequently
you’ll have some knowledge of what team the work will be done by and the story points of the task. You may also have
some history of how long each task took to complete. Using this information, you could train a model to determine the
duration a task will take. ProjectPredict currently supports using a Gaussian Process Regression model from scikit-
learn to predict the duration of the task. We’ll first generate some simulated data for the project. We’ll assume the
durations are in units of days.

1 import numpy as np
2 from scipy.stats import norm
3 import pandas as pd
4

5

6 # We give out teams integer keys, a name, and a probability that any given
7 # task will be assigned to them
8 teams = {
9 1: {'team': 'red', 'prob': 0.5},

10 2: {'team': 'blue', 'prob': 0.25},
11 3: {'team': 'green', 'prob': 0.15},
12 4: {'team': 'yellow', 'prob': 0.1},
13 }
14

15 # For each team (by number), what give the probability that the team will
16 # assign some points to any task.
17 team_points = {
18 1: [{'points': 1, 'prob': 0.5},
19 {'points': 2, 'prob': 0.3},
20 {'points': 3, 'prob': 0.2}],
21

22 2: [{'points': 1, 'prob': 0.4},
23 {'points': 2, 'prob': 0.4},
24 {'points': 3, 'prob': 0.2}],
25

26 3: [{'points': 1, 'prob': 0.7},
27 {'points': 2, 'prob': 0.25},
28 {'points': 3, 'prob': 0.05}],
29

30 4: [{'points': 1, 'prob': 0.3},
31 {'points': 2, 'prob': 0.5},
32 {'points': 3, 'prob': 0.2}],
33 }
34

35 # Assign the mean and std of a Guassian distribution to
36 duration_lookup = {
37 1: {1: {'mean': 3, 'std': 0.5},
38 2: {'mean': 5, 'std': 1.25},
39 3: {'mean': 10, 'std': 2}},
40

41 2: {1: {'mean': 1, 'std': 0.5},
42 2: {'mean': 3, 'std': 2},
43 3: {'mean': 5, 'std': 3}},
44

45 3: {1: {'mean': 2, 'std': 1},
46 2: {'mean': 4, 'std': 3},
47 3: {'mean': 7, 'std': 4}},

4.3. Learned Model 13

projectpredict Documentation, Release 0.1

48

49 4: {1: {'mean': 1, 'std': 0.5},
50 2: {'mean': 2, 'std': 1.15},
51 3: {'mean': 4, 'std': 5}},
52 }
53

54

55 def generate_team_samples(teams, num_samples=100):
56 return np.random.choice(
57 list(teams.keys()), p=[team['prob'] for team in teams.values()], size=num_

→˓samples)
58

59

60 def generate_points_samples(team_points_lookup, team_samples):
61 results = []
62 for team_sample in team_samples:
63 lookup = team_points_lookup[team_sample]
64 points = np.random.choice(
65 [entry['points'] for entry in lookup],
66 p=[entry['prob'] for entry in lookup])
67 results.append(points)
68 return results
69

70

71 def generate_duration_samples(team_samples, points_samples, duration_prob_lookup):
72 results = []
73 for team_sample, points_sample in zip(team_samples, points_samples):
74 lookup = duration_prob_lookup[team_sample][points_sample]
75 prob = norm(loc=lookup['mean'], scale=lookup['std'])
76 sample = prob.rvs()
77

78 # Don't allow negative durations
79 while sample <= 0:
80 sample = prob.rvs()
81 results.append(sample)
82 return results
83

84 team_samples = generate_team_samples(teams)
85 points_samples = generate_points_samples(team_points, team_samples)
86 duration_samples = generate_duration_samples(team_samples, points_samples, duration_

→˓lookup)

We’ll then save the data to a CSV using pandas so we can use it later if we need to.

1 import pandas as pd
2

3 # Convert the samples to a numpy array
4 data = np.array(list(zip(team_samples, points_samples, duration_samples)))
5

6 #write the numpy array to a csv using pandas
7 dataframe = pd.DataFrame(data=data, columns=['team', 'points', 'duration'])
8 dataframe.to_csv('duration_samples.csv')

Now we’ll train our model. For this we’ll use the GaussianProcessRegressorModel which wraps scikit-learn’s Guas-
sianProcessregressor.

1 from projectpredict.learningmodels import GaussianProcessRegressorModel
2 from projectpredict import TimeUnits

14 Chapter 4. Examples

projectpredict Documentation, Release 0.1

3

4 # By default, the kernel used in the model is
5 # ConstantKernel() + Matern(length_scale=1, nu=3 / 2) + WhiteKernel(noise_level=1)
6 # A custom jkernel can be specified using the "kernel" keyword in the constructor
7 model = GaussianProcessRegressorModel(TimeUnits.days)
8 input_data = data[data.columns.drop('duration')]
9 output = data['duration']

10

11 # Because we are using a pandas DataFrame, we don't need to specify the
12 # ordering of the data.
13 model.train(input_data, output)
14

15 # If we were using a raw numpy array or a python, we'd write
16 # model.train(input_data, output, ordering=['team', 'points'])

Now that model has been trained, we can add team and points data to our Tasks. Data is attached to Tasks using the
“data” keyword argument in the constructor. The keys of the dictionary must be the same as the column names of the
input data used to train the model, or the elements passed to the “ordering” keyword used to train the model.

1 from datetime import datetime
2

3 from projectpredict import Project, Task, TimeUnits, DatePdf
4 from projectpredict.pdf import GaussianPdf, DeterministicPdf
5

6

7 taskB_earliest_start_date = datetime(year=2018, month=5, day=14, hour=12)
8

9 taskA = Task('A', data={'team': 1, 'points': 3})
10

11 taskB = Task('B', data={'team': 3, 'points': 2},
12 earliest_start_date_pdf=DatePdf(
13 taskB_earliest_start_date,
14 GaussianPdf(0, 2),
15 units=TimeUnits.hours)
16)
17

18 taskC = Task('C', data={'team': 2,'points': 1})
19

20 taskD_latest_finish_date = datetime(year=2018, month=5, day=16)
21 taskE_latest_finish_date = datetime(year=2018, month=5, day=15)
22 taskF_latest_finish_date = datetime(year=2018, month=5, day=20)
23

24

25 taskD = Task('D', data={'team': 4,'points': 3},
26 latest_finish_date_pdf=DatePdf(
27 taskD_latest_finish_date,
28 GaussianPdf(0, 1),
29 units=TimeUnits.days
30)
31)
32

33 taskE = Task('E', data={'team': 1,'points': 2},
34 latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0))
35)
36

37 taskF = Task('F', data={'team': 2,'points': 2},
38 latest_finish_date_pdf=DatePdf(taskF_latest_finish_date, DeterministicPdf(0))
39)

4.3. Learned Model 15

projectpredict Documentation, Release 0.1

At this point, the tasks don’t contain any estimates of their durations. We could set their duration estimates directly
from the model using

taskA.set_duration_pdf(model)

But the add_task() and add_tasks() methods in the Project will automatically set the duration when it adds the Task(s)
to the project, so we can use the same syntax as before with one slight modification: The project needs to be given the
model in its constructor.

1 project = Project('MyProject', model=model)
2

3 tasks = [taskA, taskB, taskC, taskD, taskE, taskF]
4 dependencies = [
5 (taskA, taskC),
6 (taskB, taskC),
7 (taskB, taskD),
8 (taskC, taskE),
9 (taskC, taskF)

10]
11 project.add_tasks(tasks)
12 project.add_dependencies(dependencies)

We can then get the earliest finish date, latest start date, and total float in the same way as before.

current_time = datetime(year=2018, month=5, day=12, hour=12)

stats = project.calculate_task_statistics(current_time=current_time)

4.4 Updating Project Status

Now suppose the project begins, and we start with task A. We can mark it as started by doing the following

taskA_start_time = datetime(year=2018, month=5, day=13)

Without specifying a start_time, the current wall time will be used
taskA.start(start_time=taskA_start_time)

Let’s suppose that the task is completed 12 hours later, then we can mark it as complete by writing the following:

from datetime import timedelta
current_time = taskA_start_time + timedelta(hours=12)
taskA.complete(completion_time=current_time)

Marking a task as completed effectively removes it from the sampling and calculations of the earliest finish date, latest
start date, and total float.

4.5 Recommendations

Now that we have completed Task A, the question then becomes what is the next Task which should be attempted. We
can get recommendations from the project using the Project’s recommend_next() method. For more information on
the algorithm see The Recommendation Engine

16 Chapter 4. Examples

projectpredict Documentation, Release 0.1

project.recommend_next(current_time=current_time)
>>> (<Task name=B>,)

We can also get a recommendation for multiple tasks using the “max_number” keyword (there is also a corresponding
“min_number” keyword).

project.recommend_next(current_time=current_time, max_number=2)

By default this batch mode recommendation system assumes that if a task in this batch is completed, a new task can
begin immediately. To disable this behavior, set the “batch_wait” keyword to True.

project.recommend_next(current_time=current_time, max_number=2, batch_wait=True)

4.5.1 Customizing the Default Recommendation Algorithm

The default recommendation engine can be modified by setting a “risk_tolerance” score. This is a value between 0
and 1. The higher the score, the more emphasis is put on reducing the total float and less emphasis is put on the
precision of the total float. The default is 0.5, but you can select your own by adding the “risk_tolerance” entry to the
“selection_func_arguments” keyword argument.

project.recommend_next(
current_time=current_time,
max_number=2,
selection_func_arguments={'risk_tolerance': 0.75}

)

You can also place more emphasis on certain deadlines than others, so if one task is critical to meet a deadline, you
can specify a “deadline_weight” for a task by adding the keyword argument to the Task constructor. For example, to
place more weight on meeting Task E’s deadline, we could construct it as

taskE = Task('E', data={'team': 1,'points': 2},
latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0)),
deadline_weight=10

)

4.5.2 Recommendations with Constraints

You can also limit the set of accepted tasks by adding constraint functions. Suppose you know that your velocity for a
a sprint is 7 points. To restrict the set of tasks to ones wose story point sum is less than or equal to 7, you can construct
a constraint function like the following

def story_point_constraint(project, task_set):
story_point_sum = sum(task.data['points'] for task in task_set)
return story_point_sum <= 7

project.recommend_next(
current_time=current_time,
max_number=2,
constraints=[story_point_constraint]

)

4.5. Recommendations 17

projectpredict Documentation, Release 0.1

4.5.3 Recommendations with Custom Scoring

You can also specify a custom scoring mechanism by specifying two function - a scoring function and a selection
function. The scoring function must accept a dict in which the keys is a Task and the value is a list of TaskSamples
generated by the sampling algorithm. Additional arguments can be accepted as keyword arguments to the recom-
mend_next() method and will be forwarded to the scoring function. The recommendation selection function must
accept a dict in which the keys are a tuple of Tasks and the value is the returned score from the scoring function. Ad-
ditional arguments can be specified by supplying a dict of the arguments to the “selection_func_arguments” keyword
argument of the recommend_next() method.

def my_score_func(samples, **score_args):
foo = score_args['foo']
bar = score_args['bar']
...
return some_score

def my_selection_func(scores, **selection_args):
wiz = selection_args['wiz']
bang = selection_args['bang']
...
return best_task

project.recommend_next(
current_time=current_time,
max_number=2,
score_func=my_score_func,
selection_func=my_selection_func,
selection_func_arguments={'wiz': 0.75, 'bang': 'wizbang'}
foo=12,
bar='high_risk'

)

18 Chapter 4. Examples

CHAPTER 5

Visualization

Currently only one artist, the MatplotlibArtist, is provided by ProjectPredict. It provides a single visualization of a
project based on its generated statistics using matplotlib. It places positions the tasks on a graph based on its mean
latest start date, creating a timeline of the project. Additionally, it can shade the tasks based on either the total float,
latest start, or earliest finish (the default colormap is Matplotlib’s Spectral colormap).

Note: The following example uses the Project developed using the learning model from Learned Model

1 from projectpredict.artists import MatplotlibArtist
2 import matplotlib.pyplot as plt
3

4 artist = MatplotlibArtist(project)
5 current_time = datetime(year=2018, month=4, day=25)
6 fig, ax = artist.draw(current_time=current_time)
7 plt.tight_layout()
8 plt.savefig('myproject.png')

This results in the following plot:

19

https://matplotlib.org/tutorials/colors/colormaps.html

projectpredict Documentation, Release 0.1

The horizontal bars indicate the standard deviation of the latest start date, and teh blue vertical bar represents the
current date. These can be toggled off by setting the “show_variance=False” and “show_current_time=False” keyword
arguments respectively.

5.1 Custom Visualizations

No interface must be satisfied to make your own visualizations, but an ArtistBase class has been provided which
supplies a function, get_positions(), which generates a timeline-like graph of the project based on the latest start date
for each task in the project. You can choose to extend from this base class or not.

5.2 Layout Algorithm

Constructing the visual layout of the Project is non trivial, and the current implementation still doesn’t get it quite
right. Currently the algorithm iterates through the tasks in topological order,

find the optimal spacing for the tasks
initialize the position of the first task (in topological order) to be 0,0
for task in topological sort of project:

x_position = task's latest start date
relevant_positions = all previously-seen tasks such that their x-distance is <=

→˓the optimal distance
if any of relevant_positions are predecessors of the current task:

relevant_positions = the predecessors of the task which are in relevant_
→˓positions

best_neighbor = the task in relevant_positions whose x-position difference from
→˓the current task is greatest

y_position = y such that (x-position, y) is on a circle centered at best_neighbor
→˓with radius optimal_distance

20 Chapter 5. Visualization

projectpredict Documentation, Release 0.1

store x_position, y_position for the task

The optimal distance is rather arbitrarily found by

start_tasks = all tasks with no predecessors
terminal_tasks = all tasks with no successors
max_path = longest path between any start task and any terminal task
max_time_difference = (end of max_path's latest finish date - start of max path's
→˓latest finish date)
optimal_distance = max_time_difference / length of max_path

5.2. Layout Algorithm 21

projectpredict Documentation, Release 0.1

22 Chapter 5. Visualization

CHAPTER 6

Customized PDFs

ProjectPredict only comes with two built in PDFs, the DeterministicPdf and the GaussianPdf, however, making a
custom PDF is straightforward, and requires only a minimal interface.

6.1 PDFs from Scipy

Generating custom PDFs from scipy.stats distributions requires only that you extend from the projectpre-
dict.pdf.SciPyPdf base class and provide a constructor. For example, to provide a half-normal distribution from
scipy.stats.halfnorm, you could write the following class

1 from scipy.stats import halfnorm
2 from math import sqrt
3

4 class HalfNormalPdf(SciPyPdf):
5 def __init__(mean, variance):
6 super(HalfNormalPdf, self).__init__(halfnorm(loc=mean, scale=sqrt(variance)))

6.2 Fully Custom PDFs

All PDFs must provide the following methods:

• A method called sample() which takes no parameters and return a random sample from the PDF in the form of
a float

• A field or property called “mean” which holds the mean of the pdf

• A field or property called “variance” which holds the variance of the pdf

For example, a uniform PDF from Python’s built-in random module could be written as

23

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfnorm.html#scipy.stats.halfnorm

projectpredict Documentation, Release 0.1

1 from rand import uniform
2

3 class UniformPdf(object):
4 def __init__(low, high):
5 self.low = low
6 self.high = high
7 self.mean = (high - low) / 2
8 self.variance = 1/12 * (high - low)**2
9

10 def sample();
11 return uniform(low, high)

24 Chapter 6. Customized PDFs

CHAPTER 7

Customized Learning Models

ProjectPredict comes with a Gaussian Process Regression model, however you may find this model unsuitable for
your data. To make your own model, you only need to follow a minimal interface – the only requirement is that you
have a method named “predict” that accepts the dictionary of data associated with a task and returns a DurationPdf.
For simplicity, assume your tasks have a “points” value in their data, and your model simply returns a DurationPdf
wrapping a DeterministicPdf containing with the same value as the points passed into it. You could write this as

1 class SimpleModel(object):
2 def __init__(self, units=TimeUnits.hours):
3 self.units = units
4

5 def predict(self, input_data):
6 return DurationPdf(DeterministicPdf(input_data['points']), units=self.units)

25

projectpredict Documentation, Release 0.1

26 Chapter 7. Customized Learning Models

CHAPTER 8

Next Steps

ProjectPredict is still in development, and numerous improvement can be made. Amoung them are:

• The default learning algorithm, the Gaussian Process Regressor model from scikit-learn does not perform ade-
quately for a wide variety of data sets. Some alternatives would be to use GPFlow or pymc3 to determine the
distribution using non-parametric Bayesian methods.

• The visualization capabilities are admittedly somewhat primitive and lacks the ability to interact with the project
graph. A much better solution would be to set up a small web server and use cytoscape to view and interact with
the model.

• Durations are internally represented as Python datetime.timedelta objects. It might be better to allow users to
specify how long a working day is (8 hours) and define a day to be the length of the working hours.

• Completing a task should update the model so that it learns as the project progresses.

27

http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
http://gpflow.readthedocs.io/en/latest/
https://docs.pymc.io
http://js.cytoscape.org

projectpredict Documentation, Release 0.1

28 Chapter 8. Next Steps

CHAPTER 9

Sphinx AutoAPI Index

This page is the top-level of your generated API documentation. Below is a list of all items that are documented here.

9.1 artists

9.1.1 Module Contents

class artists.ArtistBase(project)
Base class for artists. Contains methods to help determine the positions of the tasks

project
Project – The project to draw

Parameters project (Project) – The project to draw

__init__(project)

_date_to_timestamp()

_find_optimal_distance(stats)
Finds the best distance between nodes.

This is determined from the number of tasks in the longest path between all starting tasks and all terminal
tasks. The optimal distance is the difference between the earliest latest finish date mean and the latest latest
finish date mean divided by the number of nodes in the path.

Parameters (dict{Task (stats) – TaskStatistics}): The statistics used to derive the optimal
distance

Returns The optimal distance between nodes.

Return type float

_find_longest_path_length(start_tasks, terminal_tasks)

get_positions(stats)

29

projectpredict Documentation, Release 0.1

_find_best_y_position(optimal_distance, positions, task, x_position)
The optimal Y position is found by first finding the best task for the new task to be positioned near and
solving the equation for a circle centered at that task’s position with a radius equal to the optimal_distance
for the y-variable.

_calculate_y_position(x_position, optimal_distance)

_get_relevant_positions(task, positions, x_position, optimal_distance)

_find_best_neighbor_task()

class artists.MatplotlibArtist(project)
Draws a project using Matplotlib

Note: There are still several issues with this artist. The task labels only fit a single letter, so the names often
overflow. And the labels are too long and are improperly oriented.

project
Project – The project to draw

Parameters project (Project) – The project to draw

__init__(project)

_get_color_converter(bounds, low_better, colormap)

draw(shade="total_float", stats=None, current_time=None, iterations=1000, colormap="Spectral",
show_plot=True, show_variance=True, show_current_time=True)

Draws a project and shades it by derived stats.

The X position of the tasks is determined by their latest start date

Parameters

• shade (str) – Shades the nodes by a derived stat. Accepted values are ‘total_float’,
‘latest_start’, or ‘earliest_finish’

• stats (list[TaskStatistics], optional) – The statistics used to draw the
Project. If none are supplied, the Project will be sampled.

• current_time (datetime, optional) – The current time to sample the Project.
Only used if stats is not specified. Defaults to the current (UTC) time.

• iterations (int, optional) – The number of iterations to sample the Project
from. Only used if stats is not specified. Defaults to 1000

• colormap (str, optional) – The matplotlib color map to use. Defaults to ‘Spec-
tral’

• show_plot (bool, optional) – Show the plot? Defaults to True.

• show_variance (bool, optional) – Show the variance of the latest start date?
Defaults to True.

• show_current_time (bool, optional) – Show the current time as a vertical
line? Defaults to True.

Returns The figure and axis of the plot

Return type tuple

_adjust_ticks()

30 Chapter 9. Sphinx AutoAPI Index

projectpredict Documentation, Release 0.1

_create_color_converter(colormap, shade, stats)

_add_variance_bars(positions, stats)

9.2 pdf

9.2.1 Module Contents

class pdf.SciPyPdf(pdf)

__init__(pdf)

sample()
Get a sample from the PDF

Returns A sample from the PDF

Return type float

mean()
float: The mean of the PDF

variance()
float: The variance of the PDF

__eq__(other)

__repr__()

class pdf.GaussianPdf(mean, variance)
A PDF representing a Gaussian distribution

pdf
norm – The Gaussian pdf object

Parameters pdf (norm) – The Gaussian pdf object

__init__(mean, variance)

from_dict(dict_in)
Creates a GaussianPdf from a dictionary

Parameters dict_in (dict) – The dict to create the PDF from. Must contain keys for ‘mean’
and ‘variance’

Returns The constructed Gaussian PDF

Return type GaussianPdf

to_dict()
Gets a dictionary representation of this PDF

Returns The dictionary representation of this PDF

Return type dict

class pdf.DeterministicPdf(value)
A PDF representing a Gaussian distribution

pdf
float – The exact value to be returned by the sample() function

9.2. pdf 31

projectpredict Documentation, Release 0.1

Parameters value (float) – The exact value to be returned by the sample() function

__init__(value)

sample()
Get a sample from the PDF. Will always return the value passed into the constructor.

Returns The value passed into the constructor

Return type float

mean()
float: The mean of the PDF. Always equal to the value passed into the constructor

variance()
float: The variance of the PDF. Will always return 0

__eq__(other)

from_dict(dict_in)
Creates a DeterministicPdf from a dictionary

Parameters dict_in (dict) – The dict to create the PDF from. Must contain keys for ‘mean’

Returns The constructed deterministic PDF

Return type DeterministicPdf

to_dict()
Gets a dictionary representation of this PDF

Returns The dictionary representation of this PDF

Return type dict

class pdf.PdfFactory
Factory to construct PDFs from dictionaries

create(pdf_type, parameters)
Create a PDF

Parameters

• pdf_type (str) – The type of PDF to construct. Must match an entry in the pdf_registry

• parameters (dict) – The parameters from which to construct the PDF from.

Returns The constructed PDF

class pdf.TimeUnits
Enum representing possible units of time

to_timedelta(value)
Converts a TimeUnits and a value to a timedelta

Parameters

• units (TimeUnits) – The units to use with the timedelta

• value (float) – The value to use in the timedelta

Returns The timedelta with the given units and value

Return type timedelta

from_string(value)
Converts a string to a TimeUnits

32 Chapter 9. Sphinx AutoAPI Index

projectpredict Documentation, Release 0.1

Parameters value (str) – The string to convert

Returns The converted timeunit

Return type TimeUnits

Raises ValueError – If no matching string is found.

class pdf.DurationPdf(pdf, units=None)
A probability density function over a time duration

pdf
A probability density function object which provides a mechanism for sampling via a sample() method

units
TimeUnits – The units to use for the duration

Parameters

• pdf – A probability density function object

• units (TimeUnits, optional) – The units to use for the duration. Defaults to Time-
Units.seconds

__init__(pdf, units=None)

mean()
timedelta: The mean value of this PDF

sample(minimum=None)
Get a sample from the distribution

Parameters minimum (timedelta) – The minimum duration

Returns A sample from the distribution

Return type timedelta

__eq__(other)

class pdf.DatePdf(mean_datetime, pdf, units=None)
A probability density function over a datetime.

mean_datetime
datetime – A datetime to use as the mean value

pdf
A probability density function object which provides a sampling mechanism via a sample() method

units
TimeUnits – The units to use for the pdf samples

Parameters

• mean_datetime (datetime) – A datetime to use as the mean value

• pdf – A probability density function object

• units (TimeUnits, optional) – The units to use for pdf samples. Defaults to Time-
Units.seconds

__init__(mean_datetime, pdf, units=None)

mean()
timedelta: The mean value of this PDF

9.2. pdf 33

projectpredict Documentation, Release 0.1

sample()
Get a sample from the distribution

Returns A sample from the distribution

Return type datetime

__eq__(other)

9.3 task

9.3.1 Module Contents

class task.Entity(uid=None, name="")
Base class for entities which provides a UUID and a hashability to the child classes

uid
UUID – The UUID of the object

name
str – The name of the object

Parameters

• uid (UUID, optional) – The UUID of the object

• name (str, optional) – The name of the object

__init__(uid=None, name="")

__eq__(other)

__hash__()

__repr__()

class task.Task(name, uid=None, project_uid=None, duration_pdf=None, earli-
est_start_date_pdf=None, latest_finish_date_pdf=None, data=None, dead-
line_weight=1)

A task in the project or overall process

project_uid
UUID – The UUID of the project containing this task

duration_pdf
projectpredict.pdf.DurationPdf – A pdf to use to sample the duration of the task

earliest_start_date_pdf
projectpredict.pdf.DatePdf – A pdf to use to sample the earliest start date of of the task

latest_finish_date_pdf
projectpredict.pdf.DatePdf – A pdf to use to sample the latest finish date of the task

start_time
datetime – The datetime the task was started

completion_time
datetime – The datetime the task was completed

data
Any data associated with this task.

34 Chapter 9. Sphinx AutoAPI Index

projectpredict Documentation, Release 0.1

deadline_weight
The weight attached to the deadline for this task.

Parameters

• name (str) – The name of the task

• uid (UUID, optional) – The UUID of the task. If none is provided, one will be gen-
erated.

• project_uid (UUID, optional) – The UUID of the project containing this task

• duration_pdf (projectpredict.pdf.DurationPdf) – A pdf to use to sample
the duration of the task

• earliest_start_date_pdf (DatePdf, optional) – A pdf to use to sample the
earliest start date of of the task

• latest_finish_date_pdf (DatePdf, optional) – A pdf to use to sample the
latest finish date of the task

• data (optional) – Any data associated with this task.

• deadline_weight (int, optional) – The weight attached to meeting this task’s
deadline

__init__(name, uid=None, project_uid=None, duration_pdf=None, earliest_start_date_pdf=None,
latest_finish_date_pdf=None, data=None, deadline_weight=1)

start(start_time=None)
Marks the task as started

Parameters start_time (datetime, optional) – The datetime the task was started.
Defaults to the current UTC timestamp

complete(completion_time=None)
Completes the task

Parameters completion_time (datetime, optional) – The datetime the task was
completed. Defaults to the current UTC timestamp

is_completed()
bool: Is the task completed?

is_started()
bool: Has the task been started?

mean_duration()
timedelta: Gets the mean of the duration pdf

set_duration_pdf(model)
Sets the duration PDF from a model

Parameters model – The model to use to predict the duration of the task

set_earliest_start_pdf(mean_datetime, std, units=None)
Sets the earliest start date pdf as a normal distributirequired=Trueon about a mean date.

Parameters

• mean_datetime (datetime) – The mean datetime of the earliest time a task can start

• std (float) – The standard deviation of the distribution

9.3. task 35

projectpredict Documentation, Release 0.1

• units (TimeUnits, optional) – The units of time of the variance. Defaults to
TimeUnits.seconds

set_latest_finish_pdf(mean_datetime, std, units=None)
Sets the latest finish date pdf as a normal distribution about a mean date.

Parameters

• mean_datetime (datetime) – The mean datetime of the latest time a task can finish

• std (float) – The standard deviation of the distribution

• units (TimeUnits, optional) – The units of time of the variance. Defaults to
TimeUnits.seconds

get_duration_sample(current_time)
Gets a sample of the duration.

If the task has already started, then only durations greater than current_time - start_time will be valid, and
samples will be drawn until a valid duration is picked.

Parameters current_time (datetime) – The current time at which the sample should be
drawn from.

Returns A sample of the duration pdf

Return type timedelta

get_earliest_start_sample(current_time)
Gets a sample of the earliest start date pdf

If a task has been started, this will always return the start time. Else if an earliest start date pdf has been
provided, a sample is drawn from that distribution. If no distribution has ben provided, the current time is
returned.

Parameters current_time (datetime) – The current time at which the sample should be
drawn from.

Returns A sample from the earliest start date pdf.

Return type datetime

get_latest_finish_sample()
Gets a sample of the latest finish date pdf

If an latest finish date pdf has been provided, a sample is drawn from that distribution. else, this function
will return None

Returns A sample from the latest start date pdf

Return type datetime

from_pert(name, best_case, estimated, worst_case, units=None, **kwargs)
Constructs a Task from three-point (PERT) estimations.

Parameters

• name (str) – The name of the task

• best_case (float) – The estimated best case duration of the task

• estimated (float) – The estimated duration of the task

• worst_case (float) – The estimated worst case duration of the task

• units (TimeUnits, optional) – The units of time used in the estimation. Defaults
to TimeUnits.seconds

36 Chapter 9. Sphinx AutoAPI Index

projectpredict Documentation, Release 0.1

• **kwargs – Arguments to be passed into Task constructor

Returns A task constructed from the provided arguments

Return type Task

9.4 exceptions

9.4.1 Module Contents

class InvalidProject(errors)
Exception thrown when a project is determined to be invalid

errors
list[str]|str – The errors found with the Project

Parameters errors (list[str]|str) – The errors found with the Project

__init__(errors)

__repr__()

9.5 project

9.5.1 Module Contents

project.datetime_stats(datetimes)
Gets the mean and variance of a collection of datetimes

Parameters datetimes (iterable(datetime)) – The datetimes to compute the statistics
on.

Returns

A dictionary containing keys for the mean and variance. The mean is a datetime, and the variance is a
timedelta.

Return type dict

project.timedelta_stats(timedeltas)
Gets the mean and variance of a collection of timedeltas

Parameters timedeltas (iterable(timedelta)) – The timedeltas to compute the statistics
on.

Returns A dictionary containing keys for the mean and variance. both the mean and variance are
datetimes.

Return type dict

class project.TaskSample(duration, earliest_start, latest_finish)
A wrapper for a sample of the derived statistics for a Task

duration
timedelta – The sampled duration of the task

9.4. exceptions 37

projectpredict Documentation, Release 0.1

earliest_start
datetime – The sampled earliest start date of the task

latest_finish
datetime – The sampled latest finish date of the task

latest_start
datetime – The latest start date of the task. Must be set independently of the constructor

earliest_finish
datetime – The earliest finish date of the task. Must be set independently of the constructor.

Parameters

• duration (timedelta) – The sampled duration of the task

• earliest_start (datetime) – The sampled earliest start date of the task

• latest_finish (datetime) – The sampled latest finish date of the task

__init__(duration, earliest_start, latest_finish)

total_float()
timedelta: The total float of the task. Earliest finish mst be set before calculation.

from_task(task, current_time)
Constructs a TaskSample from a task

Parameters

• task (Task) – The task to sample

• current_time (datetime) – The current datetime used to sample the task

Returns The constructed sample

Return type TaskSample

class project.TaskStatistics(latest_start, earliest_finish, total_float)
A container for the relevant derived statistics for a Task

latest_start
dict – A dict containing the mean and variance of the latest start date of the task in ‘mean’ and ‘variance’
keys respectively.

earliest_finish
dict – A dict containing the mean and variance of the earliest finish date of the task in ‘mean’ and ‘variance’
keys respectively.

total_float
dict – A dict containing the mean and variance of the total float date of the task in ‘mean’ and ‘variance’
keys respectively.

Parameters

• latest_start (dict) – A dict containing the mean and variance of the latest start date
of the task in ‘mean’ and ‘variance’ keys respectively.

• earliest_finish (dict) – A dict containing the mean and variance of the earliest
finish date of the task in ‘mean’ and ‘variance’ keys respectively.

• total_float (dict) – A dict containing the mean and variance of the total float date of
the task in ‘mean’ and ‘variance’ keys respectively.

38 Chapter 9. Sphinx AutoAPI Index

projectpredict Documentation, Release 0.1

__init__(latest_start, earliest_finish, total_float)

from_samples(samples)
Construct a TaskStatistics object from samples

Parameters samples (iterable(TaskSample)) – The samples to compute the statistics
from.

Returns The constructed TaskStatistics

Return type TaskStatistics

__repr__()

class project.Project(name, model=None, uid=None, tasks=None, dependencies=None)
A project

Note: This must be an acyclic graph.

name
str – The name of the project

uid
UUID – The UUID of the project

model
A model used to predict the duration of tasks from their data

Parameters

• name (str) – The name of the project

• model (optional) – A model used to predict the duration of tasks from their data

• uid (UUID, optional) – The UUID of the project

• tasks (iterable(Task), optional) – A collections of Tasks associated with this
project

• dependencies (iterable(dict), optional) – The dependencies associated
with the project in the form of dicts of ‘source’ and ‘destination’ keys.

__init__(name, model=None, uid=None, tasks=None, dependencies=None)

validate()
Validates the Project meets the requirements to do inference

Checks: * The Project is a directed acyclic graph * Every terminal Task (one without successors) has a
latest start date PDF

Raises InvalidProject – If the project does not conform to the requirements.

dependencies()
list[tuple(Task, Task)]: The dependencies in the project where the first element of the tuple is the source
task and the second element of the tuple is the dependent task.

tasks()
iterable(Task): The tasks of this project

dependencies_summary()
list[DependencySummary]: The dependencies of this project

9.5. project 39

projectpredict Documentation, Release 0.1

get_task_from_id(id_)
Gets a task from an id

Parameters id (UUID) – The UUID of the project to get

Returns The task with the associated with the id or None if task is not found

Return type Task|None

add_task(task)
Adds a Task to this Project and determines the duration PDF of the task from the model if not previously
specified.

Parameters task (Task) – The Task to add to the project

add_tasks(tasks)

Adds multiple Tasks to this Project and determines the duration PDF of the task from the model if not
previously specified.

Parameters tasks (iterable(Task)) – The Task to add to the project

add_dependency(parent, child)
Adds a Task dependency to this Project

Parameters

• parent (Task) – The parent task

• child (Task) – The child task, i.e. the Task which depends on the parent

add_dependencies(dependencies)
Adds multiple Task dependencies to this Project

Parameters dependencies (list[tuple(Task, Task)]) – A list of tuples of Task
dependencies in the form of (parent task, child task)

calculate_earliest_finish_times(current_time=None, iterations=1000)
Generates samples of the earliest finish times for each uncompleted node in the project.

Parameters

• current_time (datetime) – the time at which to take the samples

• iterations (int, optional) – The number of samples to generate. Defaults to
1000

Returns [datetime]}: A dictionary of the samples for each task.

Return type dict{Task

earliest_finish_sample_func(parents, children, samples, **kwargs)

calculate_latest_start_times(iterations=1000)
Generates samples of the latest start times for each uncompleted node in the project.

Parameters iterations (int, optional) – The number of samples to generate. De-
faults to 1000

Returns [datetime]}: A dictionary of the samples for each task.

Return type dict{Task

latest_start_sample_func(parents, children, samples, **kwargs)

_get_samples(forward_sample_func=None, backward_sample_func=None, iterations=1000, cur-
rent_time=None, **kwargs)

40 Chapter 9. Sphinx AutoAPI Index

projectpredict Documentation, Release 0.1

_get_parents_and_children(task)

calculate_task_statistics(current_time=None, iterations=1000)

recommend_next(current_time=None, constraints=None, iterations=1000, score_func=None, se-
lection_func=None, min_number=1, max_number=1, batch_wait=False, selec-
tion_func_arguments=None, **score_func_arguments)

Get the recommended next tasks

Parameters

• current_time (datetime, optional) – The current time (in UTC) to query the
project. Defaults to the current time.

• constraints (iterable(callable)) – A list of constraints to apply to the se-
lected tasks. These must be functions which task in two parameters – the project (self) and
the set of Tasks under consideration.

• iterations (int, optional) – The number of iterations to query the project for
each considered set of Tasks. Defaults to 1000.

• score_func (func, optional) – The function used to score the results of a Task
set. Defaults to a function which returns a dict containing the mean and precision (inverse
variance) of the total float of each task weighted by the Tasks’ deadline weight. The
function must take keyword arguments which can be specified as keyword arguments to
this function (see score_func_arguments).

• selection_func (func, optional) – The function used to select which task set
is best from the results returned from the score_func. Defaults to a function which scales
the total float and precision each between 0 and 1 and sums them according to a weighting
parameter (see selection_func_arguments). The function must accept a dict of Task set
to score and keyword arguments which can be specified by the selection_func_arguments
parameter of this function.

• min_number (int, optional) – The minimum number of tasks which can can be
recommended. Defaults to 1.

• max_number (int, optional) – The maximum number of tasks which can be rec-
ommended. Defaults to 1.

• batch_wait (bool, optional) – Do all tasks for a proposed tuple of Tasks need to
be completed before the next tasks can begin? Defaults to False.

• selection_func_arguments (dict, optional) – The arguments to be passed
to the selection_func.

• **score_func_arguments – The arguments to pass to the score_func

Returns The recommended tasks to complete next

Return type tuple(Task)

recommendation_sample_func(parents, children, samples, **kwargs)

_default_recommendation_score_func(**kwargs)

_default_recommendation_selection_func(**kwargs)

get_starting_and_terminal_tasks()
Gets the starting tasks (ones without predecessors) and terminal tasks (ones without successors)

Returns

The starting and terminal tasks in the form of (starting tasks, terminal tasks)

9.5. project 41

projectpredict Documentation, Release 0.1

Return type tuple(list[Task], list[Task])

update_from_dict(data)
Updates the Project using a dictionary of new values

Parameters data (dict) – The new values

from_dict(data_in, model)
Constructs a Project from a dictionary of values and a model

Parameters

• data_in (dict) – The data to construct the Project from

• model – The model used to predict the durations of tasks

Returns The constructed project

Return type Project

9.6 learningmodels

9.6.1 Submodules

learningmodels.scikit

Module Contents

class learningmodels.scikit.GaussianProcessRegressorModel(units=None, **kwargs)
Learns the duration of a task from data using scikit-learn’s GaussianProcessRegressor

model
GaussianProcessRegressor – The underlying model used to predict the data

units
TimeUnits, optional – The time units the resulting durations should be in. Defaults to TimeUnits.seconds

is_trained
bool – A boolean value indicating if the model has been trained.

ordering
list[str] – The ordering of the input data used to construct input data

Parameters units (TimeUnits, optional) – The time units the resulting durations should
be in. Defaults to TimeUnits.seconds

Keyword Arguments kernel – The kernel to use in the regressor model. Defaults to ConstantK-
ernel() + Matern(length_scale=1, nu=3 / 2) + WhiteKernel(noise_level=1)

__init__(units=None, **kwargs)

train(input_data, durations, ordering=None)
Trains the model from input data and durations

Note: If a Pandas DataFrame is used for the input data, the ordering of the data will be determined
by the ordering of the colunms. If a pandas DataFrame is not used, then the ordering will need to be

42 Chapter 9. Sphinx AutoAPI Index

projectpredict Documentation, Release 0.1

provided. Each Task must provide data as a dictionary in which the keys are the same as the names in the
ordering/column names of the DataFrame

Parameters

• input_data (array-like) – The data to train the data from

• durations (array-like) – The durations associated with the data

• ordering (list[str], optional) – The ordering of the data

Raises ValueError – When a non-DataFrame is provided as the input_data and no ordering
is provided

predict(input_data)
Predicts the duration of a task given its data

Parameters

• input_data (dict) – A dict containing the data necessary to predict the duration. The
format must be as

• pairs in which the key is the name of the data and the
value is its value. (key-value) –

Returns The estimated duration of the task.

Return type DurationPdf

9.6. learningmodels 43

projectpredict Documentation, Release 0.1

44 Chapter 9. Sphinx AutoAPI Index

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

45

projectpredict Documentation, Release 0.1

46 Chapter 10. Indices and tables

Python Module Index

a
artists, 29

e
exceptions, 37

l
learningmodels, 42
learningmodels.scikit, 42

p
pdf, 31
project, 37

t
task, 34

47

projectpredict Documentation, Release 0.1

48 Python Module Index

Index

Symbols
__eq__() (pdf.DatePdf method), 34
__eq__() (pdf.DeterministicPdf method), 32
__eq__() (pdf.DurationPdf method), 33
__eq__() (pdf.SciPyPdf method), 31
__eq__() (task.Entity method), 34
__hash__() (task.Entity method), 34
__init__() (artists.ArtistBase method), 29
__init__() (artists.MatplotlibArtist method), 30
__init__() (exceptions.InvalidProject method), 37
__init__() (learningmod-

els.scikit.GaussianProcessRegressorModel
method), 42

__init__() (pdf.DatePdf method), 33
__init__() (pdf.DeterministicPdf method), 32
__init__() (pdf.DurationPdf method), 33
__init__() (pdf.GaussianPdf method), 31
__init__() (pdf.SciPyPdf method), 31
__init__() (project.Project method), 39
__init__() (project.TaskSample method), 38
__init__() (project.TaskStatistics method), 38
__init__() (task.Entity method), 34
__init__() (task.Task method), 35
__repr__() (exceptions.InvalidProject method), 37
__repr__() (pdf.SciPyPdf method), 31
__repr__() (project.TaskStatistics method), 39
__repr__() (task.Entity method), 34
_add_variance_bars() (artists.MatplotlibArtist method),

31
_adjust_ticks() (artists.MatplotlibArtist method), 30
_calculate_y_position() (artists.ArtistBase method), 30
_create_color_converter() (artists.MatplotlibArtist

method), 30
_date_to_timestamp() (artists.ArtistBase method), 29
_default_recommendation_score_func() (project.Project

method), 41
_default_recommendation_selection_func()

(project.Project method), 41
_find_best_neighbor_task() (artists.ArtistBase method),

30
_find_best_y_position() (artists.ArtistBase method), 29
_find_longest_path_length() (artists.ArtistBase method),

29
_find_optimal_distance() (artists.ArtistBase method), 29
_get_color_converter() (artists.MatplotlibArtist method),

30
_get_parents_and_children() (project.Project method), 41
_get_relevant_positions() (artists.ArtistBase method), 30
_get_samples() (project.Project method), 40

A
add_dependencies() (project.Project method), 40
add_dependency() (project.Project method), 40
add_task() (project.Project method), 40
add_tasks() (project.Project method), 40
ArtistBase (class in artists), 29
artists (module), 29

C
calculate_earliest_finish_times() (project.Project

method), 40
calculate_latest_start_times() (project.Project method),

40
calculate_task_statistics() (project.Project method), 41
complete() (task.Task method), 35
completion_time (task.Task attribute), 34
create() (pdf.PdfFactory method), 32

D
data (task.Task attribute), 34
DatePdf (class in pdf), 33
datetime_stats() (in module project), 37
deadline_weight (task.Task attribute), 34
dependencies() (project.Project method), 39
dependencies_summary() (project.Project method), 39
DeterministicPdf (class in pdf), 31
draw() (artists.MatplotlibArtist method), 30
duration (project.TaskSample attribute), 37

49

projectpredict Documentation, Release 0.1

duration_pdf (task.Task attribute), 34
DurationPdf (class in pdf), 33

E
earliest_finish (project.TaskSample attribute), 38
earliest_finish (project.TaskStatistics attribute), 38
earliest_finish_sample_func() (project.Project method),

40
earliest_start (project.TaskSample attribute), 37
earliest_start_date_pdf (task.Task attribute), 34
Entity (class in task), 34
errors (exceptions.InvalidProject attribute), 37
exceptions (module), 37

F
from_dict() (pdf.DeterministicPdf method), 32
from_dict() (pdf.GaussianPdf method), 31
from_dict() (project.Project method), 42
from_pert() (task.Task method), 36
from_samples() (project.TaskStatistics method), 39
from_string() (pdf.TimeUnits method), 32
from_task() (project.TaskSample method), 38

G
GaussianPdf (class in pdf), 31
GaussianProcessRegressorModel (class in learningmod-

els.scikit), 42
get_duration_sample() (task.Task method), 36
get_earliest_start_sample() (task.Task method), 36
get_latest_finish_sample() (task.Task method), 36
get_positions() (artists.ArtistBase method), 29
get_starting_and_terminal_tasks() (project.Project

method), 41
get_task_from_id() (project.Project method), 39

I
InvalidProject (class in exceptions), 37
is_completed() (task.Task method), 35
is_started() (task.Task method), 35
is_trained (learningmod-

els.scikit.GaussianProcessRegressorModel
attribute), 42

L
latest_finish (project.TaskSample attribute), 38
latest_finish_date_pdf (task.Task attribute), 34
latest_start (project.TaskSample attribute), 38
latest_start (project.TaskStatistics attribute), 38
latest_start_sample_func() (project.Project method), 40
learningmodels (module), 42
learningmodels.scikit (module), 42

M
MatplotlibArtist (class in artists), 30

mean() (pdf.DatePdf method), 33
mean() (pdf.DeterministicPdf method), 32
mean() (pdf.DurationPdf method), 33
mean() (pdf.SciPyPdf method), 31
mean_datetime (pdf.DatePdf attribute), 33
mean_duration() (task.Task method), 35
model (learningmodels.scikit.GaussianProcessRegressorModel

attribute), 42
model (project.Project attribute), 39

N
name (project.Project attribute), 39
name (task.Entity attribute), 34

O
ordering (learningmod-

els.scikit.GaussianProcessRegressorModel
attribute), 42

P
pdf (module), 31
pdf (pdf.DatePdf attribute), 33
pdf (pdf.DeterministicPdf attribute), 31
pdf (pdf.DurationPdf attribute), 33
pdf (pdf.GaussianPdf attribute), 31
PdfFactory (class in pdf), 32
predict() (learningmod-

els.scikit.GaussianProcessRegressorModel
method), 43

project (artists.ArtistBase attribute), 29
project (artists.MatplotlibArtist attribute), 30
Project (class in project), 39
project (module), 37
project_uid (task.Task attribute), 34

R
recommend_next() (project.Project method), 41
recommendation_sample_func() (project.Project

method), 41

S
sample() (pdf.DatePdf method), 33
sample() (pdf.DeterministicPdf method), 32
sample() (pdf.DurationPdf method), 33
sample() (pdf.SciPyPdf method), 31
SciPyPdf (class in pdf), 31
set_duration_pdf() (task.Task method), 35
set_earliest_start_pdf() (task.Task method), 35
set_latest_finish_pdf() (task.Task method), 36
start() (task.Task method), 35
start_time (task.Task attribute), 34

T
Task (class in task), 34

50 Index

projectpredict Documentation, Release 0.1

task (module), 34
tasks() (project.Project method), 39
TaskSample (class in project), 37
TaskStatistics (class in project), 38
timedelta_stats() (in module project), 37
TimeUnits (class in pdf), 32
to_dict() (pdf.DeterministicPdf method), 32
to_dict() (pdf.GaussianPdf method), 31
to_timedelta() (pdf.TimeUnits method), 32
total_float (project.TaskStatistics attribute), 38
total_float() (project.TaskSample method), 38
train() (learningmodels.scikit.GaussianProcessRegressorModel

method), 42

U
uid (project.Project attribute), 39
uid (task.Entity attribute), 34
units (learningmodels.scikit.GaussianProcessRegressorModel

attribute), 42
units (pdf.DatePdf attribute), 33
units (pdf.DurationPdf attribute), 33
update_from_dict() (project.Project method), 42

V
validate() (project.Project method), 39
variance() (pdf.DeterministicPdf method), 32
variance() (pdf.SciPyPdf method), 31

Index 51

	What is ProjectPredict?
	Installation
	The Recommendation Engine
	Examples
	Visualization
	Customized PDFs
	Customized Learning Models
	Next Steps
	Sphinx AutoAPI Index
	Indices and tables
	Python Module Index

