project_manager Documentation
Release 0.0.1

Kpj

Nov 28, 2019

Contents

1 Installation 3
2 Usage 5
2.1 Configurationfile L e 5
22 Commands e e e e e e e 6
2.3 Example . ..o e e e e e e e e e e 6

project_manager Documentation, Release 0.0.1

A utility which makes running the same projects with various configurations as easy as pie.

Contents 1

project_manager Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Installation

$ pip install project_manager

project_manager Documentation, Release 0.0.1

4 Chapter 1. Installation

CHAPTER 2

Usage

2.1 Configuration file

Create a configuration:

project_source: <url or path> # project you want to run
working dir: <path> # where everything will run

exec_command: # list of commands that will be executed in each project setup

- <python ..>
result_files: # list of files/folders that will be extracted after successful_,
—execution

- <result file>

- <result dir>

base_config: <path> # path to the raw configuration file (typically part of your,
—project)
symlinks: # list of symlinks to include in each project setup
- <path 1>
- <path 2>
config_parameters: # how to modify the configuration
- key: paraml
values: [0, 1, 2]
paired:
- key: param?2
values: [a, b, c]
- key: [nested, param3]
values: ['a', 'b', 'c']
extra parameters: # special extra parameters
git_branch: ['master']
repetitions: 1

project_manager Documentation, Release 0.0.1

2.2 Commands

After setting up the configuration file, you can run all commands.

$ project_manager build
$ project_manager run
$ project_manager gather

In order, these commands do the following:
1. Create individual folders for each run and adapt the configuration accordingly
2. Run the specified commands per previously created setup

3. Retrieve all specified results into a single directory. Each individual files is annotated with its origin.

2.3 Example

This document provides a brief overview of project_manager’s basic functionality.

2.3.1 Environment setup

tree

dummy_project
_my_conf.yaml
_____run.py
_____config.yaml

cat config.yaml
project_source: dummy_project

working_dir: tmp

exec_command:

- python3 run.py
result_files:

- results

base_config: dummy_project/my_conf.yaml
config_parameters:
- key: message
values: [A, B, C]

cat dummy_project/my_conf.yaml

message: 'this is important'
cat dummy_project/run.py

import os
import yaml

(continues on next page)

6 Chapter 2. Usage

project_manager Documentation, Release 0.0.1

(continued from previous page)
def main () :
with open('my_conf.yaml') as fd:
config = yaml.full load(fd)

os.makedirs ('results')

with open('results/data.txt', 'w') as fd:
fd.write(config['message'])

if name == '__main__':
main ()

2.3.2 Pipeline execution
Setup directory for each configuration

project_manager build -c config.yaml

Setting up environments: 100%|| 3/3 [00:00<00:00, 880.60it/s]

Execute scripts for each configuration

project_manager run -c config.yaml

0% | | 0/3 [00:00<?, ?it/s]lrun.
—message=A
> python3 run.py

33% | 1/3 [00:00<00:00, 4.18it/s]run.message=C
> python3 run.py
67%| | 2/3 [00:00<00:00, 4.61it/s]lrun.message=B

> python3 run.py
100%1| 3/3 [00:00<00:00, 5.90it/s]

Gather results from each run

project_manager gather -c config.yaml

run.message=A

> results/data.txt
run.message=C

> results/data.txt
run.message=B

> results/data.txt

2.3.3 Investigate results

tree tmp/

2.3. Example 7

project_manager Documentation, Release 0.0.1

______aggregated_results
_____results
|___data.message=B.txt
|___ data.message=A.txt
|____data.message=C.txt
______run.message=A
_ my_conf.yaml
_____results

|
|
| data.txt
|

run.py
run.message=C

|___ my_conf.yaml
|____results
| | data.txt
|_____run.py
run.message=B
|____ _my_conf.yaml
| results
I

|

| data.txt
run.py

cat tmp/aggregated_results/results/x*

ABC

Chapter 2. Usage

	Installation
	Usage
	Configuration file
	Commands
	Example

